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Abstract This paper deals with the application of temporal averaging methods to
recurrent networks of noisy neurons undergoing a slow and unsupervised modifica-
tion of their connectivity matrix called learning. Three time-scales arise for these
models: (i) the fast neuronal dynamics, (ii) the intermediate external input to the sys-
tem, and (iii) the slow learning mechanisms. Based on this time-scale separation,
we apply an extension of the mathematical theory of stochastic averaging with pe-
riodic forcing in order to derive a reduced deterministic model for the connectivity
dynamics. We focus on a class of models where the activity is linear to understand
the specificity of several learning rules (Hebbian, trace or anti-symmetric learning).
In a weakly connected regime, we study the equilibrium connectivity which gathers
the entire ‘knowledge’ of the network about the inputs. We develop an asymptotic
method to approximate this equilibrium. We show that the symmetric part of the con-
nectivity post-learning encodes the correlation structure of the inputs, whereas the
anti-symmetric part corresponds to the cross correlation between the inputs and their
time derivative. Moreover, the time-scales ratio appears as an important parameter
revealing temporal correlations.
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1 Introduction

Complex systems are made of a large number of interacting elements leading to non-
trivial behaviors. They arise in various areas of research such as biology, social sci-
ences, physics or communication networks. In particular in neuroscience, the nervous
system is composed of billions of interconnected neurons interacting with their en-
vironment. Two specific features of this class of complex systems are that (i) exter-
nal inputs and (ii) internal sources of random fluctuations influence their dynamics.
Their theoretical understanding is a great challenge and involves high-dimensional
non-linear mathematical models integrating non-autonomous and stochastic pertur-
bations.

Modeling these systems gives rise to many different scales both in space and in
time. In particular, learning processes in the brain involve three time-scales: from neu-
ronal activity (fast), external stimulation (intermediate) to synaptic plasticity (slow).
Here, fast time-scale corresponds to a few milliseconds and slow time-scale to min-
utes/hour, and intermediate time-scale generally ranges between fast and slow scales,
although some stimuli may be faster than neuronal activity time-scale (e.g., submil-
liseconds auditory signals [1]). The separation of these time-scales is an important
and useful property in their study. Indeed, multiscale methods appear particularly
relevant to handle and simplify such complex systems.

First, stochastic averaging principle [2, 3] is a powerful tool to analyze the impact
of noise on slow-fast dynamical systems. This method relies on approximating the
fast dynamics by its quasi-stationary measure and averaging the slow evolution with
respect to this measure. In the asymptotic regime of perfect time-scale separation,
this leads to a slow reduced system whose analysis enables a better understanding of
the original stochastic model.

Second, periodic averaging theory [4], which has been originally developed for
celestial mechanics, is particularly relevant to study the effect of fast deterministic
and periodic perturbations (external input) on dynamical systems. This method also
leads to a reduced model where the external perturbation is time-averaged.

It seems appropriate to gather these two methods to address our case of a noisy
and input-driven slow-fast dynamical system. This combined approach provides a
novel way to understand the interactions between the three time-scales relevant in our
models. More precisely, we will consider the following class of multiscale stochastic
differential equations (SDEs), with ε1, ε2 > 0 two small parameters{

dvε = 1
ε1

[F(vε,wε,u( t
ε2

))]dt + 1√
ε1

� dB(t),

dwε = G(vε,wε) dt,
(1)

where vε ∈ Rp represents the fast activity of the individual elements, wε ∈ Rq repre-
sents the connectivity weights that vary slowly due to plasticity, and u(t) ∈ Rp rep-
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resents the value of the external input at time t . Random perturbations are included
in the form of a diffusion term, and (B(t)) is a standard Brownian motion.

We are interested in the double limit ε1 → 0 and ε2 → 0 to describe the evolution
of the slow variable w in the asymptotic regime where both the variable v and the ex-
ternal input are much faster than w. This asymptotic regime corresponds to the study
of a neuronal network in which both the external input u and the neuronal activity
v operate on a faster time-scale than the slow plasticity-driven evolution of synaptic
weights W. To account for the possible difference of time-scales between v and the
input, we introduce the time-scale ratio μ = ε1/ε2 ∈ [0,∞]. In the interesting case
where μ ∈ (0,∞), one needs to understand the long-time behavior of the rescaled
periodically forced SDE for any w0 fixed

dv= F(v,w0,μt) dt + �(v,w0) dB(t).

Recently, in an important contribution [5], a precise understanding of the long-time
behavior of such processes has been obtained using methods from partial differen-
tial equations. In particular, conditions ensuring the existence of a periodic family of
probability measures to which the law of v converges as time grows have been identi-
fied, together with a sharp estimation of the speed of mixing. These results are at the
heart of the extension of the classical stochastic averaging principle [2] to the case
of periodically forced slow-fast SDEs [6]. As a result, we obtain a reduced equation
describing the slow evolution of variable w in the form of an ordinary differential
equation,

dw
dt

= Ḡ(w),

where Ḡ is constructed as an average of G with respect to a specific probability
measure, as explained in Section 2.

This paper first introduces the appropriate mathematical framework and then fo-
cuses on applying these multiscale methods to learning neural networks.

The individual elements of these networks are neurons or populations of neurons.
A common assumption at the basis of mathematical neuroscience [7] is to model
their behavior by a stochastic differential equation which is made of four different
contributions: (i) an intrinsic dynamics term, (ii) a communication term, (iii) a term
for the external input, and (iv) a stochastic term for the intrinsic variability. Assuming
that their activity is represented by the fast variable v ∈ Rn, the first equation of
system (1) is a generic representation of a neural network (function F corresponds to
the first three terms contributing to the dynamics). In the literature, the level of non-
linearity of the function F ranges from a linear (or almost-linear) system to spiking
neuron dynamics [8], yet the structure of the system is universal.

These neurons are interconnected through a connectivity matrix which represents
the strength of the synapses connecting the real neurons together. The slow modifica-
tion of the connectivity between the neurons is commonly thought to be the essence
of learning. Unsupervised learning rules update the connectivity exclusively based
on the value of the activity variable. Therefore, this mechanism is represented by
the slow equation above, where w ∈ Rn×n is the connectivity matrix and G is the
learning rule. Probably the most famous of these rules is the Hebbian learning rule
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introduced in [9]. It says that if both neurons A and B are active at the same time,
then the synapses from A to B and B to A should be strengthened proportionally to
the product of the activity of A and B. There are many different variations of this
correlation-based principle which can be found in [10, 11]. Another recent, unsuper-
vised, biologically motivated learning rule is the spike-timing-dependent plasticity
(STDP) reviewed in [12]. It is similar to Hebbian learning except that it focuses on
causation instead of correlation and that it occurs on a faster time-scale. Both of these
types of rule correspond to G being quadratic in v.

Previous literature about dynamic learning networks is thick, yet we take a signif-
icantly different approach to understand the problem. An historical focus was the un-
derstanding of feedforward deterministic networks [13–15]. Another approach con-
sisted in precomputing the connectivity of a recurrent network according to the prin-
ciples underlying the Hebbian rule [16]. Actually, most of current research in the field
is focused on STDP and is based on the precise times of the spikes, making them ex-
plicit in computations [17–20]. Our approach is different from the others regarding at
least one of the following points: (i) we consider recurrent networks, (ii) we study the
evolution of the coupled system activity/connectivity, and (iii) we consider bounded
dynamical systems for the activity without asking them to be spiking. Besides, our
approach is a rigorous mathematical analysis in a field where most results rely heav-
ily on heuristic arguments and numerical simulations. To our knowledge, this is the
first time such models expressed in a slow-fast SDE formalism are analyzed using
temporal averaging principles.

The purpose of this application is to understand what the network learns from the
exposition to time-dependent inputs. In other words, we are interested in the evolution
of the connectivity variable, which evolves on a slow time-scale, under the influence
of the external input and some noise added on the fast variable. More precisely, we
intend to explicitly compute the equilibrium connectivities of such systems. This fi-
nal matrix corresponds to the knowledge the network has extracted from the inputs.
Although the derivation of the results is mathematically tough for untrained readers,
we have tried to extract widely understandable conclusions from our mathematical
results and we believe this paper brings novel elements to the debate about the role
and mechanisms of learning in large scale networks.

Although the averaging method is a generic principle, we have made significant
assumptions to keep the analysis of the averaged system mathematically tractable.
In particular, we will assume that the activity evolves according to a linear stochastic
differential equation. This is not very realistic when modeling individual neurons, but
it seems more reasonable to model populations of neurons; see Chapter 11 of [7].

The paper is organized as follows. Section 2 is devoted to introducing the temporal
averaging theory. Theorem 2.2 is the main result of this section. It provides the tech-
nical tool to tackle learning neural networks. Section 3 corresponds to application of
the mathematical tools developed in the previous section onto the models of learning
neural networks. A generic model is described and three different particular models
of increasing complexity are analyzed. First, Hebbian learning, then trace-learning,
and finally STDP learning are analyzed for linear activities. Finally, Section 4 is a
discussion of the consequences of the previous results from the viewpoint of their
biological interpretation.
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2 Averaging principles: theory

In this section, we present multiscale theoretical results concerning stochastic aver-
aging of periodically forced SDEs (Section 2.3). These results combine ideas from
singular perturbations, classical periodic averaging and stochastic averaging princi-
ples. Therefore, we recall briefly, in Sections 2.1 and 2.2, several basic features of
these principles, providing several examples that are closely related to the applica-
tion developed in Section 3.

2.1 Periodic averaging principle

We present here an example of a slow-fast ordinary differential equation perturbed
by a fast external periodic input. We have chosen this example since it readily illus-
trates many ideas that will be developed in the following sections. In particular, this
example shows how the ratio between the time-scale separation of the system and the
time-scale of the input appears as a new crucial parameter.

Example 2.1 Consider the following linear time-inhomogeneous dynamical system
with ε1, ε2 > 0 two parameters:

dvε

dt
= 1

ε1

(
−vε + sin

(
t

ε2

))
,

dwε

dt
= −wε + vε2.

This system is particularly handy since one can solve analytically the first ordinary
differential equation, that is,

v(t) = 1

1+ μ2

(
sin

(
t

ε2

)
− μ cos

(
t

ε2

))
+ v0e

− t
ε1 ,

where we have introduced the time-scales ratio

μ := ε1

ε2
.

In this system, one can distinguish various asymptotic regimes when ε1 and ε2 are
small according to the asymptotic value of μ:

• Regime 1: Slow input μ = 0:
First, if ε1 → 0 and ε2 is fixed, then v(t) is close to sin( t

ε2
), and from geometric

singular perturbation theory [21, 22] one can approximate the slow variable wε by
the solution of

dw

dt
= −w +

(
sin

(
t

ε2

))2

.

Now taking the limit ε2 → 0 and applying the classical averaging principle [4] for
periodically driven differential equations, one can approximate wε by the solution
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of
dw

dt
= −w + 1

2
,

since 1
2π

∫ 2π
0 sin(s)2 ds = 1

2 .• Regime 2: Fast input μ = ∞:
If ε2 → 0 and ε1 is fixed, then the classical averaging principle implies that vε

is close to the solution of
dv

dt
= − v

ε1
,

so that wε can be approximated by

dw

dt
= −w + (

v0e
−t/ε1

)2
,

and when ε1 → 0, one does not recover the same asymptotic behavior as in
Regime 1.

• Regime 3: Time-scales matching 0 < μ < ∞:
Now consider the intermediate case where ε1 is asymptotically proportional to

ε2. In this case, vε can be approximated on the fast time-scale t/ε1 by the periodic
solution v̄μ(t) = 1

1+μ2 (sin(μt) − μ cos(μt)) of dv
dt

= −v + sin(μt). As a conse-
quence, wε will be close to the solution of

dw

dt
= −w + 1

2(1+ μ2)
,

since 1
2π

∫ 2π
0 v̄μ(t/μ)2 dt = 1

2(1+μ2)
.

Thus, we have seen in this example that

1. the two limits ε1 → 0 and ε2 → 0 do not commute,
2. the ratio μ between the internal time-scale separation ε1 and the input time-scale

ε2 is a key parameter in the study of slow-fast systems subject to a time-dependent
perturbation.

2.2 Stochastic averaging principle

Time-scales separation is a key property to investigate the dynamical behavior of
non-linear multiscale systems, with techniques ranging from averaging principles to
geometric singular perturbation theory. This property appears to be also crucial to
understanding the impact of noise. Instead of carrying a small noise analysis, a mul-
tiscale approach based on the stochastic averaging principle [2] can be a powerful
tool to unravel subtle interplays between noise properties and non-linearities. More
precisely, consider a system of SDEs in Rp+q :

dvε
t = 1

ε
F
(
vε
t ,w

ε
t

)
dt + 1√

ε
�

(
vε
t ,w

ε
t

) · dB(t),

dwε
t = G

(
vε
t ,w

ε
t

)
dt,
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with initial conditions vε(0) = v0, wε(0) = w0, and where wε ∈ Rq is called the
slow variable, vε ∈ Rp is the fast variable, with F , G, � smooth functions ensuring
the existence and uniqueness for the solution (vε,wε), and B(t) a p-dimensional
standard Brownian motion, defined on a filtered probability space (�, F ,P). Time-
scale separation in encoded in the small parameter ε, which denotes in this section a
single positive real number.

