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Abstract Background: Development of effective and plausible numerical tools is an
imperative task for thorough studies of nonlinear dynamics in life science applica-
tions.
Results: We have developed a complementary suite of computational tools for two-
parameter screening of dynamics in neuronal models. We test a ‘brute-force’ effec-
tiveness of neuroscience plausible techniques specifically tailored for the examina-
tion of temporal characteristics, such duty cycle of bursting, interspike interval, spike
number deviation in the phenomenological Hindmarsh-Rose model of a bursting neu-
ron and compare the results obtained by calculus-based tools for evaluations of an
entire spectrum of Lyapunov exponents broadly employed in studies of nonlinear
systems.
Conclusions: We have found that the results obtained either way agree exceptionally
well, and can identify and differentiate between various fine structures of complex
dynamics and underlying global bifurcations in this exemplary model. Our future
planes are to enhance the applicability of this computational suite for understand-
ing of polyrhythmic bursting patterns and their functional transformations in small
networks.
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1 Introduction

Individual and networked neurons can generate various complex oscillations known
as bursting, formed by alternating fast repetitive spiking and quiescent or subthresh-
old oscillatory phases. Bursting is a manifestation of composite, multiple time scale
dynamics observed in various fields of science as diverse as food chain ecosystems,
nonlinear optics, medical studies of the human immune system, and neuroscience.
The role of bursting is especially important for rhythmic movements determined by
Central Pattern Generators (CPG). Many CPGs can be multifunctional and produce
polyrhythmic bursting patterns on distinct time scales, like fast swimming and slow
crawling in leeches [1]. Such CPGs are able to switch between different rhythms
when perturbed [2, 3].

In mathematical neuroscience a deterministic description of endogenously oscil-
latory activities, like two-time scale bursting, is done by revealing generic properties
of mathematical and realistic models of neurons; the latter are derived through the
Hodgkin-Huxley formalism for gating variables. Either bursting model falls into a
class of dynamical systems with at least two time scales, known as slow-fast systems.

Configurations and classification schemes for bursting activities in neuronal mod-
els first proposed in [4] and extended in [5, 6] are based on geometrically trans-
parent mechanisms that initiate and terminate the so-called slow motion manifolds
composed of the limiting solutions, such as equilibria and limit cycles, of the fast
subsystem of a model [7–11]. These manifolds constitute the backbones of burst-
ing patterns in a neuronal model. A typical Hodgkin-Huxley model possesses a pair
of such manifolds [4]: quiescent and tonic spiking. The existing classifications of
bursting are based on codimension-one bifurcations that initiate or terminate the fast
trajectory transitions between such one-dimensional [1D] and two-dimensional [2D]
slow motion manifolds in the phase space of a model. These classifications single
out the classes of bursting by subdividing neuronal models into the following types:
elliptic or Hopf-fold; square-wave burster, or fold-homoclinic; parabolic, or circle-
circle class describing top-hat models. These terms are either due to specific shapes
of voltages traces in time, or after the static underlying bifurcations that occur in the
fast subsystem of the given neuron model.

The types of the static bursting configurations in the Hindmarsh-Rose model
shown in Figures 1 and 2 are also named fold/homoclinic and fold/Hopf, as this would
indicate that the terminal phases of the fast spiking and slow quiescent periods are de-
termined, respectively, by a homoclinic bifurcation of a saddle equilibrium state, or
a supercritical Andronov-Hopf bifurcation, along with a saddle-node bifurcation of
equilibria, respectively, which all occur in the fast subsystem of the model. In the

Fig. 1 (A) Square-wave and (B) plateau-like bursting traces in the Hindmarsh-Rose model at b = 2.7 and
2.52, respectively. Transformations of bursting can be detected quantitatively by a sudden change of the
number of spikes per burst.
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Fig. 2 Top: a plateau-like or fold/Hopf bursting starts after the spiking manifold Mlc becomes tangent to
the middle, saddle branch of Meq and terminates further through the reverse supercritical Andronov-Hopf
bifurcation on the upper depolarized branch of Meq. Bottom: the primary feature of the square-wave
bursting activity in the HR model also referred to as of fold/homoclinic type is the termination of the
spiking manifold Mlc by the homoclinic bifurcation in the phase space of the fast subsystem. In both
cases: fold stands for a saddle-node bifurcation at the turning point (SN) on the lower, hyperpolarized
branch of Meq.

next section we will examine the transition bifurcation patterns between these types
of bursting.

These manifolds, especially their stable branches, can be easily traced and visual-
ized in the phase space by utilizing the slow variable as a sweeping parameter in the
decoupled fast subsystem. Far from bifurcations, this slow-fast dissection approach
allows for exhaustive simplifications that let one treat the dynamics of the full model
as on overlay the uncorrelated dynamics of its fast subsystem mediated by repetitive
passages of the slow variable.

The slow-fast dissection has been proven to work very well for a low-order model
of a bursting neuron as long as it stays away from a bifurcation that is due to recipro-
cal interactions of the dynamics of both subsystems. Such a bifurcation, underlying a
bursting transition(s), gives rise to the emergence of dynamical phenomena that can



Page 4 of 22 Barrio, Shilnikov

only occur in the full system. For example, this occurs when the dynamics of the fast
subsystem falls to the time scale of the slow subsystem, particularly near saddle-node
and homoclinic bifurcations. A classic example is the onset of chaotic dynamics of
finite subshift shown by D. Terman [12] at the transition between tonic spiking and
bursting that happens to be generic for a square-wave burster like the Hindmarsh-
Rose model [13–15]. In addition [12] gives an explanation of common spike adding
cascade in classical square-wave bursters which is due to a slow passage of the phase
point near the saddle in the fast subsystem. Note that the nature of spike adding cas-
cade could be bifurcationally different, as for example in the leech interneuron model
due to the blue sky catastrophe [16] prolonging the burst duration phase, or because
of homoclinics of a saddle periodic orbit [17, 18] playing the role of the chaotic po-
tential barrier, loosely speaking, that bursting should overcome to get an extra spike.

Complex dynamics, including quick period doubling cascades in square wave
bursters [19, 20] can also be explained in terms of codimension-two homoclinic bifur-
cations, including inclination-switch and orbit-flips, that occur at the transition [21,
22] from tonic spiking to bursting. Recent breakthrough examples of novel transitions
to and from bursting due to reciprocal interactions of slow-fast dynamics include var-
ious homoclinic of saddles and saddle-foci, the blue sky catastrophe, bistability due
non-transverse homoclinics to saddle-node periodic orbits, canard-tori [13, 16–18,
23–26]. The range of bifurcations and dynamical phenomena giving rise to bursting
transcends the existing static classification schemes based solely on slow-fast dissec-
tion.

In-depth understanding of the generic mechanisms combined into a broad global
picture on the transition patterns between the activity types in typical models of indi-
vidual neurons presents a fundamental challenge for the theory of applied dynamical
systems. In response to variations of intrinsic parameters, or an external applied cur-
rent, like I in (1), a neuron model should demonstrate, migrate, and switch flexibly
between various types of activities such as quiescence, tonic spiking and bursting. In
addition, nonlinearity of the model can often imply bi- or multi-stability of several co-
existing activities at the same parameter values. Bistability of coexisting oscillatory
patterns originate near global bifurcations taking place in the model. Multistability is
well noticeable when a targeted activity can be robustly selected by choosing other
initial conditions or by temporal perturbations, like applied external current. Having
ascertained such a global picture we can make consistent predictions for determining
basic principles of the functioning of coupled neurons on networks where they receive
mixed, inhibitory and excitatory perturbations from other neurons and synergetically
reciprocate.

The applied dynamical systems community has developed a universal and ver-
satile suite of computational tools and techniques for comprehensive examination
of diverse nonlinear systems of various origins including life sciences. These tools
allow a researcher to mono- and bi-parametrically scan the model in question to
search for specific transformations corresponding to local and global bifurcations
that often hard to detect by standard means. One approach to an initial examination
of an unknown model, often called ‘brute-force’ approach, is to evaluate the largest
Lyapunov exponent. This approach has long been widely utilized in nonlinear dy-
namics for initial detection of bifurcations of steady state and oscillatory solutions.
The brute-force approach contrasts drastically from examination of fine bifurcation
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structure of limit solutions of the system. Nevertheless, if performed extensively the
brute force approach reveals adequately the backbone of the bifurcation structure of
the model, which can be further enhanced and complemented with detailed bifur-
cation analysis that would provide the finishing touches, in the form of bifurcations
curves, to the initial brute force diagram. We point out that transformations reshaping
bursting waveforms en route toward the tonic spiking activity are caused by atypical
bifurcations due to the presence of two, or more time scales in bursting. Because of
that bifurcations of stiff bursting solutions, especially irregular ones, are hard to trace
down by parameter continuation software packages such as CONTENT and AUTO-
based packages, which are specifically designed mainly for explorations of equilibria
and ‘typical’ periodic orbits.

The primary goal of this paper is to demonstrate that straightforward methods used
in neuroscience experimental studies can be as effective as conventional tools, based
on the bifurcation and Lyapunov exponent theory, employed in nonlinear dynamics
studies. In this paper, we revisit and examine transformations of various oscillatory
activity types in the phenomenological Hindmarsh-Rose model of bursting neurons,
viewed, so to speak, through the prism of neuroscience plausible methods. Next we
compare our findings with the results obtained using the evaluation of a maximal
Lyapunov exponent that was presented in detail in [27, 28] which we consider as
an etalon. More specifically, as a part of the comparison test, we place next to each
other the bifurcation diagrams found using calculus-based computational tools yield-
ing the whole spectrum of the Lyapunov exponents for complete solutions of the
model and those obtained through examinations of 1D voltage traces, which are typ-
ically available in experimental studies. We then extract various qualitative temporal
characteristic of neuronal activity from non-transient fragments of such traces, in-
cluding the number of spikes per regular burst, deviations of the spike numbers in
case of chaotic bursting, interspike intervals, burst duration and period, and the duty
cycle which is the ‘spiking’ fraction of the bursting period. By varying two control
parameters of the model, we basically perform bi-parametric sweeps of its dynamics
that are aimed to detect in a very straightforward manner various global bifurcations
including • transitions between quiescence, tonic spiking and bursting activities in-
cluding ones through various homoclinic bifurcations; • identify regular and chaotic
transformation of bursting, including a change of the bursting topology accompa-
nying square wave to plateau-like transitioning, as well as forward and backward
sequences of spike-addition and -deletion, and so forth.