In order to approximate the behavior of (vε,wε) for small ε, the idea is to average
out the equation for the slow variable with respect to the stationary distribution of the
fast one. More precisely, one first assumes that for each w ∈ Rq fixed, the frozen fast
SDE,

dvt = F(vt ,w) dt + �(vt ,w) · dB(t),

admits a unique invariant measure, denoted ρw(dv). Then, one defines the averaged
drift vector field Ḡ

Ḡ(w) :=
∫

Rm

G(v,w)ρw(dv) (2)

and w the solution of dw
dt

= Ḡ(w) with the initial condition w(0) = y0. Under some
dissipativity assumptions, the stochastic averaging principle [2] states:

Theorem 2.1 For any δ > 0 and T > 0,

lim
ε→0

P

[
sup

t∈[0,T ]

∥∥wε
t −wt

∥∥2 > δ
]

= 0. (3)

As a consequence, analyzing the behavior of the deterministic solution w can help
to understand useful features of the stochastic process (vε,wε).

Example 2.2 In this example we consider a similar system as in Example 2.1, but
with a noise term instead of the periodic perturbation. Namely, we consider (vε,wε)

the solution of the system of SDEs,

dvε = −1

ε
vε dt + σ√

ε
dB(t),

dwε = (−wε + (
vε

)2)
dt,

with ε > 0 a small parameter and σ > 0 a positive constant. From Theorem 2.1, the
stochastic slow variable wε can be approximated in the sense of (3) by the determin-
istic solution w of

dw

dt
=

∫
v∈R

(−w + v2
)
ρ(dv),

where ρ(dv) is the stationary measure of the linear diffusion process,

dv = −v dt + σ dB(t),



Page 8 of 64 M. Galtier, G. Wainrib

that is,

ρ(dv) = 1

σ
√

π
e
− v2

σ2 .

Consequently, wε can be approximated in the limit ε → 0 by the solution of

dw

dt
= −w + σ 2

2
.

Applying (3) leads to the following result: for any T > 0 and δ > 0,

lim
ε→0

P

[
sup

t∈[0,T ]

∣∣∣∣wε
t −

(
y0 − σ 2

2

)
e−t + σ 2

2

∣∣∣∣2 > δ

]
= 0.

Interestingly, the asymptotic behavior of wε for small ε is characterized by a deter-
ministic trajectory that depends on the strength σ of the noise applied to the system.
Thus, the stochastic averaging principle appears particularly interesting when unrav-
eling the impact of noise strength on slow-fast systems.

Many other results have been developed since, extending the set-up to the case
where the slow variable has a diffusion component or to infinite-dimensional settings
for instance, and also refining the convergence study, providing homogenization re-
sults concerning the limit of ε−1/2(wε −w) or establishing large deviation principles
(see [23] for a recent monograph). However, fewer results are available in the case of
non-homogeneous SDEs, that is, when the system is perturbed by an external time-
dependent signal. This setting is of particular interest in the framework of stochastic
learning models, and we present the main relevant mathematical results in the follow-
ing section.

2.3 Double averaging principle

Combining ideas of periodic and stochastic averaging introduced previously, we
present here theoretical results concerning multiscale SDEs driven by an external
time-periodic input. Consider (vε,wε) the solution of

dvε = 1

ε1

[
F

(
vε,wε,

t

ε2

)]
dt + 1√

ε1
�

(
vε,wε

) · dB(t),

dwε = G
(
vε,wε

)
dt,

(4)

with t → F(v,w, t) ∈ Rp a τ -periodic function and ε = (ε1, ε2) ∈ R2+. Parameter ε1
represents the internal time-scale separation and ε2 the input time-scale. We consider
the case where both ε1 and ε2 are small, that is, a strong time-scale separation between
the fast variable vε ∈ Rp and the slow one wε ∈ Rq , and a fast periodic modulation
of the fast drift F(v,w, ·).

We further denote z= (v,w).
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Definition 2.1 We define the asymptotic time-scale ratio

μ := lim|ε|→0

ε1

ε2
. (5)

Accordingly, we denote limμ
|ε|→0 the distinguished limit when ε1 → 0, ε2 → 0

with ε1/ε2 → μ.
The following assumption is made to ensure existence and uniqueness of a strong

solution to system (4). In the following, 〈z1, z2〉 will denote the usual scalar product
for vectors.

Assumption 2.1 Existence and uniqueness of a strong solution
(i) The functions F , G, and � are locally Lipschitz continuous in the space vari-

able z. More precisely, for any R > 0, there exists a constant αR such that∥∥F(z) − F
(
z′)∥∥ ≤ αR

∥∥z− z′∥∥ for any z, z′ ∈ Rp+q with ‖z‖ ≤ R and ‖z′‖ ≤ R.

(ii) There exists a constant R > 0 such that

sup
‖z‖>R,t>0

〈(F (z, t),G(z)), z〉
‖z‖2 < 0.

To control the asymptotic behavior of the fast variable, one further assumes the
following.

Assumption 2.2 Asymptotic behavior of the fast process:
(i) The diffusion matrix � is bounded

∃M� > 0 s.t. ∀z,∥∥�(z)
∥∥ < M�

and uniformly non-degenerate

∃η0 > 0 s.t. ∀v, z〈�(z) · �(z)′v,v
〉 ≥ η0‖v‖2.

(ii) There exists r0 < 0 such that for all t ≥ 0 and for all z,x ∈ Rp+q ,〈∇zF(z, t) · x,x〉 ≤ r0‖x‖2.

According to the value of μ ∈ {0,R∗+,∞}, the stochastic averaging principle is based
on a description of the asymptotic behavior of various rescaled fast frozen processes.
More precisely, under Assumptions 2.1 and 2.2, one can deduce that:

• For any fixed w0 ∈ Rq and t0 > 0 fixed, the law of the rescaled time-homogeneous
frozen process,

dv= F(v,w0, t0) dt + �(v,w0) dB(t),

converges exponentially fast to a unique invariant probability measure denoted by
ρw0,t0(dv).
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• For any fixed w0 ∈ Rq , there exists a τ
μ
-periodic evolution system of measures

ν
w0
μ (t, dv), different from ρw0,t (dv) above, such that the law of the rescaled time-
inhomogeneous frozen process,

dv = F(v,w0,μt) dt + �(v,w0) dB(t), (6)

converges exponentially fast towards ν
w0
μ (t, ·), uniformly with respect to w0 (cf.

the Appendix Theorem A.1).
• For any fixed w0 ∈ Rq , the law of the rescaled time-homogeneous frozen process,

dv= F̄ (v,w0) dt + �(v,w0) dB(t),

where F̄ (v,w0) := τ−1
∫ τ

0 F(v,w0, t) dt , converges exponentially fast towards a
unique invariant probability measure denoted by ρ̄w0(dv).

According to the value of μ, we introduce a vector field Ḡμ which will play a role
similar to Ḡ introduced in equation (2).

Definition 2.2 We define Ḡμ : Rq → Rq as follows. In the time-scale matching case,
that is, when 0< μ < ∞, then

Ḡμ(w) :=
(

τ

μ

)−1 ∫ τ
μ

0

∫
v∈Rp

G(v,w)νwμ (t, dv) dt. (7)

Notation We may denote the periodic system of measures νwμ (t, dv) associated with
(6) by νwμ [F,�](t, dv) to emphasize its relationship with F and �. Accordingly, we

may denote Ḡμ(w) by Ḡ
[F,�]
μ (w).

We are now able to present our main mathematical result. Extending Theorem 2.1,
the following theorem describes the asymptotic behavior of the slow variable wε

when ε → 0 with ε1/ε2 → μ. We refer to [6] for more details about the full mathe-
matical proof of this result.

Theorem 2.2 Let μ ∈ (0,∞). If w is the solution of

dw
dt

= Ḡμ(w) with w(0) = wε(0), (8)

then the following convergence result holds, for all T > 0 and δ > 0:

μ

lim|ε|→0
P

[
sup

t∈[0,T ]
∣∣wε

t −wt

∣∣2 > δ
]

= 0.

Remark 2.1

1. The extremal cases μ = 0 and μ = ∞ are not covered in full rigor by Theorem 2.2.
However, the study of the sequential limits ε1 → 0 followed by ε2 → 0 or ε2 → 0
followed by ε1 → 0 can be deduced from an appropriate combination of classical
periodic and stochastic averaging theorems:
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• Slow input: If one considers the case where the limit ε1 → 0 is taken first, so
that from Theorem 2.1 with fast variable vε and slow variables wε and t (with
the trivial equation ṫ = 1), wε is close in probability on finite time-intervals to
the solution of the following inhomogeneous ordinary differential equation:

dw̃
dt

=
∫
v∈Rp

G(v, w̃)ρw̃,t/ε2(dv) := G̃(w̃, t/ε2).

Then taking the limit ε2 → 0, one can apply the deterministic averaging prin-
ciple to the fast periodic vector field G̃(w, t/ε2), so that w̃ converges when
ε2 → 0 to the solution of

dw
dt

= τ−1
∫ τ

0
G̃(v,w) dt = Ḡ0(w),

where

Ḡ0(w) := τ−1
∫ τ

0

∫
v∈Rp

G(v,w)ρw,t (dv) dt.

• Fast input: If the limit ε2 → 0 is taken first, one first has to perform a classical
averaging of the periodic drift F(v,w, t/ε2) leading to the homogeneous system
of SDEs (4), but with F̄ (v,w) instead of F(v,w, t/ε2). Then, an application of
Theorem 2.1 on this system gives an averaged vector field

Ḡ∞(w) :=
∫
v∈Rp

G(v,w)ρ̄w(dv).

2. To study the extremal cases μ = 0 and μ = ∞ in full generality, one would need
to consider all the possible relationships between ε1 and ε2, not only the linear
one as in the present article, but also of the type ε1 = εα

2 for example. In this case,
we believe that the regime α < 1 converges to the same limit as taking the limit ε2
first and the regime α > 1 corresponds to taking the limit ε1 first. The intermediate
regime α = 1 seems to be the only one for which the limit cannot be obtained by
combining classical averaging principles. Therefore, the present article is focused
on this case, in which the averaged system depends explicitly on the scaling pa-
rameter μ. Moreover, in terms of applications, this parameter can have a relatively
easy interpretation in terms of the ratio of time-scales between intrinsic neuronal
activity and typical stimulus time-scales in a given situation. Although the zeroth
order limit (i.e., the averaged system) seems to depend only on the position of α

with respect to 1, it seems reasonable to expect that the fluctuations around the
limit would depend on the precise value of α. This is a difficult question which
may deserve further analysis.

The case 0 < μ < ∞ is already very rich in the sense that it combines simul-
taneously both the periodic and stochastic averaging principles in a new way that
cannot be recovered by sequential applications of those principles. A particular
role is played by the frozen periodically-forced SDE (6). The equivalent of the
quasi-stationary measure ρw of Theorem 2.1 is given by the asymptotically pe-
riodic behavior of equation (6), represented by the periodic family of measures
νwμ (t, dv).
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3. By a rescaling of the frozen process (6), one deduces the following scaling rela-
tionships:

νwμ [F,�](t, dv) = νw1

[
F

μ
,

�√
μ

]
(μt, dv)

and

Ḡ[F,�]
μ (w) = Ḡ

[ F
μ

, �√
μ

]
1 (w).

Therefore, if one knows, in the case μ = 1, the averaged vector field associated
with the fast process generated by a drift F and a diffusion coefficient σ , denoted
Ḡ1[F,�], it is possible to deduce Ḡμ in the general caseμ ∈ (0,∞)with a change
F → μF and � → √

μ�.
4. It seems reasonable to expect that the above result is still valid when considering

ergodic, but not necessarily periodic, time dependency of the function F(v,w, ·).
In equation (7), instead of integrating νwμ (t, dv) over one period, one should in-
tegrate it with respect to an ergodic stationary measure. However, this extension
requires non-trivial technical improvements of [5] which are beyond the scope of
this paper.

2.3.1 Case of a fast linear SDE with periodic input

We present here an elementary case where one can compute explicitly the quasi-
stationary time-periodic family of measures νwμ (t, x), when the equation for the fast
variable is linear. Namely, we consider v ∈ Rp the solution of

dv(t) = (−A · v(t) + u(μt)
)
dt + � · dB(t),

with initial condition v(0) = v0 ∈ Rp , and where A ∈ Rp×p is a matrix whose eigen-
values have positive real parts and u(·) is a τ -periodic function.