2 Materials and methods

The phenomenological system of ODEs proposed by Hindmarsh and Rose [29, 30]
for modeling bursting and spiking oscillatory activities in isolated neurons is given
by:

ẋ = y − ax3 + bx2 − z + I,

ẏ = c − dx2 − y, (1)

ż = ε
(
s(x − x0) − z

);
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here, x is treated as the membrane potential, while y and z describe some fast and
slow gating variables for ionic currents, respectively. Slow ‘activation’ of z is due to
the small parameter 0 < ε � 1. The parameters in (1) are typically set as follows a =
1, c = 1, d = 5, s = 4, x0 = −1.6 and ε = 0.01, so that regular bursting oscillations
in the model at an ‘applied current’ I = 4, which belongs to the square-wave type at
b = 2.7, and transforms to a plateau-like bursting at b = 2.52, see Figure 1. Along
with ‘intrinsic,’ b, and ‘external,’ I , bifurcation parameters the dynamics of the model
are sensitive to variations to other parameters: ε being treated as a rate of activation
for some current, and x0 being viewed as a control parameter delaying and advancing
the activation of the slow current in the modeled neuron. In response to variations
of intrinsic parameters, or an external applied current, like I in (1), a neuron model
should demonstrate, migrate, and switch flexibly between various types of activities
such as quiescence, tonic spiking and bursting.

In this section we will brief the core of the numerical techniques employed in the
analysis of the HR model. We will start with the specifics of the numerical integration
of the differential equations of the model (1).

There are a plethora of high quality numerical integrators that have been cre-
ated by numerical ODEs specialists. This study utilizes a recently developed free-
ware library TIDES (Taylor Integrator for Differential EquationS) available at
http://gme.unizar.es/software/tides [31]. TIDES is a highly adaptive software pack-
age for numerical simulations of ODE systems. While the Taylor method is one of
the oldest numerical methods for solving ordinary differential equations, it is scarcely
used nowadays but its use is growing in the computational dynamics community. The
formulation of the method is quite simple. First consider the initial value problem
ẏ = f(t,y). The value y(ti) of the solution at ti can be evaluated as yi of the nth
degree Taylor series of y(t) at t = ti (f is to be a smooth or analytical function). So,
denoting hi = ti − ti−1,

y(t0) =: y0,

y(ti) � yi−1 + f(ti−1,yi−1)hi + 1

2!
df(ti−1,yi−1)

dt
h2

i + · · · + 1

n!
dnf(ti−1,yi−1)

dtn
hn

i

=: yi .

Therefore, the problem is reduced to the determination of the Taylor coefficients
1/(j + 1)!dj f/dtj . This can be done efficiently by using automatic differentiation
techniques (see details in [32]).

The Taylor method has several unique features [32, 33]. One of its features is that
it explicitly provides a dense output in the form of a power series, which becomes
highly useful for detecting various instantaneous events, for example moments at
which a solution hits a Poincaré cross-section, reaches a voltage maximum, for ex-
ample, if one need to counts spikes in bursts, and so on. In addition, the method can be
formulated using the interval arithmetics, which is often employed in the computer-
assisted proofs of chaos nowadays. The Taylor method also provides high-precision
solutions of ODEs so demanded in studies of systems exhibiting multiple time-scale
dynamics in moderately stiff systems. In this work we use a Taylor series method of
order 15 with an error tolerance set to TOL = 10−12 for the most of the simulations.

http://gme.unizar.es/software/tides
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At this tolerance level the TIDES software is as fast and slightly more accurate [31]
than the code DOPRI853 developed by Hairer and Wanner [34]. Note that TIDES is
a general purpose software, and so it can be apply to general ODE systems, and not
only to the HR model. We note also that we have employed the Taylor series method
for solving variational equations and computations of the Lyapunov exponent spec-
trum, which are viewed as nonstandard options for the method [35]. As remarked,
in the numerical simulations it is possible to use several good general ODE solvers,
but the main advantage of the Taylor method in this kind of studies is that it pro-
vides most of the requirements we need for the problem, accuracy when needed, easy
events detection, direct dense output as a power series and easy implementation of
variational equations.

As mentioned above, the continuous output generated by the integrator based on
the Taylor series method is able to detect accurately and effectively various instan-
taneous events such as whether the phase point hits a cross-section or reaches some
critical value like voltage maximum/minimum, or the number of spikes per burst ap-
proaches the sought value, which is the underlying idea for the spike-counting (SC)
technique [27]. In combination, the methods allows us to classify the solutions of
the HR model in neuroscience terms: no spike - quiescence (convergence to a stable
equilibrium point); single tonic spike - a round periodic orbit (like one around the
manifold Mlc); multiple spikes within a train - bursting orbit composed of alternating
tonic spike and pseudo-quiescent periods, as well as distinguishing chaotic behaviors
characterized by wide variations of spike numbers in burst trains. Besides, the SC-
technique allows for indirect evaluations of the duty-cycle [DC] of the orbit, which
is a fraction of the burst period (that is, the ratio [Burst duration]/[Burst period]) of
regular, periodic dynamics. Long bursting implies a duty-cycle close to one, meaning
that the neuron is active most of the time; on the other hand if DC is close to zero
the neuron generates rare spikes, mostly staying in the quasi-quiescent state. Finally,
the continuous output of the Taylor series is also used in constructing bifurcation
diagrams based on the variability of intervals between the spikes.