We are interested in the large time behavior of the law of v(t), which is a time-
inhomogeneous Ornstein-Uhlenbeck process. From [5] we know that its law con-
verges to a τ -periodic family of probability measures ν(t, dv). Due to the linearity in
the previous equation, ν(t, dv) is Gaussian with a time-dependent mean and a con-
stant covariance matrix

ν(t, dv) = Nv̄(t),Q(dv),

where v̄ is the τ
μ
-periodic attractor of d v̄

dt
= −A · v̄(t) + u(μt), i.e.,

v̄(t) =
∫ t

−∞
e−A(t−s)u(μs) ds,

and Q is the unique solution of the Lyapunov equation

A ·Q+Q ·A′ + � · �′ = 0. (9)
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Indeed, if one denotes c(t) = v(t) − v̄(t), then c(t) is a solution of the classical ho-
mogeneous Ornstein-Uhlenbeck equation

dc(t) = −Ac(t) dt + � dB(t),

whose stationary distribution is known to be a centered Gaussian measure with the
covariance matrix Q solution of (9); see Chapter 3.2 of [24]. Notice that if A is self-
adjoint with respect to (� · �′)−1 (i.e., A · (� · �′) = (� · �′) ·A′), then the solution
is Q = A−1·(�·�′)

2 = (�·�′)·A′−1

2 , which will be used in Appendix B.2.
Hence, in the linear case, the averaged vector field of equation (7) becomes

Ḡμ(w) :=
(

τ

μ

)−1 ∫ τ
μ

0

∫
v∈Rp

G
(
v̄(t) + v,w

)
N0,Q(dv) dt, (10)

where Nx,Q is the probability density function of the Gaussian law with mean x ∈ Rq

and covariance Q ∈ Rp×p .
Therefore, due to the linearity of the fast SDE, the periodic system of measure ν

is just a constant Gaussian distribution shifted by a periodic function of time v(t).
In case G is quadratic in v, this remark implies that one can perform independently
the integral over time and over Rp in formula (10) (noting that the crossed term has
a zero average). In this case, contributions from the periodic input and from noise
appear in the averaged vector field in an additive way.

Example 2.3 In this last example, we consider a combination between Example 2.1
and Example 2.2, namely we consider the following system of periodically forced
SDEs:

dvε = 1

ε1

[
−vε + sin

(
t

ε2

)]
dt + σ√

ε1
dB(t),

dwε = (−wε + (
vε

)2)
dt.

As in Example 2.1 and as shown above, the behavior of this system when both ε1
and ε2 are small depends on the parameter μ defined in (5). More precisely, we have
the following three regimes:

• Regime 1: slow input:

Ḡ0(w) = −w + σ 2

2
+ 1

2
.

• Regime 2: fast input:

Ḡ∞(w) = −w + σ 2

2
.

• Regime 3: time-scale matching:

Ḡμ(w) = −w + σ 2

2
+ 1

2(1+ μ2)
.
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2.4 Truncation and asymptotic well-posedness

In some cases, Assumptions 2.1-2.2 may not be satisfied on the entire phase space
Rp × Rq , but only on a subset. Such situations will appear in Section 3 when consid-
ering learning models. We introduce here a more refined set of assumptions ensuring
that Theorem 2.2 still applies.

Let us start with an example, namely the following bi-dimensional system with
white noise input: {

dvε = 1
ε
(−lvε + wεvε) dt + σ√

ε
dB(t),

dwε = (−κwε + (vε)2) dt,
(11)

with ε > 0, σ > 0, l > 0, μ > 0.
For the fast drift −(l − w)v to be non-explosive, it is necessary to have w < l − α

with α > 0 for all time. The concern about this system comes from the fact that
the slow variable w may reach l due to the fluctuations captured in the term v2, for
instance, if κ is not large enough. Such a system may have exponentially growing
trajectories. However, we claim that for small enough ε, wε will remain close to its
averaged limit w for a very long time, and if this limit remains below l − α, then
wε can be considered as well-posed in the asymptotic limit ε → 0. To make this
argument more rigorous, we suggest the following definition.

Definition 2.3 A stochastic differential equation with a given initial condition is
asymptotically well posed in probability if for the given initial condition,

1. a unique solution exists until a random time τε

2. for all T > 0,

lim
ε→0

P[τε ≥ T ] = 1.

We give in the following proposition sufficient conditions for system (4) to be asymp-
totically well posed in probability and to satisfy conclusions of Theorem 2.2.

Let us introduce the following set of additional assumptions.

Assumption 2.3 Moment conditions:
(i) There exists p > 2 such that

for any T > 0, sup
ε

E

[
sup

0≤t≤T

∥∥vε
t

∥∥p + ∥∥wε
t

∥∥p
]

< ∞.

(ii) For any T > 0 and any bounded subset K of Rq ,

sup
ε1>0,ε2>0,w∈K

E

[
sup

0≤t≤T

∥∥G
(
vε
t ,w

)∥∥2] < ∞.

Remark 2.2 This last set of assumptions will be satisfied in all the applications of
Section 3 since we consider linear models with additive noise for the equation of
v, implying this variable to be Gaussian and the function G only involves quadratic
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moments of v; therefore, the moment conditions (i) and (ii) will be satisfied without
any difficulty. Moreover, if one considers non-linear models for the variable v, then
the Gaussian property may be lost; however, adding sigmoidal non-linearity has, in
general, the effect of bounding the dynamics, thus making these moment assumptions
reasonable to check in most models of interest.

Property 2.3 If there exists a subset E of Rq such that

1. The functions F , G, � satisfy Assumptions 2.1-2.3 restricted on Rp × E .
2. E is invariant under the flow of Ḡμ, as defined in (7).

Then for any initial condition w0 ∈ E , system (4) is asymptotically well posed in
probability and wε satisfies the conclusion of Theorem 2.2.

Proof See Appendix A.2. �

Here, we show that it applies to system (11). First, with Eα = {w ∈ R,w < l − α},
for some α ∈]0, l[, it is possible to show that Assumptions 2.1-2.2 are satisfied on
Rp × Eα . Then, as a special case of (10), we obtain the following averaged system:

dw

dt
= −κw + σ 2

2(l − w)
:= Ḡ(w).

It remains to check that the solution of this system satisfies

∃α > 0, such that w(0) < l − α ⇒ ∀t > 0, w(t) < l − α,

that is, the subset Eα is invariant under the flow of Ḡ.
This property is satisfied as soon as

η := 2σ 2

κl2
< 1.

Indeed, one can show that Ḡ(w) = 0 admits two solutions iff η < 1,

w± = l

2
(1± √

1− η) ∈ (0, l),

and that w− is stable whereas w+ is unstable. Thus, if w(0) < l − α with α = l −
w+ > 0, then w(t) < l − α for all t > 0. In fact, the invariance property is true for all
α ∈]l − w−, l − w+[.

3 Averaging learning neural networks

In this section, we apply the temporal averaging methods derived in Section 2 on
models of unsupervised learning neural networks. First, we design a generic learn-
ing model and show that one can define formally an averaged system with equation
(7). However, going beyond the mere definition of the averaged system seems very
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difficult and we only manage to get explicit results for simple systems where the fast
activity dynamics is linear. In the three last subsections, we push the analysis for three
examples of increasing complexity.

In the following, we always consider that the initial connectivity is 0. This is an
arbitrary choice but without consequences, because we focus on the regime where
there is a single globally stable equilibrium point (see Section 3.2.3).

3.1 A generic learning neural network

We now introduce a large class of stochastic neuronal networks with learning models.
They are defined as coupled systems describing the simultaneous evolution of the
activity of n ∈ N neurons and the connectivity between them. We define v ∈ Rn, the
activity field of the network, and W ∈ Rn×n, the connectivity matrix.

Each neuron variable vi is assumed to follow the SDE

dvi = (
fi(vi ) + ui

)
dt + � · dBi(t),

where the function fi characterizes the intrinsic non-linear dynamical behavior of
neuron i and ui is the input received by neuron i. The stochastic term � · dBi(t) is
added to account for internal sources of noise. In terms of notations, (B(t))t≥0 is a
standard n-dimensional Brownian motion, � is an n × n matrix, possibly function of
v or other variables, and � ·dBi(t) denotes the ith component of the vector � ·dB(t).

The input ui to neuron i has mainly two components: the external input uexti and
the input coming from other neurons in the network usyni . The latter is a priori a
complex combination of post-synaptic potentials coming from many other neurons.
The coefficient Wij of the connectivity matrix accounts for the strength of a synapse
j → i. Note that neurons can be connected to themselves, i.e., Wii is not necessarily
null. Thus, we can write

usyni := S
(

n∑
j=1

Wij H(vi ,vj )

)
,

where S : R → R and H is a function taking the history of vi and vj and returning
a real for each time t (to take convolutions into account). In practical cases, they are
often taken to be sigmoidal functions.We abusively redefine S and H as vector valued
operators corresponding to the element-wise application of their real counterparts.
We also define the function F : Rn → Rn such that F (v)i = fi(vi ). Together with a
slow generic learning rule, this leads to defining a stochastic learning model as the
following system of SDEs.

Definition 3.1{
dvε = 1

ε
[F (vε) + S(Wε · H(vε)) + uext(t)]dt + 1√

ε
�(vε,Wε) · dB(t),

dWε = G(Wε,vε) dt.
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Before applying the general theory of Section 2, let us make several comments
about this generic model of neural network with learning. This model is a non-
autonomous, stochastic, non-linear slow-fast system.

In order to apply Theorem 2.2, one needs Assumptions 2.1, 2.2, and 2.3 to be sat-
isfied, restricting the space of possible functions S , H, F, �, and G. In particular,
Assumption 2.2(ii) seems rather restrictive since it excludes systems with multiple
equilibria and suggests that the general theory is more suited to deal with rate-based
networks. However, one should keep in mind that these assumptions are only suffi-
cient, and that the double averaging principle may work as well in systems which do
not satisfy readily those assumptions.

As we will show in Section 3.3, a particular form of history-dependence can be
taken into account, to a certain extent. Indeed, for instance, if the function F is ac-
tually a functional of the past trajectory of variable vε which can be expressed as the
solution of an additional SDE, then it may be possible to include a certain form of
history-dependence. However, purely time-delayed systems do not enter the scope of
this theory, although it might be possible to derive an analogous averaging method in
this framework.

The noise term can be purely additive or set by a particular function �(v,W)

as long as it satisfies Assumption 2.2(i), meaning that it must be uniformly non-
degenerate.

In the following subsection, we apply the averaging theory to various combina-
tions of neuronal network models, embodied by choices of functions S , H, F, �,
and various learning rules, embodied by a choice of the function G. We will also
analyze the obtained averaged system, describing the slow dynamics of the connec-
tivity matrix in the limit of perfect time-scale separation and, in particular, study the
convergence of this averaged system to an equilibrium point.

3.2 Symmetric Hebbian learning

One of the simplest, yet non-trivial, stochastic learning models is obtained when con-
sidering

• A linear model for neuronal activity, namely fi(vi ) = −lvi with l a positive con-
stant.

• A linear model for the synaptic transmission, namely S(vi ) = vi and H(vi ,vj ) =
vj .

• A constant diffusion matrix � (additive noise) proportional to the identity � =
σId (spatially uncorrelated noise).

• A Hebbian learning rule with linear decay, namely Gij (W,v) = −κWij + vivj .
Actually, it corresponds to the tensor product: {v⊗ v}ij = vivj .

This model can be written as follows:{
dvε = 1

ε1
(−L · vε +Wε · vε + u( t

ε2
)) dt + σ√

ε1
dB(t),

dWε

dt
= G(vε,Wε) = −κWε + vε ⊗ vε,

(12)

where neurons are assumed to have the same decay constant: L = lId ; u is a peri-
odic continuous input (it replaces uext in the previous section); σ, ε1, ε2, κ ∈ R+ with
ε1, ε2 � 1 and B(t) is n-dimensional Brownian noise.
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The first question that arises is about the well-posedness of the system: What is
the definition interval of the solutions of system (12)? Do they explode in finite time?
At first sight, it seems there may be a runaway of the solution if the largest real part
among the eigenvalues of W grows bigger than l. In fact, it turns out this scenario
can be avoided if the following assumption linking the parameters of the system is
satisfied.

Assumption 3.1 There exists p ∈]0,1[ such that(
σ 2l

2p(1− p)
+ u2m

p(1− p)2

)
< κl3,

where um = supt∈R+ ‖u(t)‖2.
It corresponds to making sure the external (i.e., um) or internal (i.e., σ ) excitations

are not too large compared to the decay mechanism (represented by κ and l). Note that
if p ∈]0,1[, um and d are fixed, it is sufficient to increase κ or l for this assumption
to be satisfied.

Under this assumption, the space

Ep = {
W ∈ Rn×n : W is symmetric,W ≥ 0 andW < pL

}
is invariant by the flow of the averaged system Ḡ, where W ≥ 0 means W is semi-
definite positive and W < pL means pL − W is definite positive. Therefore, the
averaged system is defined and bounded on R+. The slow/fast system being asymp-
totically close to the averaged system, it is therefore asymptotically well-defined in
probability. This is summarized in the following theorem.

Theorem 3.1 If Assumption 3.1 is verified for p ∈]0,1[, then system (12) is asymp-
totically well posed in probability and the connectivity matrix Wε , the solution of
system (12), converges to W in the sense that for all δ, T > 0,

μ

lim
ε→0

P

[
sup

t∈[0,T ]

∣∣Wε
t −Wt

∣∣2 > δ
]

= 0,

where W is the deterministic solution of

dWij

dt
= Ḡ(W)ij = −κWij︸ ︷︷ ︸

decay

+μ

τ

∫ τ
μ

0
v̄i (s)v̄j (s) ds︸ ︷︷ ︸
correlation

+ σ 2

2
(L−W)−1

ij︸ ︷︷ ︸
noise

, (13)

where v̄(t) is the τ
μ
-periodic attractor of d v̄

dt
= (W−L) · v̄+u(μt), whereW ∈ Rn×n

is supposed to be fixed.