The other technique that we use in this paper is the computation of the Lyapunov
exponents for solutions of the HR model. In bounded systems the existence of a
positive Lyapunov exponent is associated with chaotic motions, and any orbit on a
compact set that does not converge to an equilibrium point has at least one zero Lya-
punov exponent. Accordingly, computation of the largest Lyapunov exponents yields
important information about the kind of orbits present in the system. The correspond-
ing algorithm for the computation of the Lyapunov spectrum is a combination of the
classical methods proposed by [36, 37] and the ability of TIDES to compute solutions
of the variational equations directly. The first variational equations of the system
are integrated with the identity matrix as an initial condition, creating a canonical
orthonormal basis which is mapped onto a new set of vectors. In a chaotic system
each vector tends to expand along the local direction of most rapid growth, so to
avoid this problem the Gram-Schmidt orthonormalization process is applied. Later
the Lyapunov exponents are calculated from the growth of areas given by the differ-
ent propagated vectors (for more details see [37, 38]).



Page 8 of 22 Barrio, Shilnikov

3 Screening the HR model in the (b, I)-plane

The HR model can exhibit a plethora of dynamical activities at different param-
eter values. Consequently, obtaining a comprehensive understanding of the multi-
parametric evolution of a system like the HR model is no easy task, and hence most
of the parameters are fixed in the model. In this section, the free bifurcation param-
eters to be varied are b and I ; both are in charge of transformations for the intrinsic
structure of the fast subsystem in the HR model. Next we perform the two-parameter
sweep or screen of the model to collect vital data representing the time and parame-
ter transformations of the single ‘voltage’ x-variable of the neuronal model. Further
data mining will be carried out to extract quantitative and qualitative information
about the dynamical variability of the model, bifurcations of its solutions, and so on.
In Figures 3 and 4 we use a homogeneous grid comprised of 1,000 × 1,000 points
within the given parameter range. In short, that means that this scan represents 106

simulations.
Figure 3(A, B) presents the (b, I )-parameter spike-counting (SC) and duty-cycle

(DC) diagrams of the HR model. Similar SC diagrams for the model were previously
reported in [27]. The color-scale bar on the right in Inset (A) yields the number of
spikes within a burst. The diagram for the duty-cycle evolution is shown in Inset (B).
By combining these diagrams, we can partition the parameter plane into regions of
different kinds of behaviors and classify the regimes: tonic-spiking (single spike),
square-wave and plateau-like bursting, quiescence, and chaotic behaviors with the
variability of spikes exceeding some preset limit. It is easy to see that both diagrams
give consistent results. They reveal with clarity the region of tonic-spiking where
both DC and SN take minimum values, below which there is the bursting region at
the right bottom corner of the diagram. Bursting emerges from tonic spiking through
the spike-addition cascade in two different ways: one is regular and reversible; the
corresponding transitions are foliated by the bifurcation curves. The second kind of
transitions is due to the clove-shaped regions (shown in red in Figure 4) correspond-
ing to well-developed chaotic dynamics in the model.

Another interesting behavioral phenomenon reshaping the type of bursting occurs
in the top-left corner of the diagrams. In this region of bursting with a high num-
ber of spikes transforms into bursting with a drastically lower number of spikes per
burst. To elucidate what happens on the border between these regions, we visually
examined the orbits of the model. We found the border corresponding to the transi-
tion between square-wave and plateau-like bursting (see the waveforms in Figure 1
corresponding to the selected points in Figure 3(A)). The corresponding planar bifur-
cations underlying the robust bursting configurations of both types are well described
in the literature, see [6, 21]. The bursting type depends on the way the slow-motion
tonic spiking manifold terminates in the phase space of the fast subsystem of the HR
model. In the square-wave bursting case, the burst termination is due to a homoclinic
bifurcation, also known as - fold/homoclinic, whereas in the case of plateau-like,
or fold/Hopf, bursting is due to the reverse supercritical Andronov-Hopf bifurcation
(Figures 1, 2). In essence, this means that the parameters b and I change the structure
of the fast subsystem of the HR model so that the homoclinic bifurcation is no longer
transverse in the z-parametric cutaway in the singular limit [21]. Figure 2 elaborates
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Fig. 3 (A) (b, I )-parameter sweep of the Hindmarsh-Rose model based on the spike-counting approach.
The color-coded bar to the right gives the spike-number range. The diagram clearly shows the boundaries of
the spike-addition sequence, and the border between square-wave and plateau-like bursting. It also reveals
the clove-shape structure of the zones of chaotic bursting which adjoin to the regions of tonic-spiking.
(B) Same-range screening based on the evaluation of the the duty-cycle of bursting. The duty cycle value
comes close to one near the boundary between bursting and tonic-spiking and drops close to zero near the
border of the spiking region. Compare (A) and (B) with the screening diagram based on the Lyapunov
exponents for solutions of the model in Figure 4 below.

on the metamorphoses of the structure transformations. One can see that plateau-like
bursting takes the place of square-wave bursting after the spiking manifold, Mlc, be-
comes tangent to the saddle branch of in the middle of Meq and further terminates
on the upper depolarized branch of Meq through the supercritical Andronov-Hopf bi-
furcation. In general, this is not a cod-1 bifurcation, but a degeneracy due to loss of
transversality.
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Fig. 4 Parametric sweeping of a Lyapunov exponent spectrum: orange-colored zones indicate chaotic dy-
namics in the model, while a regular dynamics region is painted in grey colors of varying tint corresponding
to a second Lyapunov exponent of zero value, and darker shades for negative values.