Proof See Theorem B.1 in Appendix B.2. �

In the following, we focus on the averaged system described by (13). Its right-hand
side is made of three terms: a linear and homogeneous decay, a correlation term, and
a noise term. The last two terms are made explicit in the following.
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3.2.1 Noise term

As seen in Section 2, in the linear case, the noise term Q is the unique solution
of the Lyapunov equation (9) with A = W − L and � = σId . Because the noise is
spatially uncorrelated and identical for each neuron and also because the connectivity

is symmetric, observe that Q = σ 2

2 (L−W)−1 is the unique solution of the system.
In more complicated cases, the computation of this term appears to be much more

difficult as we will see in Section 3.4.

3.2.2 Correlation term

This term corresponds to the auto-correlation of neuronal activity. It is only implicitly
defined; thus, this section is devoted to finding an explicit form depending only on the
parameters l, μ, τ , the connectivity W, and the inputs u. Actually, one can perform
an expansion of this term with respect to a small parameter corresponding to a weakly
connected expansion. Most terms vanish if the connectivity W is small compared to
the strength of the intrinsic decaying dynamics of neurons l.

The auto-correlation term of a τ
μ
-periodic function can be rewritten as

{
v̄ · v̄′}

ij
=

∫ τ
μ

0
v̄i (s)v̄j (s) ds.

With this notation, it is simple to think of v as a ‘semi-continuous matrix’ of R
n×[0, τ

μ
[.

Hence, the operator ‘·’ can be though of as a matrix multiplication. Similarly, the
transpose operator turns a matrix v̄ ∈ R

n×[0, τ
μ

[ into a matrix v̄′ ∈ R
[0, τ

μ
[×n. See Ap-

pendix B.1 for details about the notations.
It is common knowledge, see [17] for instance, that this term gathers information

about the correlation of the inputs. Indeed, if we assume that the input is sufficiently
slow, then v̄ has enough time to converge to u(t) for all t ∈ [0,+∞[. Therefore, in
the first order v̄(t) � (W−L)−1 ·u(t). This leads to v̄ · v̄′ � (W−L)−1 ·u ·u′ · (W′ −
L)−1. In the weakly connected regime, one can assume that W−L � −L leading to
v̄ · v̄′ � 1

l2
u · u′ which is the auto-correlation of the inputs.

Actually, without the assumption of a slow input, lagged correlations of the in-
put appear in the averaged system. Before giving the expression of these temporal
correlations, we need to introduce some notations. First, define the convolution filter

gl/μ : t �→ l
μ
e
− l

μ
t
H(t), where H is the Heaviside function. This family of func-

tions is displayed for different values of l
μ
in Figure 4(a). Note that gl/μ → δ0 when

l
μ

→ +∞, where δ0 is the Dirac distribution centered at the origin. In this asymptotic
regime, the convolution filter and its iterates gl/μ ∗ · · · ∗ gl/μ are equal to the identity.

We also define the filtered correlation of the inputs Ck,p ∈ Rn×n by

Ck,q def= 1

u2mτ

(
u ∗ g

(k+1)
l/μ

) · (u ∗ g
(q+1)
l/μ

)′
,

where g
(k+1)
l/μ = gl/μ ∗ · · · ∗ gl/μ is the kth convolution of gl/μ with itself and um =

supt∈R+ ‖u(t)‖2. This is the correlation matrix of the inputs filtered by two different
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Fig. 1 This shows the
(k, q)-temporal profiles with
l
μ = 1, i.e., the functions

g
(k+1)
1 ∗ g′

1
(q+1) for q = 0 and

k ranging from 0 to 6. For
k = q = 0, the temporal profile
is even and this also occurs to be
true for any k = q . When k > q ,
the function reaches its
maximum for strictly positive
values that grow with the
difference k − q . Besides, the
temporal profiles are flattened
when k + q increases.

functions. It is easy to show that this is similar to computing the cross-correlation of
the inputs with the inputs filtered by another function,

Ck,q = 1

u2mτ

(
u ∗ (

g
(k+1)
l/μ ∗ g

(q+1)
l/μ

′)) · u′

= 1

u2mτ
u · (u ∗ (

g
(k+1)
l/μ ∗ g

(q+1)
l/μ

′))′
, (14)

which motivates the definition of the (k,p)-temporal profile g
(k+1)
l/μ ∗g′

l/μ
(q+1), where

(g′
l/μ)(k)(t) = (g

(k)
l/μ)′(t) = g

(k)
l/μ(−t). This notation is deliberately similar to that of

the transpose operator we use in the proofs. These functions are shown in Figure 1.
We have not found a way to make them explicit; therefore, the following remarks
are simply based on numerical illustrations. When k = q , the temporal profiles are
centered. The larger the difference k − q , the larger the center of the bell. The larger
the sum k + q , the larger the standard deviation. This motivates the idea that Ck,p

can be thought of as the k − q lagged correlation of the inputs. One can also say that
C10,10 is more blurred than C0,0 in the sense that the inputs are temporally integrated
over a ‘wider’ window in the first case.

Observe that g
(k+1)
l/μ (t) = lk+1

μk+1k! t
ke

− l
μ

t
H(t). Therefore, ‖g(k+1)

l/μ ‖1 = �(k+1)
k! = 1.

Thanks to Young’s inequality for convolutions, which says that ‖u ∗ g
(k)
l/μ‖2 ≤

‖u‖2‖g(k)
l/μ‖1, it can be proved that ‖Ck,q‖2 ≤ 1.

We intend to express the correlation term as an infinite converging sum involving
these filtered correlations. In this perspective, we use a result we have proved in
[25] to write the solution of a general class of non-autonomous linear systems (e.g.,
d v̄
dt

= (W−L) · v̄+ u(t)) as an infinite sum, in the case μ = 1.
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Lemma 3.2 If v̄ is the solution, with zero as initial condition, of d v̄
dt

= (W−L) · v̄+
u(t) it can be written by the sum below which converges if W is in Ep for p ∈]0,1[.

v̄ =
+∞∑
k=0

Wk

lk+1
· u ∗ g

(k+1)
l ,

where gl : t �→ le−ltH(t).

Proof See Lemma B.2 in Appendix B.2. �

This is a decomposition of the solution of a linear differential system on the basis
of operators where the spatial and temporal parts are decoupled. This important step
in a detailed study of the averaged equation cannot be achieved easily in models with
non-linear activity. Everything is now set up to introduce the explicit expansion of
the correlation we are using in what follows. Indeed, we use the previous result to
rewrite the correlation term as follows.

Property 3.3 The correlation term can be written

μ

τ
v̄ · v̄′ = u2m

l2

+∞∑
k,q=0

Wk

lk
·Ck,q · W

′q

lq
.

Proof See Theorem B.3 in Appendix B.2. �

This infinite sum of convolved filters is reminiscent of a property of Hawkes pro-
cesses that have a linear input-output gain [26].

The speed of inputs characterized by μ only appears in the temporal profiles g
(k)
l/μ ∗

g′
l/μ

(q). In particular, if the inputs are much slower than neuronal activity time-scale,

i.e., μ = 0, then g+∞ = δ0 and u ∗ g+∞ = u. Therefore, Ck,q = C0,0 and the sums in
the formula of Property 3.3 are separable, leading to v̄ · v̄′ = (L−W)−1 ·u ·u′ · (L−
W′)−1, which corresponds to the heuristic result previously explained.

Therefore, the averaged equation can be explicitly rewritten

dW
dt

= Ḡ(W) = −κW+ u2m

l2

+∞∑
k,q=0

Wk

lk
·Ck,q · W

′q

lq
+ σ 2

2
(L−W)−1. (15)

In Figure 2, we illustrate this result by comparing, for different ε = ε1 = ε2 (i.e.,
we choose μ = 1 in this example), the stochastic system and its averaged version.
The above decomposition has been used as the basis for numerical computation of
trajectories of the averaged system.

3.2.3 Global stability of the equilibrium point

Now that we have found an explicit formulation for the averaged system, it is natural
to study its dynamics. Actually, we prove in the following that if the connectivity W



Page 22 of 64 M. Galtier, G. Wainrib

Fig. 2 The first two figures, (a) and (b), represent the evolution of the connectivity for original stochastic
system (12), superimposed with averaged system (13), for two different values of ε: respectively ε = 0.01
and ε = 0.001, where we have chosen ε = ε1 = ε2. Each color corresponds to the weight of an edge in
a network made of n = 3 neurons. As expected, it seems that the smaller ε, the better the approximation.
This can be seen in the picture (c) where we have plotted the precision on the y-axis and ε on the x-axis.
The parameters used here are l = 12, μ = 1, κ = 100, σ = 0.05. The inputs have a random (but frozen)
spatial structure and evolve according to a sinusoidal function.

is kept smaller than l
3 , i.e., Assumption 3.1 is verified with p ≤ 1

3 , then the dynam-
ics is trivial: the system converges to a single equilibrium point. Indeed, under the
previous assumption, the system can be written Ḡ(W) = −κW+ F(W), where F is
a contraction operator on E 1

3
. Therefore, one can prove the uniqueness of the fixed

point with the Banach fixed point argument and exhibit an energy function for the
system.

Theorem 3.4 If Assumption 3.1 is verified for p ≤ 1
3 , then there is a unique equilib-

rium point in the invariant subset Ep which is globally, asymptotically stable.

Proof See Theorem B.4 in Appendix B.2. �

The fact that the equilibrium point is unique means that the ‘knowledge’ of the net-
work about its environment (corresponding by hypothesis to the connectivity) even-
tually is unique. For a given input and any initial condition, the network can only
converge to the same ‘knowledge’ or ‘understanding’ of this input.

3.2.4 Explicit expansion of the equilibrium point

When the network is weakly connected, the high-order terms in expansion (15) may
be neglected. In this section, we follow this idea and find an explicit expansion for the
equilibrium connectivity where the strength of the connectivity is the small parameter
enabling the expansion. The weaker the connectivity, the more terms can be neglected
in the expansion.

In fact, it is not natural to speak about a weakly connected learning network since
the connectivity is a variable. However, we are able to identify a weak connectivity
index which controls the strength of the connectivity. We say the connectivity is weak
when it is negligible compared to the intrinsic leak term, i.e., ‖|W‖|

l
is small. We show

in the Appendix that this weak connectivity index depends only on the parameters of
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the network and can be written

p̃ = u2m

κl3
+ σ 2

2κl2
.

In the asymptotic regime p̃ → 0, we have W
p̃l

= O(1). This index is the ‘small’ param-

eter needed to perform the expansion. We also define λ = σ 2l

2u2m
, which has information

about the way p̃ is converging to zero. In fact, it is the ratio of the two terms of p̃.
With these, we can prove that the equilibrium connectivity W∗ has the following

asymptotic expansion in p̃.

Theorem 3.5

W∗ = p̃l

1+ λ

(
λ +C0,0) + p̃2l

(1+ λ)2

(
λ2 + λ

(
C0,0 +C1,0 +C0,1)

+C0,0 ·C1,0 +C0,1 ·C0,0) + O
(
p̃3).

Proof See Theorem B.5 in Appendix B.2. �

At the first order, the final connectivity is C0,0, the filtered correlation of the inputs
convolved with a bell-shaped centered temporal profile. In the case of Figure 3, this
is quite a good approximation of the final connectivity.

Not only the spatial correlation is encoded in the weights, but there is also some
information about the temporal correlation, i.e., two successive but orthogonal events
occurring in the inputs will be wired in the connectivity although they do not appear
in the spatial correlations; see Figure 3 for an example.

3.3 Trace learning: band-pass filter effect

In this section, we study an improvement of the learning model by adding a certain
form of history dependence in the system and explain the way it changes the results of
the previous section. Given that Theorem 2.2 only applies to an instantaneous process,
we will only be able to treat the history-dependent systems which can be reformulated
as instantaneous processes. Actually, this class of systems contains models which are
biologically more relevant than the previous model and which will exhibit interesting
additional functional behaviors. In particular, this covers the following features:

• Trace learning.
It is likely that a biological learning rule will integrate the activity over a short

time. As Földiàk suggested in [27], it makes sense to consider the learning equation
as being

dWε

dt
= −κWε + (

vε ∗ g1
) ⊗ (

vε ∗ g1
)
,

where ∗ is the convolution and g1 : t ∈ R �→ β1e
−β1tH(t). Rolls and Deco nu-

merically show [15] that the temporal convolution, leading to a spatio-temporal
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Fig. 3 (a) shows the temporal evolution of the input to a n = 8 neurons network. It is made of two
spatially random patterns that are shown alternatively. (b) shows the correlation matrix of the inputs. The
off-diagonal terms are null because the two patterns are spatially orthogonal. (c), (d), and (e) represent the
first order of Theorem 3.5 expansion for different μ. Actually, this approximation is quite good since the

percentage of error between the averaged system and the first order, computed by error = ‖W−order 1‖1‖W‖1 ,

have an order of magnitude of 10−4% for the three figures. These figures make it possible to observe
the role of μ. If μ is small, i.e., the inputs are slow, then the transient can be neglected and the learned
connectivity is roughly the correlation of the inputs; see (a). If μ increases, i.e., the inputs are faster, then
the connectivity starts to encode a link between the two patterns that were flashed circularly and elicited
responses that did not fade away when the other pattern appeared. The temporal structure of the inputs is
also learned when μ is large. The parameters used in this figure are ε = 0.001, l = 12, κ = 100, σ = 0.02.

learning, makes it possible to perform invariant object recognition. Besides, trace
learning appears to be the symmetric part of the biological STDP rule that we detail
in Section 3.4.