The HR model can exhibit complex, chaotic bursting with a large number of
spikes, especially near transitions to hyperpolarized quiescence (see Figure 3). In
context of the dynamics of the model, bursting is technically treated as chaotic if
trains have more than 25 unlike spikes with distinct interspike intervals. A large
number of spikes can also be generated by periodic bursting. In order to differentiate
between regular and chaotic bursting behaviors, we have also used another computa-
tional technique. The complete spectrum of the Lyapunov exponents was evaluated
for the orbits of the model as the two parameters were varied within the same range.
In the simulations we discard a transient time of 103 and we integrate till 105 with
the algorithm to compute the exponents and using as initial conditions the last value
of the previous simulation. The corresponding sweeping diagram is shown in Fig-
ure 4. In the diagram, shown in the yellow-orange scale refers to the regions where
the first Lyapunov exponent is positive. This means the occurrence of chaotic dy-
namics in the model. The gray-colored regions are where the second Lyapunov ex-
ponent is negative while the first Lyapunov exponent remain zero on periodic orbits.
The Lyapunov exponent based diagram also reveals the spike adding transitions, and
the corresponding bifurcation lines can be drawn where the 2nd Lyapunov exponent
reaches the maximal value of zero. This implies that the bifurcating bursting orbit is
about to disappear and will be replaced by the successive bursting orbit with an ex-
tra spike in each train. Spike adding transitions were observed and studied in several
neuron models, including the Chay and Hindmarsh-Rose mathematical models [15,
39, 40], and the leech heart interneuron [17]. Note that there are several universal
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Fig. 5 (A) Magnification of the (b, I )-SC diagram in Figure 3(A). (A1) First and second Lyapunov expo-
nents plotted against the parameter b. Note that the second Lyapunov exponent of the bursting orbit raises
to zero at the spike-adding transition and drops after. (A2) Interspike interval vs b at I = 2.4. Last inter-
spike intervals in a burst increase at the spike addition. This is an indication of the homoclinic bifurcation.
(A3) Evolution of the duty-cycle and (A4) spike variability as b is varied.

scenarios for such cascades, including saddle-node bifurcations, homoclinic bifurca-
tions of saddle equilibria [19, 41] and periodic orbits [18], as well as through the blue
sky catastrophe [21, 22].

We have pointed out the changes in the color representation (value) of the duty-
cycle in Figure 3(B). This variability can be due to two reasons: one is the change
in the number of spikes per burst; the other reason is due to noticeable changes in
time intervals between the spikes (given that the spike duration itself does not vary
much). The answer is given by Figure 5 demonstrating the evolution of the temporal
characteristics of bursting as the b-parameter is moved along the parametric cut I =
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Fig. 6 Left: three-dimensional [3D] projections of three bursting orbits passing by the saddle. An extra
spike is gained by the orbit after it has switched the outgoing directions determined by the unstable sepa-
ratrices of the saddle. (A)-(D) Waveforms of four bursting orbits, shown in the phase space of the model
on the left, at spike-adding or deletion bifurcations for the indicated parameter values of I and b.

2.4. More specifically, using Figure 5 we examine the dependence of the first and
second Lyapunov exponents in Inset (A1), the evaluations of the interspike interval
bifurcation-diagram in (A2), and the duty-cycle of bursting in (A3); finally, the spike-
counting diagram in (A4) gives the number of spikes per burst as b is varied. The
top of Figure 5 shows a magnification of the SC diagram in Figure 3(A), depicting
the regular dynamics of the model, as the Lyapunov exponent stays non-positive on
this pathway, corresponding to some periodic oscillatory activity in the model. The
maximal Lyapunov exponent remains at zero, while the second Lyapunov exponent
shows intervals of growth to zero alternating with those of rapid decrease. Observe
that the peaks in the value of the second Lyapunov exponent occur at spike adding
transitions, when the bursting orbit comes close to the saddle which is the threshold
between the spikes and the quiescent segment of the former. Spike adding can be
detected by the increase of the last interspike interval in the bifurcating bursting orbit
that results automatically with an increase of the value of the the duty cycle orbit, and
falls right after every spike addition transition. This tendency is clearly interpreted
when one examines the changes in the voltage x-traces shown in Figure 6. Inset on
the left depicts the evolution of the bursting orbit gaining an extra spike after it comes
close by the saddle, and leaves along by the other unstable separatrix of the saddle.
One notices from Figure 6 that the first two bursting orbits have six spikes in each
burst, while the trace of the second (B) shows a prolonged interspike interval at the
end of the burst (also revealed in Inset (A2) in Figure 5). The time interval prior the
last spike grows to a point where the isolated spike disappears and is substituted by
a short action potential (see the third orbit, where the black point indicates the local
x-maxima of the short oscillation). This bursting orbit has five large spikes followed
by a single short spike. After this short spike disappears the bursting orbit steadily
exhibits five spikes. The process occurs at every spike-deletion bifurcation, or spike
adding bifurcation, if instead the parameter b is decreased.



Journal of Mathematical Neuroscience (2011) 1:6 Page 13 of 22

Indeed, the fact that the interspike interval grows by the end of the burst is a sig-
nature of square-wave bursters. Recall that these bursters are also code-named
fold/homoclinic meaning that the spiking, slow-motion manifold is terminated
through a homoclinic bifurcation of the saddle that occurs in the fast subsystem of
the model, see Figure 2. The dwelling time of the phase point along the bursting orbit
grows logarithmically fast the closer the point comes to the saddle [22]. The increase
of the dwelling time is a generic phenomenon for all systems in a neighborhood of
a saddle. What makes this phenomenon special for slow-fast systems is that the time
scale of dynamics of the fast subsystem near the saddle turns out to be that of the
slow subsystem, which gives rise to another peculiar phenomenon of ‘delayed loss of
instability’ such that the phase point, previously turning around the spiking manifold,
can be dragged along the middle, saddle branch Meq of equilibria possibly all the way
to the upper fold, provided that the timing is right, that is, the phase meets the saddle
point right on the edge of the spiking manifold (lousily speaking, we encounter an-
other kind of solutions broadly called ‘canards’, commonly characterized by the fact
that a canard can follow an unstable branch of a slow-motion manifold). If the phase
point reaches the edge before the saddle, it falls down to the hyperpolarized branch of
Meq to start a new cycle of bursting. If the phase point travels past the saddle, then it
goes up along the other leading unstable separatrix of the saddle, makes another turn
around Mlc, resulting in the addition of an extra spike in the bursting orbit. Note that
when the phase point does not approach the saddle, the model generates bursts with
same number of spikes. Again, let us emphasize that such a spike adding mechanism
is typical for square-wave or fold/homoclinic bursters; however, underlying mecha-
nisms for spike adding can be completely different even in square wave bursters, and
other neuronal models [19, 24, 40, 42], including the leech heart interneuron model
[17, 18].

4 Screening the HR-model in the (x0, I) and (x0, ε)-planes

In this section we examine the dynamics of the model in response to variations of the
slow parameter ε. In the neuroscience context, ε can be treated as the reciprocal of τ ,
which determines the (in)activation rate of the slow current in a neuronal model. For
the sake of consistency we will first screen the model in the (x0, I )-parameter plane,
while fixing b = 3 and c = −3. Recall that the parameter x0 moves the slow nullcline
of the model up and down in the x-direction (see Figure 7). As the slow equation in
(1) contains no y-variable, the plane in the (x, y, z)-phase space of the HR model,
where the time derivative ż vanishes, is the slow nullcline. One can see that ż < 0 and
ż > 0 below and above this nullcline, respectively. Note that a simple round periodic
orbit on the tonic spiking manifold, Mlc, corresponds to regular tonic spiking activity
in the model. The position of the periodic orbit on Mlc depends on where the slow
nullcline ż = 0 cuts through Mlc. By changing x0, we make the periodic orbit shift
along the spiking manifold. More specifically it can be found around the intersection
points of the slow nullcline with the average branch 〈x〉, see details in [2]. Tonic
spiking remains regular until the periodic orbit stays away from the ‘homoclinic’
edge of Mlc.
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Fig. 7 (3D version of Figure 2) Intersection point of the branch Meq with the slow nullcline ż = 0 yields
the equilibrium state of the HR model at given x0. The dark blue point is the center of the gravity of the
stable periodic orbit of the HR model, which is depicted on the tonic spiking manifold Mlc at x0 = 1.8. It
is located around the intersection point of the slow nullcline ż = 0 with the space curve 〈x〉 of the average
x-values on each periodic orbit that foliate the spiking manifold Mlc. The phase point, while turning
around Mlc, moves slowly toward the homoclinic edge (ż > 0) as long as it stays above the slow nullcline,
and goes backward (ż < 0) after it lowers below the slow nullcline ż = 0. When these opposite forces are
canceled out over the revolution period, the phase point spins around the ‘center of the gravity’, that is,
stays on the same periodic orbit. The variations of x0 move the slow nullcline and thus make the periodic
orbit slide along the manifold. When the slow nullcline ż = 0 cuts through the unstable section of Meq
between HB, standing for homoclinic bifurcation in the fast subsystem and the fold AH/SN, the model
becomes a burster.

As it was said previously the HR model describes one of the most typical con-
figurations of slow manifolds for square-wave bursting oscillations. First of all, the
configuration needs the distinct Z-shape for the quiescent manifold, Meq, with the
lower branch corresponding to a hyperpolarized quiescent state of the neuron, while
the upper unstable branch is surrounded by the spiking manifold, Mlc, foliated by
the stable limit cycles of the fast subsystem in the square bursting case. The branch
regains stability in the case of plateau-like bursting. The manifold Mlc terminates
through the homoclinic bifurcation that occurs in the fast subsystem in the square
bursting case. Between the lower fold and this homoclinic point, the system has a
hysteresis which gives rise to bursting. In the bursting regime, the phase point of the
HR model switches repeatedly between the spiking, Mlc, and quiescent, Meq, mani-
folds when it reaches their ends. In addition, both manifolds must be transient for the
passing solutions of (1), that is, Meq must be cut by the slow nullcline through the
middle, saddle branch below Mlc and above the hyperpolarized fold point. This guar-
antees that Mlc is also transient for the trajectories of the model that coil around Mlc
while translating slowly towards the edge, which corresponds to the aforementioned
homoclinic bifurcation. Thus, the rapid jump from the lower point on Meq towards
Mlc indicates the beginning of the spiking period of a burst followed by the resting
phase when the phase point drifts slowly along Meq towards the fold, onto which it
lands right after the homoclinic bifurcation. The number of complete revolutions of
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the phase point around the spiking manifold, Mlc, gives the number of spikes within
a burst, see Figures 2 and 6. Bursting in the model takes place as long as the slow
nullcline hits Meq between the points labeled HB, corresponding to the homoclinic
bifurcation, and AH/SN standing for the singular Andronov-Hopf bifurcation in the
full system, see Figure 7.

Thus, by varying x0 we can make the model generate trains of bursts with various
number of spikes. It is easy to see that the value of the small parameter ε determines
the slow passage along both manifolds. So, halving ε should make bursts twice as
long at least, with a doubled number of spikes. Note, too, that the duration of the
quiescent phase should increase proportionally. As for variations of I are concerned,
I moves, geometrically, the manifold horizontally in the 3D phase space of the model,
in particular due to linearity of the slow equation in both variables. We show that
because of that both I and x0 act similarly on dynamics; of special interest here are
transitions between the activity type of the model, which this section is focused on.