• Damped oscillatory neurons.
Many neurons have an oscillatory behavior. Although we cannot take this into

account in a linear model, we can model a neuron by a damped oscillator, which
also introduces a new important time-scale in the system. Adding adaptation to
neuronal dynamics is an elementary way to implement this idea. This corresponds
to modeling a single neuron without inputs by the equivalent formulations{

dvε

dt
= −lzε,

dzε

dt
= β2(v

ε − zε)
⇔

{
dvε

dt
= −lvε ∗ g2,

where g2(t) = β2e
−β2tH(t).

• Dynamic synapses.
The electro-chemical process of synaptic communication is very complicated

and non-linear. Yet, one of the features of synaptic communication we can take
into account in a linear model is the shape of the post-synaptic potentials. In this
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section, we consider that each synapse is a linear filter whose finite impulse re-
sponse (i.e., the post-synaptic potential) has the shape g3(t) = β3e

−β3tH(t). This
is a common assumption which, for instance, is at the basis of traditional rate based
models; see Chapter 11 of [7].

For mathematical tractability, we assume in the following that β = β1 = β2 =
β3 ∈ R+ such that gβ = g1 = g2 = g3, i.e., the time-scales of the neurons, those of
the synapses and those of the learning windows are the same. Actually, there is a large
variety of temporal scales of neurons, synapses, and learning windows, which makes
this assumption not absurd. Besides, in many brain areas, examples of these time
constants are in the same range (�10 ms). Yet, investigating the impact of breaking
this assumption would be necessary to model better biological networks. This leads
to the following system:{

dvε = 1
ε1

((Wε −L) · vε ∗ gβ + u( t
ε2

)) dt + σ√
ε1

dB(t),

dWε

dt
= −κWε + (vε ∗ gβ) ⊗ (vε ∗ gβ),

(16)

where the notations are the same as in Section 3.2. The behavior of a single neuron

will be oscillatory damped if � =
√
1− 4 l

β
is a pure imaginary number, i.e., 4l > β .

This is the regime on which we focus. Actually, the Hebbian linear case of Section 3.2
corresponds to β = +∞ in this delayed system.

To comply with the hypotheses of Theorem 2.2 (i.e., no dependence of the history
of the process), we can add a variable z to the system which takes care of integrating
the variable v over an exponential window. It leads to the equivalent system (in the
limit σz → 0)⎧⎨

⎩d
( vε

zε
) = 1

ε1

[( 0 W−L
β −β

)( vε

zε
) + ( u( t

ε2
)

0

)]
dt + ( σ√

ε1
dB(t)

σz√
ε1

dB(t)

)
,

dWε

dt
= −κWε + zε ⊗ zε .

This trick makes it possible to deal with some history-based processes where the
dependence on the past is exponential.

It turns out most of the results of Section 3.2 remain true for system (16) as de-
tailed in the following. The existence of the solution on R+ is proved in Theorem B.6.
The computations show that in the averaged system, the noise term remains identi-
cal, whereas the correlation term is to be replaced by μ

τ
(v̄ ∗ gβ) · (v̄ ∗ gβ)′. Besides,

Lemma 3.2 can be extended to our delayed system by changing only the temporal
filters; see Lemma B.7. Together with Lemma C.3, this proves the result of Theo-
rem B.8.

μ

τ
(v̄ ∗ gβ) · (v̄ ∗ gβ)′ = u2m‖v‖21

l2

+∞∑
k,q=0

Wk

(l/‖v‖1)k · C̃k,q · W′q

(l/‖v‖1)q ,

where

C̃k,q = 1

u2mτ‖v‖k+q+2
1

(
u ∗ v(k+1)) · (u ∗ v(q+1))′,
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Fig. 4 These represent the temporal filter v : t �→ v(t) for different parameters. (a) When β = +∞, we
are in the Hebbian linear case of Appendix B.2. The temporal filters are just decaying exponentials which
averaged the signal over a past window. (b) When the dynamics of the neurons and synapse are oscillatory
damped, some oscillations appear in the temporal filters. The number of oscillations depends on �. If �

is real, then there are no oscillations as in the previous case. However, when � becomes a pure imaginary
number, it creates a few oscillations which are even more numerous if |�| increases.

where v : t → l
μ�

(e
− β

2μ (1−�)t − e
− β

2μ (1+�)t
)H(t). Observe that applying Young’s

inequality to convolutions leads to ‖C̃k,q‖2 ≤ 1. Actually, Lemma C.3 shows that

v(k) = vk : t �→
√

πβ
k! e− β

2 t ( t
|�| )

k+ 1
2 J

k+ 1
2
(
β|�|
2 t)H(t), where Jn(z) is the Bessel func-

tion of the first kind. The value of the L1 norm of v is computed in Appendix C.3. It
leads to ‖v‖1 = coth( π

2�) if � is a pure imaginary number and ‖v‖1 = 1 else.
Therefore, the averaged system can be rewritten

dW
dt

= Ḡ(W) = −κW+ u2m‖v‖21
l2

+∞∑
k,q=0

Wk

(l/‖v‖1)k ·C̃k,q · W′q

(l/‖v‖1)q + σ 2

2
(L−W)−1.

As before, the existence and uniqueness of a globally attractive equilibrium point
is guaranteed if Assumption 3.1 is verified for p ≤ 1

2‖v‖31+1
; see Theorem B.9.

Besides, the weakly connected expansion of the equilibrium point we did in Sec-
tion 3.2.4 can be derived in this case (see Theorem B.10). At the first order, this leads
to the equilibrium connectivity

W∗ = p̃l

1+ λ

(
λ + ‖v‖21C̃0,0) + O

(
p̃2‖v‖1

)
.

The second order is given in Theorem B.10. The main difference with the Hebbian
linear case is the shape of the temporal filters. Actually, the temporal filters have an
oscillatory damped behavior if � is purely imaginary. These two cases are compared
in Figure 4.

These oscillatory damped filters have the effect of amplifying a particular fre-
quency of the input signal. As shown in Figure 5, if � is a pure imaginary number,
then D0,0 is the cross-correlation of the band-pass filtered inputs with themselves.
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Fig. 5 This is the spectral

profile |v̂ ∗ v′|(ξ) for β = 1 and

l ∈]0,2], where v̂ ∗ v′ denotes
the Fourier transform of v ∗ v′.
When 4l < β , the filter reaches
its maximum for the null
frequency, but if l increases
beyond β

4 , the filter becomes a
band-pass filter with long tails
in 1

ξ2
.

Fig. 6 This figure represents the synapse strength modification when the post-synaptic neuron emits a
spike. The y-axis corresponds to an additive or multiplicative update of the connectivity. For instance,

in [28], this is
�Wij

Wij
for the negative part of the curve. However, we assume an additive update in this

paper. The x-axis is the time at which a pre-synaptic spike reaches the synapse, relatively to the time of
post-synaptic time chosen to be 0.

This band-pass filter effect can also be observed in the higher-order terms of the
weakly connected expansion. This suggests that the biophysical oscillatory behavior
of neurons and synapses leads to selecting the corresponding frequency of the inputs
and performing the same computation as for the Hebbian linear case of the previous
section: computing the correlation of the (filtered) inputs.

3.4 Asymmetric ‘STDP’ learning with correlated noise

Here, we extend the results to temporally asymmetric learning rules and spatially cor-
related noise.We consider a learning rule that is similar to the spike-timing-dependent
plasticity (STDP) which is closer to biological experiments than the previous Hebbian
rules. It has been observed that the strength of the connection between two neurons
depends mainly on the difference between the time of the spikes emitted by each
neuron as shown in Figure 6; see [12].

Assuming that the decay time of the positive and negative parts of Figure 6 are
equal, we approximate this function by t �→ a+gγ (−t) − a−gγ (t), where gγ (t) =
γ e−γ tH(t). Actually, this corresponds to Ẇε

ij = −κWε
ij + a+vi (vε

j ∗gγ )− a−(vε
i ∗

gγ )vε
j . If the neuron has a spiking behavior, then the term a+vε

i (t)(v
ε
j ∗ gγ )(t) is

significant when the post-synaptic neuron i is spiking at time t , and then it counts
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the number of previous spikes from the pre-synaptic neuron j that might have caused
the post-synaptic spike. This calculus is weighted by an exponentially decaying func-
tion. This accounts for the left part of Figure 6. The last term −a−(vε

i ∗ gγ )vε
j takes

the opposite perspective. It is significant when the pre-synaptic neuron j is spiking
and counts the number of previous spikes from the post-synaptic neuron i that are
not likely to have been caused by the pre-synaptic neuron. The computation is also
weighted by the mirrored function of an exponentially decaying function. This ac-
counts for the right part of Figure 6. This leads to the coupled system{

dvε = 1
ε1

(f (vε) +W · vε + u( t
ε2

)) dt + 1√
ε1

� · dB(t),

dWε

dt
= G(vε,Wε) = −κWε + a+vε ⊗ (vε ∗ gγ ) − a−(vε ∗ gγ ) ⊗ vε,

(17)

where the non-linear intrinsic dynamics of the neurons is represented by f . Indeed,
the term {a+vε(t) ⊗ (vε ∗ gγ )(t)}ij = a+vε

i (t)(v
ε ∗ gγ )j (t) is negligible when the

neuron is quiet and maximal at the top of the spikes emitted by neuron i. Therefore, it
records the value of the pre-synaptic membrane potential weighted by the function gγ

when the post-synaptic neuron spikes. This accounts for the positive part of Figure 6.
Similarly, the negative part corresponds to −a−(vε ∗ gγ ) ⊗ vε .

Actually, this formulation is valid for any non-linear activity with correlated noise.
However, studying the role of STDP in spiking networks is beyond the scope of this
paper since we are only able to have explicit results for models with linear activity.
Therefore, we will assume that the activity is linear while keeping the learning rule as
it was derived in the spiking case, i.e., we assume f (v) = −lv= −L · v in the system
above.

We also use the trick of adding additional variables to get rid of the history-
dependency. This reads⎧⎨

⎩d
( vε

zε
) = 1

ε1

[(W−L 0
γ −γ

)( vε

zε
) + ( u( t

ε2
)

0

)]
dt + ( σ√

ε1
dB(t)

σz√
ε1

dB(t)

)
,

dWε

dt
= −κWε + a+vε ⊗ zε − a−zε ⊗ vε.

In this framework, the method exposed in Section 3.2 holds with small changes.
First, the well-posedness assumption becomes

Assumption 3.2 There exists p ∈]0,1[ such that
|a+| + |a−|
p(1− p)

(
s2γ

2(1+ γ /l − p)
+ u2m

(1− p)

)
< κl3,

where s2 is the maximal eigenvalue of � · �′.

Under this assumption, the system is asymptotically well posed in probability
(Theorem B.11). And we show the averaged system is

dW
dt

= Ḡ(W) = −κW+ u2m(|a+| + |a−|)
l2

+∞∑
k,q=0

Wk

lk
·Dk,q · W

′q

lq
+Q, (18)
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where we have used Theorem B.12 to expand the correlation term. The noise term Q
is equal to Q11 · (L+ γ −W′)−1, where Q11 is the unique solution of the Lyapunov
equation (W−L) ·Q11 +Q11 · (W′ −L) + � · �′ = 0. Lemma D.1 gives a solution
for this equation which leads to Q = γ

∑+∞
k=0W

k · � · �′ · (2L − W′)−(k+1) · (L +
γ −W′)−1. In equation (18), the correlation matrices Dk,q are given by

Dk,q = 1

u2mτ(|a+| + |a−|)
(
u ∗ g

(k+1)
l/μ ∗ (

a+g′
γ − a−gγ

)) · (u ∗ g
(q+1)
l/μ

)′
.

According to Theorem B.13, the system is also globally asymptotically convergent
to a single equilibrium, which we study in the following.

We perform a weakly connected expansion of the equilibrium connectivity of sys-
tem (18). As shown in Theorem B.14, the first order of the expansion is

W∗ = p̃l

1+ λ

(
λ(α+ − α−)

� · �′

d
+D0,0

)
+ O

(
p̃2).

Writing D0,0 = 1
u2mτ(|a+|+|a−|) (S + A), where S is symmetric and A is skew-

symmetric, leads to

S = a+ − a−
2

u ∗ gl/μ ∗ (
g′

γ + gγ

) · (u ∗ gl/μ)′,

A = a+ + a−
2

u ∗ gl/μ ∗ (
g′

γ − gγ

) · (u ∗ gl/μ)′.