Figure 8 demonstrates the 2D (x0, I )-spike counting diagram with ε = 0.01 and
the same picture using the first and second Lyapunov exponents. The diagram re-
veals a diagonal plot structure foliated by homogeneous bands. This suggests that
variations of parameters I and x0 cause similar responses in the model. On the band
structure there is a thin band of chaotic motion located inside the band of high num-
ber of spikes, as remarked by the positive value of the maximum Lyapunov exponent.
To gain insight into the band structure, we examine the evolutions of dynamics of the
model as only x0 is varied at fixed current input I = 3.5. At smaller values of the
parameter, the model exhibits tonic spiking first, see Insets (C) and (E) of Figure 8
presenting the interspike bifurcation diagram (IBC), and the spike counting (SC) di-
agram. As the parameter is decreased further toward the bursting zone, the model
enters a period-doubling cascade leading to chaos [20, 43]. In Figure 8(E) we see
groups of spikes but without a clear bursting structure (bursting orbits with n spikes
that doubles the period are denoted by 2 × B(n)). Next, the model has a chaotic orbit
(in region Ch), evolving into a compact chaotic region, which undergoes a bound-
ary crisis, widening drastically the size of the chaotic attractor (also reported in [44,
45]). As x0 is decreased further, chaos terminates through another boundary crisis
due to intermittency originating from a fold bifurcation. The model now generates
regular trains of bursts. The corresponding bursting orbit further undergoes a series
of period-doubling and period-halving bifurcations, before it steps into a cascade of
spike deletion bifurcations, eventually leading to quiescence (Q) on the left hand side
of of the x0-parametric pathway, after the Andronov-Hopf bifurcation.

Figure 9 demonstrates the waveforms of the bursting solutions at selected points
(shown in magenta) in Inset (C) of Figure 8. One complete period of each waveform
is squared out within a red box. Thus, we have the following orbits: a spiking orbit
for x0 = −1.12, two bistability points for x0 = −1 and −0.9909, B(2)-orbit (burst-
ing with two spikes) for x0 = −0.9, 2 × B(3)-orbit for x0 = −0.7, chaotic orbit for
x0 = −0.64 and again a regular spiking orbit at x0 = −0.5 of a smaller period com-
pared to that at x0 = −1.12. A quite interesting observation can be deduced from Fig-
ure 8(C). Namely, there are several regions of bistability where there are coexisting
stable periodic orbits. These regions, labeled as CR1, CR2 and CR3, are marked by
using two colors in the IBD-diagram in Inset (C). The middle bistability region, CR2,
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Fig. 8 (A) 2D (x0, I ) Lyapunov exponents diagram at ε = 0.01; (B) 2D (x0, I ) spike-counting diagram
at ε = 0.01; (C) 1D interspike-interval diagram vs x0 for I = 3.5; (D) Bursting duty-cycle dependence
on x0; (E) Spike variability per burst is plotted against x0.

is expanded in Figure 10(A), and it reveals that there co-exist two distinct bursting
orbits at x0 = 0.9909. The 3D phase projections and the corresponding waveforms,
with single spikes and spike duplets (B(2)), are shown in Figures 10(B) and 9, re-
spectively. Figure 9 presents two plots of the waveforms for the co-existing orbits at
x0 = −1; the black point in Figure 6(C), indicates the local x-maxima of the short
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Fig. 9 Tonic spiking and bursting x-traces at selected points on the b-parameter passway (shown in ma-
genta) across the diagram in Figure 8(C) showing several stages of spike addition transitions.

waveform. As was pointed out earlier such a coexistence of (n)-spike and (n + 1)-
spike bursts is a typical phenomenon for square-wave bursters at the spike adding or
deletion transitions due to ‘the delay loss of instability’ that occurs along the saddle,
threshold branch of Meq that separates depolarized and hyper-polarized states of the
neuron model [41]. Recall that theoretically, due to the equal time scale dynamics
of the fast subsystem near the saddle and the slow equation because of small ε, the
phase point can be dragged along the saddle branch up to the upper fold on Meq.
Interestingly enough, the range of bistability zones will shrink as the value of ε is

Fig. 10 (A) Magnification of the interspike bifurcation-diagram (IBD) for I = 3.5 in the bistable region
CR2 from Figure 8. It reveals two coexisting bursting orbits (shown in red and blue) at x0 = −0.9909 in
the phase space of the model: the split between the solutions takes place near the saddle after the orbits
departs in the direction determined by the unstable separatrices. (B) Two coexisting orbits corresponding
to single and duplet spiking.
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increased. We would like to point out that multistability is a by-product of the nonlin-
earity in the system. Multistability has been reported in several neuronal systems both
experimentally and computationally, including individual neurons and their models,
as well as in neural networks and multifunctional central pattern generators [1, 46].
Multistability is of great interest for neuroscience as it can potentially enhance the
flexibility of the nervous systems, decision making processes, and explain various
nervous pathologies caused by sudden changes in system’s states.