According to Lemma C.1, the symmetric part is very similar to the trace learning case
in Section 3.3. Applying Lemma C.2 leads to

S = (a+ − a−)(u ∗ gl/μ ∗ gγ ) · (u ∗ gl/μ ∗ gγ )′,

A = a+ + a−
γ

(
du
dt

∗ gl/μ ∗ gγ

)
· (u ∗ gl/μ ∗ gγ )′.

(19)

Therefore, the STDP learning rule simply adds an antisymmetric part to the final con-
nectivity keeping the symmetric part as the Hebbian case. Besides, the antisymmetric
part corresponds to computing the cross-correlation of the inputs with its derivative.
For high-order terms, this remains true although the temporal profiles are different
from the first order. These results are in line with previous works underlying the simi-
larity between STDP learning and differential Hebbian learning, where G(v) ∼ v̇⊗v;
see [29].

Figure 7 shows an example of purely antisymmetric STDP learning, i.e., a+ = a−.
The final connectivity matrix is therefore antisymmetric as shown in Figure 7(b) and
the noise has no impact on learning. It shows the network finally approximates the
connectivity given in (19).

4 Discussion

We have applied temporal averaging methods on slow/fast systems modeling the
learning mechanisms occurring in linear stochastic neural networks. When we make
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Fig. 7 Antisymmetric STDP learning for a network of n = 3 neurons. (a) Temporal evolution of the inputs
to the network. The three neurons are successively and periodically excited. The red color corresponds to
an excitation of 1 and the blue to no excitation. (b) Equilibrium connectivity. The matrix is antisymmetric
and shows that neurons excite one of their neighbors and are inhibited by the other. (c) Temporal evolution
of the connectivity strength. The colors correspond to those of (b). The connectivity of system (17) corre-
sponds to the plain thin oscillatory curves. The connectivity of the averaged system (18) (with k, q < 4)
corresponds to the plain thick lines. Note that each curve corresponds to the superposition of three con-
nections which remain equal through learning. The dashed curves correspond to the antisymmetric part
in (19). The parameters chosen for this simulation were l = 10, κ = 100, γ = 3, a+ = a− = 1, τ = 3,
σ = 0.001, μ = 1, ε = 0.001. The system was simulated on the fast time-scale during T = 10,000 time
steps of size dt = 0.01.

sure the connectivity remains small, the dynamics of the averaged system appears to
be simple: the connectivity always converges to a unique equilibrium point. Then, we
performed a weakly connected expansion of this final connectivity whose terms are
combinations of the noise covariance and the lagged correlations of the inputs: the
first-order term is simply the sum of the noise covariance and the correlation of the
inputs.

• As opposed to the former input/ouput vision of the neurons, we have considered
the membrane potential v to be the solution of a dynamical system. The conse-
quence of this modeling choice is that not only the spatial correlations, but also
the temporal correlations are learned. Due to the fact we take the transients into
account, the activity never converges but it lives between the representation of the
inputs. Therefore, it links concepts together.
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The parameter μ is the ratio of the time-scales between the inputs and the ac-
tivity variable. If μ = 0, the inputs are infinitely slow and the activity variable has
enough time to converge towards its equilibrium point. When μ grows, the dy-
namics becomes more and more transient, it has no time to converge. Therefore,
if the inputs are extremely slow, the network only learns the spatial correlation of
the inputs. If the inputs are fast, it also learns the temporal correlations. This is
illustrated in Figure 3.

This suggests that learning associations between concepts, for instance, learn-
ing words in two different languages, may be optimized by presenting two words to
be associated circularly with a certain frequency. Indeed, increasing the frequency
(with a fixed duration of exposition to each word) amounts to increasing μ. There-
fore, the network learns better the temporal correlations of the inputs and thus
strengthens the link between these two concepts.

• According to the model of resonator neuron [30], Section 3.3 suggests that neu-
rons and synapses with a preferred frequency of oscillation will preferably extract
the correlation of the inputs filtered by a band pass filter centered on the intrinsic
frequency of the neurons.

Actually, it has been observed that the auditory cortex is tonotopically orga-
nized, i.e., the neurons are arranged by frequency [31]. It is traditionally thought
that this is achieved thanks to a particular connectivity between the neurons. We
exhibit here another mechanism to select this frequency which is solely based on
the parameters of the neurons: a network with a lot of different neurons whose
intrinsic frequencies are uniformly spread is likely to perform a Fourier-like oper-
ation: decomposing the signal by frequency.

In particular, this emphasizes the fact that the network does not treat space and
time similarly. Roughly speaking, associating several pictures and associating sev-
eral sounds are therefore two different tasks which involve different mechanisms.

• In this paper, the original hierarchy of the network has been neglected: the net-
work is made of neurons which receive external inputs. A natural way to include
a hierarchical structure (with layers for instance), without changing the setup of
the paper, is therefore to remove the external input to some neurons. However,
according to Theorem 3.5 (and its extensions Theorems B.10 and B.14), one can
see that these neurons will be disconnected from the others at the first order (if
the noise is spatially uncorrelated). Linear activities imply that the high level neu-
rons disconnect from others, which is a problem. In fact, one can observe that the
second-order term in Theorem 3.5 is not null if the noise matrix � is not diagonal.
In fact, this is the noise between neurons which will recruit the high level neurons
to build connections from and to them.

It is likely that a significant part of noise in the brain is locally induced, e.g.,
local perturbations due to blood vessels or local chemical signals. In a way, the
neurons close to each other share their noise and it seems reasonable to choose the
matrix � so that it reflects the biological proximity between neurons. In fact, �
specifies the original structure of the network and makes it possible for close-by
neurons to recruit each other.

Another idea to address hierarchy in networks would be to replace the synap-
tic decay term −κW by another homeostatic term [32] which would enforce the
emergence of a strong hierarchical structure.
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• It is also interesting to observe that most of the noise contribution to the equilibrium
connectivity for STDP learning (see Theorem B.14) vanishes if the learning is
purely skew-symmetric, i.e., a+ = a−. In fact, it is only the symmetric part of
learning, i.e., the Hebbian mechanism, that writes the noise in the connectivity.

• We have shown that there is a natural analogous STDP learning for spiking neurons
in our case of linear neurons. This asymmetric rule converges to a final connectivity
which can be decomposed into symmetric and skew-symmetric parts. The first one
is similar to the symmetric Hebbian learning case, emphasizing that the STDP is
nothing more than an asymmetric Hebbian-like learning rule. The skew-symmetric
part of the final connectivity is the cross-correlation between the inputs and their
derivatives.

This has an interesting signification when looking at the spontaneous activity of
the network post-learning. In fact, if we assume that the inputs are generated by an
autonomous system du

dt
= ζ(u), then according to the bottom equation in formula

(19), the spontaneous activity is governed by

dv= (
ζ(u) · u′ · v− lv

)
dt + � · dB(t).

In a way, the noise terms generate random patterns which tend to be forgotten
by the network due to the leak term −lv. The only drift is due to ζ(u) · u′ · v �
E〈v,u〉(ζ(u)) which is the expectation of the vector field defining the dynamics of
inputs with a measure being the scalar product between the activity variable and the
inputs. In other words, if the activity is close to the inputs at a given time t∗ ∈ R+,
i.e., 〈v,u(t∗)〉 is large, then the activity will evolve in the same direction as what
this input would have done. The network has modeled the temporal structure of
the inputs. The spontaneous activity predicts and replays the inputs the network
has learned.

There are still numerous challenges to carry on in this direction.
First, it seems natural to look for an application of these mathematical methods

to more realistic models. The two main limitations of the class of models we study
in Section 3 are (i) the activity variable is governed by a linear equation and (ii) all
the neurons are assumed to be identical. The mathematical analysis in this paper
was made possible by the assumption that the neural network has a linear dynamics,
which does not reflect the intrinsic non-linear behavior of the neurons. However, the
cornerstone of the application of temporal averaging methods to a learning neural
network, namely Property 3.3, is similar to the behavior of Poisson processes [26]
which has useful applications for learning neural networks [19, 20]. This suggests
that the dynamics studied in this paper might be quite similar to some non-linear
network models. Studying more rigorously the extension of the present theory to
non-linear and heterogeneous models is the next step toward a better modeling of
biologically plausible neural networks.

Second, we have shown that the equilibrium connectivity was made of a symmet-
ric and antisymmetric term. In terms of statistical analysis of data sets, the symmetric
part corresponds to classical correlation matrices. However, the antisymmetric part
suggests a way to improve the purely correlation-based approach used in many sta-
tistical analyses (e.g., PCA) toward a causality-oriented framework which might be
better suited to deal with dynamical data.
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Appendix A: Stochastic and periodic averaging

A.1 Long-time behavior of inhomogeneous Markov processes

In order to construct the averaged vector field Ḡμ(w) in the time-scale matching
case (0 < μ < ∞), one needs to understand properly the long-time behavior of the
rescaled inhomogeneous frozen process

dv= F(v,w0,μt) dt + �(v,w0) dB(t). (20)

Under regularity and dissipativity conditions, [5] proves the following general result
about the asymptotic behavior of the solution of

dXt = b(Xt , t) dt + σ(Xt , t) dB(t), t > s,

Xs = x,

where t → b(x, t) and t → σ(x, t) are τ -periodic.
The first point of the following theorem gives the definition of evolution systems of

measures, which generalizes the notion of invariant measures in the case of inhomo-
geneous Markov processes. The exponential estimate of 2. in the following theorem
is a key point to prove the averaging principle of Theorem 2.2.

Theorem A.1 ([5])

1. There exists a unique τ -periodic family of probability measures {μ(s, ·), s ∈ R}
such that for all functions φ continuous and bounded,∫

x∈Rp

E
[
φ(Xt )

]
μ(s, dx) =

∫
x∈Rp

φ(x)μ(t, dx).

Such a family is called evolution systems of measures.
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2. Furthermore, under stronger dissipativity condition, the convergence of the law
of X to μ is exponentially fast. More precisely, for any r ∈ (1,+∞), there exist
M > 0 and ω < 0 such that for all φ in the space of p-integrable functions with
respect to μ(t, ·), Lr(Rp,μ(t, ·)),∫

x∈Rp

∥∥∥∥E[
φ
(
X

s,x
t

)] −
∫

x′∈Rp

φ
(
x′)μ(

t, dx′)∥∥∥∥r

μ(s, dx)

≤ Meω(t−s)

∫
x∈Rp

∥∥φ(x)
∥∥r

μ(t, dx).

A.2 Proof of Property 2.3

Property A.2 If there exists a smooth subset E of Rq such that

1. The functions F , G, � satisfy Assumptions 2.1-2.3 restricted on Rp × E .
2. E is invariant under the flow of Ḡμ, as defined in (7).

Then for any initial condition w0 ∈ E , system (4) is asymptotically well posed in
probability and wε satisfies the conclusion of Theorem 2.2.

Proof The idea of the proof is to truncate the original system, replacing G by a
smooth truncation which coincides with G on E and which is close to 0 outside E .
More precisely, for β > 0, we introduce ψβ : Rq → Rq a regular function (lo-
cally Lipschitz) such that ψβ(w) = 0 if w /∈ E or w ∈ ∂E and limβ→0 ψβ(w) = 1
if w ∈ E − ∂E . We define

G̃β(v,w) = G(v,w)ψβ(w).

Then, we introduce (ṽε,β , w̃ε,β) the solution of the auxiliary system

d ṽε,β = 1

ε1

[
F

(
ṽε,β, w̃ε,β,

t

ε2

)]
dt + 1√

ε1
�

(
ṽε,β, w̃ε,β

)
dB(t),

dw̃ε,β = G̃β

(
ṽε,β, w̃ε,β

)
dt

with the same initial condition as (vε,wε).
Let T , δ, η > 0 be three positive reals. Let us introduce a few more notations. We

will need to consider a subset of E defined by

E β := {
w ∈ E ;∥∥ψβ(w) − 1

∥∥ ≤ (η)1/2δ
}
.

We also introduce the following stopping times:

τε := inf
{
t ≥ 0;wε

t ∈ ∂E
}
, τβ

ε := inf
{
t ≥ 0;wε

t ∈ ∂E β
}
,

τ̃ε := inf
{
t ≥ 0; w̃ε,β

t ∈ ∂E
}
, τ̃ β

ε := inf
{
t ≥ 0; w̃ε,β

t ∈ ∂E β
}
.

Finally, we define Tε := min(T , τε, τ̃ε) and T
β
ε := min(T , τ

β
ε , τ̃

β
ε ).
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Let us remark at this point that in order to prove that P[τε ≥ T ] → 1 (which is
our aim), it is sufficient to work on the bounded stopping time min(T , τε), since
P[τε ≥ T ] = P[min(T , τε) ≥ T ]. In other words, the realizations of wε which stay
longer than T inside E are not problematic. Therefore, we introduce τ̂ε := min(T , τε).