Another peculiar observation related to the band structure in the (x0, I )-parametric
plane is concerned with the regions of high sensitivity to small variations of the con-
trol parameter x0, whereas the overall band structure seems to be quite robust, or
self-similar in I . This brings in one remaining question we would like to addresses in
the paper: will this property of self-similarity of the band structure persist for smaller
values of ε? Our findings are summarized in Figure 11 which demonstrates the bi-
furcation diagrams for two values: ε = 0.002 and ε = 0.001. They confirm that the
band structure does persist and show predictably regions with larger number of spikes
per bursts, especially for ε = 0.001 (compare the SC plot in 1D and 2D diagrams).
To study the genesis of the band structure we also built the corresponding (x0, ε)-
diagrams shown in Figure 12. Although both diagrams represent the same data of the
spike-counting, the diagram on the right in Figure 12 is given in a logarithmic scale
to demonstrate that the self-similarity property of the band structure is exponential
in ε. We can deduce from the diagrams that the most interesting, in terms of dynam-
ics, region is contained between two curves (indicated by white dots). Within this
region there are several diagonal bands corresponding to bursting orbits with differ-
ent numbers of spikes. This plot explains the fact that a small ε-parametric cut will
nevertheless reveal the band structure, observed in Figures 8 and 11, thus confirming

Fig. 11 (A) 2D spike-counting diagram projected to the plane (x0, I ) at ε = 0.002; (A1) interspike-dura-
tion bifurcation diagram for I = 3.5. (B) 2D spike-counting plot in the plane (x0, I ) for ε = 0.001; (B1)
interspike-duration bifurcation diagram for I = 3.5 and (B2) 1D spike-counting diagram for I = 3.5.
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Fig. 12 (x0, ε) spike-counting diagram in the linear and logarithmic scales in ε. Shown in blue and red
are regions of passive silence and intense spiking activities.

that either bifurcation parameter I or x0 can be equality singled out to perform the
bifurcation analysis of the Hindmarsh-Rose model.

5 Conclusions

As of today, the Hindmarsh-Rose remains justifiably one of the most popular mathe-
matical models, that describes, qualitatively well, the dynamics of a certain class of
neuronal models derived using the Hodgkin-Huxley formalism. The model has been
carefully analyzed using various mathematical and computational tools, and has been
viewed though the prisms of the advanced bifurcation theory, geometric methods of
slow-fast dynamical systems to reveal multiple peculiar qualitative features. Various
brute force approaches [27, 28] have been applied to the model to reveal its quantita-
tive or metric properties though the examination of the Lyapunov exponent spectrum
and the number of spikes per period.

In this paper we have tested other computationally effective tools tailored specifi-
cally for models originating in neuroscience, including 1D and 2D parametric screen-
ings of the complex dynamics of the model aimed to bridge notions common for neu-
roscience with the accurate mathematics-based findings. Our computational toolkit
includes several methods for examining of temporal characteristics of a single vari-
able, x, treated as a voltage across the cell membrane, or more specifically, the cor-
responding voltage waveforms. The list includes the spike-counting approach, the
evaluations of inter-spike interval, and duty cycles of bursting, which is a ratio of the
burst duration (active phase) over the total burst period. We confirmed our findings
based on these methods with ‘calculus’-based simulations for the whole spectrum of
the Lyapunov exponents calculated for solutions of a system of ordinary differential
equations like the Hindmarsh-Rose model. Our verdict is that both approaches con-
sistently demonstrate very good agreements. The methods allow us to give detailed
explanations for various global bifurcations in the model, including various spike-
addition/deletion cascades, phenomena of bistability, and various transitions between
types of bursting: square-wave and plateau-like. This ensures that this toolkit of com-
bined neuroscience-native methods and calculi-based algorithms will yield effective
and timely insights for pilot studies of new, previously unidentified, in sense of dy-
namics and bifurcations, models of individual neurons, as well as other cells, such as
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myocytes - cardiac tissue cell. We showed in [26] that the proposed methods could
provide the bifurcation details and add even problem-specific nuances into regulation
control of temporal characteristics of realistic interneuron models of the leech. The
evident advantage of the approach is its nativeness for the neuroscience community.
Last but not least, it should emphasized that a 2D parameter sweeping of the model
shown in Figures 3 and 4 takes about 10-20 times faster than the sweeping based on
the Lyapunov exponents spectrum (Figure 5). A drawback of the approach is that it
needs to be corrected in cases where the model is multistable; this remains common
weakness of all straightforward methods unless one uses randomized initial condi-
tions and longer transients that could overall substantially prolong the simulation
time.

It is in our future plans to broaden the applicability of these proposed computa-
tional tools for studies of neuronal networks, especially for multifunctional central
pattern generators comprised of several neurons [2, 46]. Such a multifunctional CPG
is capable of generating multiple bursting rhythms at quite different time scale. It
was shown recently in [3] that bursting outcomes of a multistable 3-cell network are
determined by the duty cycle of bursting. Moreover, the longest bursting cell plays
the role of the pacemaker of the network [47]. Note also that bursting network can be
composed of individually tonic spiking cells that while inhibiting, even weekly, each
other can create various bursting outcomes of the network as a whole. This indicates
directly that such a cell, whether tonic spiking or bursting, is to be close to the bound-
ary separating the activity types in the parameter space of distinct interneurons [25,
26], in particular to control effectively the temporal characteristic of bursting, regu-
lar or chaotic. In the light of saying, it is evident that the tools native to neuroscience
paradigms are suited more appropriately for studying bursting metamorphoses in net-
works and the side-by-side comparison of the results of mathematical and experimen-
tal studies using the common jargon. This computational toolkit shall bring us closer
to the targeted goal - to build realistic and adequately responding models of concrete
functional CPGs with specific time scales, phase locked states between synergetically
coupled neurons with plausible bursting characteristics.
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