Our first claim is that on finite time intervals [0, T ], w̃ε,β is a good approximation
of wε inside E as long as one chooses β sufficiently small. To prove our claim, we
proceed in two steps, first working inside E β and then in E − E β :

1. For any β > 0, one controls the difference between wε and w̃ε,β on E β since one
controls the difference between the drifts. By an application of Lemma A.3 below
(we need here the moment Assumption 2.3(i)), there exists a constant C (which
may depend on T ,β, . . .) such that

E

[
sup

0≤t≤T
β
ε

∥∥wε
t − w̃ε,β

t

∥∥2] ≤ Cηδ2. (21)

We conclude by an application of the Markov inequality, implying

P

[
sup

0≤t≤T
β
ε

∥∥wε
t − w̃ε,β

t

∥∥ > δ
]

≤ 1

δ2
E

[
sup

0≤t≤T
β
ε

∥∥wε
t − w̃ε,β

t

∥∥2] ≤ Cη. (22)

2. One needs now to control the situation outside E β , that is, on E − E β . The idea is
that while one does not control the difference between G and G̃β anymore, one
can still choose β sufficiently small such that E β becomes arbitrary close to E ,
hence implying that τ̂ε and T

β
ε are arbitrary close with high probability, namely

∀θ,λ > 0,∃β > 0, P
[
τε − T β

ε > λ
]
< θ. (23)

With θ = (δη)2 and λ = δη, one obtains that for sufficiently small β ,

P
[
τ̂ε − T β

ε > ηδ
]
< (ηδ)2. (24)

Let us denote S := sup
T

β
ε ≤t≤τ̂ε

‖wε
t − w̃ε,β

t ‖. Then, one can split the calculus of

E[S] according to the event A = {τ̂ε − T
β
ε > ηδ}:

E[S] = E[SIA] + E[SIAc ]
≤ (

2KGT P[A])1/2 + (
2KGE

[(
τ̂ε − T β

ε

)2
IAc

])1/2
≤ C2ηδ,

where we have used the Cauchy-Schwarz inequality and the moment Assump-
tion 2.3(ii) (yielding the constant KG) in the second line.

So, we deduce by the Markov inequality that sup
T

β
ε ≤t≤τ̂ε

‖wε
t − w̃ε,β

t ‖ is arbi-
trary small in probability.

From the combination of 1. and 2., we deduce that one can choose β small enough
such that

P

[
sup

0≤t≤T ∧τε

∥∥wε
t − w̃ε,β

t

∥∥ > δ
]

≤ (C1 + C2)η. (25)
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We can now proceed to the application of Theorem 2.2 to the truncated system. As
(ṽε,β0 , w̃ε,β0) remains in Rp × E , one can extend smoothly F and � outside E so that
(F,�) satisfies Assumptions 2.1-2.2. Therefore, one can apply Theorem 2.2 to the
auxiliary system: for all δ, T > 0,

μ

lim
ε→0

P

[
sup

t∈[0,T ]

∥∥w̃ε,β0
t −wt

∥∥ > δ
]

= 0,

where w is defined by (8). As a consequence, there exists ε0 such that for all ε with
‖ε‖ < ε0,

P

[
sup

t∈[0,T ]
∥∥w̃ε,β0

t −wt

∥∥ > δ
]

< η.

Then, as |ŵε
t − wt | ≤ |ŵε

t − w̃ε,β0
t | + |w̃ε,β0

t − wt |, one deduces that for all ε with
‖ε‖ < ε0,

P

[
sup

t∈[0,T ]
∥∥ŵε

t −wt

∥∥ > δ
]

< (C1 + C2 + 1)η,

that is to say,
μ

lim
ε→0

P

[
sup

t∈[0,T ]
∥∥ŵε

t −wt

∥∥ > δ
]

= 0.

We know by assumption 2. of the statement of Property 2.3, for all t ≥ 0, wt ∈ E , so
we conclude the proof by observing that for all T > 0,

lim
ε→0

P[τε ≥ T ] = 1. �

In the following lemma, we show that the solutions of two SDEs, whose drifts
are close on a subset of the state space, remain close on a finite time interval. The
difficulty here lies in the fact that we deal with only locally Lipschitz coefficients.

Lemma A.3 Suppose x and y are solutions, with identical initial conditions in H ⊂
Rn, of the following stochastic differential equations in Rn:

dxt = a(xt , t) dt + b(xt , t) dB(t), (26)

dyt = h(yt )a(yt , t) dt + b(yt , t) dB(t). (27)

Let T > 0 be a fixed time.We define

τH = min
(
inf{t ≥ 0;xt ∈ ∂H }, inf{t ≥ 0;yt ∈ ∂H }).

We make the following assumptions:

1. Approximation assumption:

sup
y∈H

∥∥h(y) − 1
∥∥ ≤ ξ ;
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2. Local Lipschitz assumption: for all a, b ∈ Rn withmax(‖a‖,‖b‖) ≤ R, there exists
a constant CR such that∥∥a(x, t) − a(y, t)

∥∥2 ≤ CR‖x − y‖2;
3. Boundedness assumption: there exists p > 2 and A > 0 such that

E

[
sup

0≤t≤T

‖xt‖p
]

≤ A and E

[
sup

0≤t≤T

‖yt‖p
]

≤ A,

and if ‖x‖ ≤ R, then there exists KR such that ‖a(x)‖ ≤ KR .

Under the above assumptions, there exists a constant C (depending on the quantities
defined above, but not on ξ ) such that

E

[
sup

0≤t≤min(T ,τH )

‖xt − yt‖2
]

≤ Cξ2. (28)

Proof Although the Lipschitz constant is not bounded on H, we can use the bounded-
ness assumption to show that the probability of reaching a level R before time T will
be very small for large R, and then use the classical strategy inside {‖xt‖ ≤ R} where
everything works as if the coefficients were globally Lipschitz. A similar strategy is
used in [33] to prove a strong convergence theorem for the Euler scheme without the
global Lipschitz assumption. We adapt here the ideas of their proof to our setting.

Therefore, we introduce the following stopping times:

θR := inf
{
t ≥ 0; ‖xt‖ ≥ R

}
,

θ
β
R := inf

{
t ≥ 0; ‖yt‖ ≥ R

}
and ρ := min

(
θR, θ

β
R, τH

)
.

We also denote e(t) := xt − yt .
Splitting the following expectation according to the value of ρ, and applying the

Young inequality,

ab ≤ d

r
ar + 1

qdq/r
bq for r−1 + q−1 = 1 and any a, b, d > 0,

we obtain, for any d > 0,

E

[
sup

0≤t≤min(T ,τH)

∥∥e(t)
∥∥2]

≤ E

[
sup

0≤t≤min(T ,τH)

∥∥e
(
min(t, ρ)

)∥∥2]

+ 2d

p
E

[
sup

0≤t≤T

s
∥∥e(t)

∥∥p
]
+ 1− 2/p

d2/(p−2)
P
[
θR ≤ T or θ

β
R ≤ T

]
.

Then we use the boundedness assumption and the Markov inequality to deduce that

P
[
θR ≤ T or θ

β
R ≤ T

] ≤ 2A

Rp
and E

[
sup

0≤t≤T

∥∥e(t)
∥∥p

]
≤ 2pA.
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Now, we can focus on the supremum of the error before time ρ. We first apply the
Cauchy-Schwarz inequality

∥∥e
(
min(t, ρ)

)∥∥2 =
∥∥∥∥
∫ min(t,ρ)

0

(
a(xs, s) − h(ys)a(ys, s)

)
ds

+
∫ min(t,ρ)

0

(
b(xs, s) − b(ys, s)

)
dB(s)

∥∥∥∥2

≤ 2

[
T

∫ min(t,ρ)

0

∥∥a(xs, s) − h(ys)a(ys, s)
∥∥2 ds

+
∥∥∥∥
∫ min(t,ρ)

0

(
b(xs, s) − b(ys, s)

)
dB(s)

∥∥∥∥2
]
.

Then, we use the local Lipschitz and the boundedness assumptions, together with
the Doob inequality (the first inequality) to deal with the stochastic integral: for any
u > 0,

E

[
sup

0≤t≤u

∥∥e
(
min(t, ρ)

)∥∥2]

≤ 2E

[
T

∫ min(u,ρ)

0

∥∥a(xs, s) − h(ys)a(ys, s)
∥∥2 ds

+ 4
∫ min(u,ρ)

0

∥∥σ(xs, s) − σ(ys, s)
∥∥2 ds

]

≤ 2E

[
T CR

∫ min(u,ρ)

0
‖xs − ys‖2 ds + T 2K2

Rξ2 + 4CR

∫ min(u,ρ)

0
‖xs − ys‖2 ds

]

≤ 2CR(T + 4)E

[∫ min(u,ρ)

0
sup

0≤r≤s

{‖xmin(r,ρ) − ymin(r,ρ)‖2
}
ds

]
+ 2T 2K2

Rξ2.

We then apply the Gronwall lemma

E

[
sup

0≤t≤T

∥∥e
(
min(t, ρ)

)∥∥2] ≤ 2T 2K2
Rξ2e2CR(T +4). (29)

Finally, we choose d small enough such that

2p+1dA

p
≤ ξ2,

and R large enough such that

2A(p − 2)

Rppd2/(p−2)
≤ ξ2
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yielding

E

[
sup

0≤t≤min(T ,τH)

‖xt − yt‖2
]

≤ (
2+ 2T 2K2

Re2CR(T +4))ξ2. �

Appendix B: Proofs of Section 3

B.1 Notations and definitions

Throughout the paper, lower-case normal letters are constants, lower-case bold letters
are vectors or vector-valued functions, and upper-case bold letters are matrices.

• l, κ, τ, ε1, ε2,μ,σ 2, β, γ, a± ∈ R+ are parameters of the network. We also define

� =
√
1− 4 l

β
for Section 3.3 and � ∈ Rn×n, a fixed noise matrix, for Section 3.4.

We write s2 = ‖|� · �′‖|.
• n ∈ N is the number of neurons in the network.
• v ∈ C1(R+,Rn) is the field of membrane potential in the network.
• u ∈ C1(R+,Rn) is the field of inputs to the network. We write

um = sup
t∈R+

‖u(t)‖2.

• v⊗u ∈ C1(R+,Rn×n) is the tensor product between u and v, which simply means
{u⊗ v}ij (t) = ui (t)vj (t).

• W ∈ C1(R+,Rn×n) is the connectivity of the network. Throughout the paper, we
assume W(0) = 0.

• 〈x,y〉 is the scalar product between two vectors x,y ∈ Rn.

• ‖u(t)‖p for p = 1,2 is theLp norm of u(t) ∈ Rn, i.e., ‖u(t)‖p = (
∑n

i=1 |ui (t)|p)
1
p .

And similarly for the connectivity matrices of Rn×n with a double sum.
• ‖|W‖| = supx∈Cn,‖x‖=1 |〈x,W · x〉| = maxi∈{1,...,n}{|λi | : λi is an eigenvalue of W}.
• J′ is the transpose of the matrix J ∈ Rn×n.
• x · y′ ∈ Rn×n is the cross-correlation matrix of two compactly supported and dif-

ferentiable functions from R to Rn, i.e.,

{
x · y′}

ij
=

∫ +∞

−∞
xi (t)yj (t) dt.

• H is the Heaviside function, i.e.,

H(t) =
{
0 if t ≤ 0,

1 if t > 0.
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• The real functions

gγ : t �→γ e−γ tH(t),

v : t �→ l

μ�

(
e
− β

2μ (1−�)t − e
− β

2μ (1+�)t)
H(t),

w : t �→ l

2μ�

(
(1+ �)e

− β
2μ (1−�)t − (1− �)e

− β
2μ (1+�)t)

H(t)

(30)

are integrable on R.

B.1.1 Notations for the Appendix

The computations involve a lot of convolutions and, for readability of the Appendix,
we introduce some new notations. Indeed, we rewrite the time-convolution between
u and g, an integrable function on R,

u ∗ g = u · G.

This suggests one should think of v as a semi-continuous matrix of Rn×R and of Gγ as
a continuous matrix of RR×R, such that uit = ui(t) and Gst = g(t − s). Indeed, in this
framework the convolution with g is nothing but the continuous matrix multiplication
between v and a continuous Toeplitz matrix generated row by row by g. Hence, the
operator ‘·’ can be though of as a matrix multiplication.

Therefore, it is natural to define (u ∗ g)′ = (u · G)′ = G′ · u′, where G′ ∈ RR×R

is the transpose of G, i.e., the continuous Toeplitz matrix generated row by row by
g(−·) : t �→ g(−t) and u′ ∈ RR×n. Thus, for g and h, two integrable functions on R,
we can rewrite

(x ∗ g) · (y ∗ h)′ = x · G · H′ · y′,

where G and H are their associated continuous matrices. More generally, the bold
curved letters G, V , W represent these continuous Toeplitz matrices which are well
defined through their action as convolution operators with g, v, and w. The previous
formulation naturally expresses the symmetry of relation (14).

B.2 Hebbian learning with linear activity

In this part, we consider system (12).

B.2.1 Application of temporal averaging theory

Theorem B.1 If Assumption 3.1 is verified for p ∈]0,1[, then system (12) is asymp-
totically well posed in probability and the connectivity matrix Wε , the solution of
system (12), converges to W, in the sense that for all δ, T > 0,

μ

lim
ε→0

P

[
sup

t∈[0,T ]

∣∣Wε
t −Wt

∣∣2 > δ
]

= 0,
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where W is the deterministic solution of

dWij

dt
= Ḡ(W)ij = −κWij︸ ︷︷ ︸

decay

+μ

τ

∫ τ
μ

0
v̄i (s)v̄j (s) ds︸ ︷︷ ︸
correlation

+ σ 2

2
(L−W)−1

ij︸ ︷︷ ︸
noise

,

where v̄(t) is the τ
μ
-periodic attractor of d v̄

dt
= (W−L) · v̄+u(μt), whereW ∈ Rn×n

is supposed to be fixed.

Proof We are going to apply Property 2.3. For p ∈]0,1[, consider the space
Ep = {

W ∈ Rn×n : W is symmetric,W ≥ 0 and ‖|W‖| < lp
}
.

First, since L−W is strictly positive for W in Ep , Assumptions 2.1-2.2 are satisfied
on Rn × Ep . Then, we only need to compute the averaged vector field Ḡ and show
that Ep is invariant under the flow of Ḡ.

1. Computation of the averaged vector field Ḡ:
The fast variable is linear, the averaged vector field is given by (10). This reads

Ḡ(W) =
(

τ

μ

)−1 ∫ τ
μ

0

∫
x∈Rn

G
(
v̄(t) + x,W

)
N0,Q(dx) dt,

where Nv,Q is the probability density function of the Gaussian law with mean v and
covariance Q. And Q is the unique solution of (9), with � = σId . This leads to

Q = σ 2

2 (L−W)−1.
Therefore,

Ḡ(W) = −κW+ μ

τ

∫ τ
μ

0

(∫
x∈Rn

(
v̄(t) + x

) ⊗ (
v̄(t) + x

)
N0,Q(dx)

)
dt

= −κW+ μ

τ

∫ τ
μ

0
v̄(t) ⊗ v̄(t) dt + μ

τ

∫ τ
μ

0

(
v̄(t) ⊗

∫
x∈Rn

xN0,Q(dx)︸ ︷︷ ︸
Expectation of N (0,Q)=0

)
dt

+ μ

τ

∫ τ
μ

0

( ∫
x∈Rn

xN0,Q(dx)︸ ︷︷ ︸
Expectation of N (0,Q)=0

⊗ v̄(t)
)

dt

+ μ

τ

∫ τ
μ

0

(∫
x∈Rn

x⊗ xN0,Q(dx)︸ ︷︷ ︸
Covariance of N (0,Q)=Q

)
dt

= −κW+ μ

τ

∫ τ
μ

0
v̄(t) ⊗ v̄(t) dt + σ 2

2
(L−W)−1.

The integral term in the equation above is the correlation matrix of the τ
μ
-periodic

function ¯̄v. To rewrite this term, we define v̄ ∈ R
n×[0, τ

μ
[ such that v̄(i, t) = v̄(t)i . v̄



Page 42 of 64 M. Galtier, G. Wainrib

can be seen as a matrix gathering the history of v̄, i.e., each column of v̄ corresponds
to the vector v̄(t) for a given t ∈ [0, τ

μ
[. It turns out

∫ τ
μ

0
v̄(t) ⊗ v̄(t) dt = v̄ · v̄′.

Therefore,

Ḡ(W) = −κW+ μ

τ
v̄ · v̄′ + σ 2

2
(L−W)−1.

According to the results in Section 2, the solutions of a differential system with such a
right-hand side are close to that of the initial system (12). Hence, we focus exclusively
on it and try to unveil the properties of its solutions which will be retrospectively
extended to those of the initial system (12).

2. Invariance of Ep under the flow of (13):
Here we assume that W(0) ∈ Ep and we want to prove that the trajectory of W is

in Ep , too.

(a) Symmetry:
It is clear that each term in Ḡ is symmetric. Their sum is therefore symmetric

and so is W(t).
(b) Inequality W ≥ 0:

The correlation term v̄ · v̄′ is a Gramian matrix and is therefore positive. Be-
cause L − W is assumed to be positive, therefore, its inverse is also positive.
Therefore, if ei is an eigenvector of W ≥ 0 associated with a null eigenvalue,
then e′

i · Ḡ(W) · ei ≥ 0. Thus, the trajectories of (13) remain positive.
(c) Inequality ‖|W‖| < lp:

The argument here is that of the inward pointing subspace. We intend to find a
condition under which the flow Ḡ is pointing inward the space {W : ‖|W‖| < lp}.
Roughly speaking, this will be done by defining a real valued function g strictly
negative on the subspace and positive outside and then showing that its gradient
(or differential) on the border goes in the opposite direction of the flow, i.e.,
dWg(Ḡ(W)) < 0 for W ∈ g−1(0).

For all x ∈ Cn such that ‖x‖ = 1, define a family of positive numbers (αx)

whose supremum is written α∗ and a family of functions (gx) such that

gx : Rn×n → R,

J �→ ‖J · x‖2 − α2
x .

Observe that the differential of gx atW applied to J is dgx
W(J) = 1

2 〈W · x,J · x〉.
For W ∈ gx−1(0), i.e., ‖W · x‖ = αx, compute

2dgx
W

(
Ḡ(W)

) = −κ 〈W · x,W · x〉︸ ︷︷ ︸
=α2

x

+μ

τ

〈
W · x, v̄ · v̄′ · x〉︸ ︷︷ ︸

=A

+
〈
W · x, σ 2

2
(L−W)−1 · x

〉
︸ ︷︷ ︸

=B

.
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• Upper bound of A:
Applying Cauchy-Schwarz leads to

|A| ≤ ‖W · x‖∥∥v̄ · v̄′ · x∥∥ ≤ αx

∫ τ
μ

0

∥∥v̄(s) ⊗ v̄(s) · x∥∥ds

≤ αx

∫ τ
μ

0

∣∣〈v̄(s),x〉∣∣∥∥v̄(s)∥∥ds ≤ αx

∫ τ
μ

0

∥∥v̄(s)∥∥2 ds.

However, for t ≥ 0

∥∥v̄(t)∥∥ ≤
∫ t

−∞
∥∥e(W−L)(t−s) · u(μs)

∥∥ds ≤ um

∫ t

−∞
e(α∗−l)(t−s) ds

≤ ume(α∗−l)t

[
e−(α∗−l)s

l − α∗

]t

−∞
= um

l − α∗ .

Therefore, A ≤ αxτu2m
μ(l−α)2

.
• Upper bound of B:

Observe that for J a positive definite matrix whose eigenvalues are the λi ,
then the spectrum of J−1 is { 1

λi
}. Therefore, ‖|J−1‖| = 1

min(λi )
. Therefore, if

J = L−W, then ‖|J−1‖| ≤ 1
l−α∗ .

Using the previous observation and Cauchy-Schwarz leads to

|B| ≤ αx
σ 2

2

∥∥∣∣(L−W)−1
∥∥∣∣ ≤ αxσ

2

2(l − α∗)
.

Therefore, for α∗ < l

2dgx
W(Ḡ(W))

αx
≤ −καx + u2m

(l − α∗)2
+ σ 2

2(l − α∗)

= 1

(l − α∗)2
P
(
α∗) + κ

(
α∗ − αx

)
,

where

P(α) = −κα3 + 2κlα2 −
(

κl2 + σ 2

2

)
α +

(
u2m + lσ 2

2

)
. (31)

Now write α∗ = pl with p ∈]0,1[. Equation (31) becomes

P(p) = −κl3p(1− p)2 + lσ 2

2
(1− p) + u2m.

When there exists p such that P(p) < 0 (which corresponds to Assumption 3.1),
then their exists a ball of radius pl on which the dynamics is pointing inward. It
means any matrix W whose maximal eigenvalue is α∗ = pl will see this eigen-
value (and those which are sufficiently close to it, i.e., for which α∗ − αx > 0 is
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sufficiently small) decreasing along the trajectories of the system. Therefore, the
space Ep is invariant by the flow of the system iff Assumption 3.1 is satisfied.

The trajectories of system (13) with the initial condition in Ep are defined on R+ and
remain bounded. Indeed, ifW(0) ∈ Ep , the connectivity will stay in Ep , in particular
0 < L − W ≤ L along the trajectories, more precisely L − W is a strictly positive

constant since p ∈]0,1[. Because v̄ is also bounded by um

l(1−p)
, v̄ · v̄′ + σ 2

2 (L−W)−1

is bounded. The right-hand side of system (13) is the sum a bounded term and a linear
term multiplied by a negative constant; therefore, the system remains bounded and it
cannot explode in finite time: it is defined on R+. �

B.2.2 An expansion for the correlation term

We first state a useful lemma.

Lemma B.2 If v̄ is the solution, with zero as initial condition, of d v̄
dt

= (W−L) · v̄+
u(t), it can be written by the sum below which converges if W is in Ep for p ∈]0,1[.

v̄ =
+∞∑
k=0

Wk

lk+1
· u ∗ g

(k+1)
l ,

where gl : t �→ le−ltH(t).

Proof It can be proven as a trivial rewriting of the variation of parameters formula
for linear systems. A more general approach, which extends to delayed systems, was
developed by Galtier and Touboul [25]; see the first example for the proof of this
lemma. �

This is useful to find the next result.

Property B.3 The correlation term can be written

μ

τ
v̄ · v̄′ = u2m

l2

+∞∑
k,q=0

Wk

lk
·Ck,q · W

′q

lq
.

Proof We can use Lemma 3.2 with μ �= 1 and compute the cross product v̄ · v̄′.
Therefore, consider u(μ·) : t �→ u(μt) instead of u. A change of variable shows

that (u(μ·) ∗ g
(k)
l )(t) = 1

μ
(u ∗ g

(k)
l ( ·

μ
))(μt). Therefore,

μ

τ

{
v̄ · v̄′}

ij
= μ

τ

∫ τ
μ

0
v̄i (t)v̄j (t) dt = 1

τ

∫ τ

0
v̄i

(
s

μ

)
v̄j

(
s

μ

)
ds

= 1

τ

∫ τ

0

(+∞∑
k=0

Wk

lk+1
· (u(μ·) ∗ g

(k+1)
l

)( s

μ

))
i
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×
(+∞∑

q=0

Wq

lq+1
· (u(μ·) ∗ g

(q+1)
l

)( s

μ

))
j

ds

= 1

τ

∫ τ

0

(+∞∑
k=0

Wk

lk+1
·
(
u ∗ g

(k+1)
l (·/μ)

μ

)
(s)

)
i

×
(+∞∑

q=0

Wq

lq+1
·
(
u ∗ g

(q+1)
l (·/μ)

μ

)
(s)

)
j

ds

=
{

u2m

l2

+∞∑
k,q=0

Wk

lk
·Ck,q · W

′q

lq

}
ij

.
�

B.2.3 Global stability of the single equilibrium point

Theorem B.4 If Assumption 3.1 is verified for p ≤ 1
3 , then there is a unique equilib-

rium point in the invariant subset Ep which is globally, asymptotically stable.

Proof For this proof, define F(W) = u2m
l2

∑+∞
k,q=0

Wk

lk
·Ck,q · W′q

lq
+ σ 2

2 (L−W)−1.
First, we compute the differential of F and show it is a bounded operator. Sec-

ond, we show it implies the existence and uniqueness of an equilibrium point under
some condition. Then, we find an energy for the system which says the fixed point
is a global attractor. Finally, we show the stability condition is the same as Assump-
tion 3.1 for p ≤ 1

3 .

1. We compute the differential of each term in F :

• Formally write the second term v̄ · v̄′(W) = ∑+∞
k,q=0

Wk

lk
·Ck,q · W′q

lq
. To find its

differential, compute v̄ · v̄′(W + J) − v̄ · v̄′(W) and keep the terms at the first
order in J. Before computing the whole sum, observe that

(W+ J)k ·Ck,q · (W+ J)′q −Wk ·Ck,q ·W′q

=
k−1∑
m=0

Wm · J ·Wk−1−m ·Ck,q ·W′q

+
q−1∑
m=0

Wk ·Ck,q ·W′m · J′ ·W′q−1−m + O
(‖J‖2).

This leads to

d v̄ · v̄′
W(J) = 1

l

+∞∑
k,q=0

(
k−1∑
m=0

Wm

lm
· J · W

k−1−m

lk−1−m
·Ck,q · W

′q

lq

+
q−1∑
l=0

Wk

lk
·Ck,q · W

′m

lm
· J′ · W

′q−1−m

lq−1−m

)
.
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• Write Q : W �→ (L − W)−1. We can write (L − W) · Q(W) = Id and use the
chain rule to compute the differential of Q at W, which gives −J · Q(W) +
(L−W) · dQW(J) = 0. Therefore,

dQW(J) = (L−W)−1 · J · (L−W)−1.

The differential of F at W is the sum of these two terms.
2. We want to compute the norm of ‖dFW(J)‖2 for ‖J‖2 = 1. First, observe that for

three square matrices A, B, and C,

‖A ·B ·C‖22 =
n∑

i,j=1

B2
ij

∥∥A · (ei ⊗ ej ) ·C∥∥2
2 ≤

n∑
i,j=1

B2
ij‖A · ei‖22‖C · ej‖22

≤
n∑

i,j=1

B2
ij‖|A‖|2‖|C‖|2,

for ei the vectors of the canonical basis of Rn. This leads to ‖A · B · C‖2 ≤
‖B‖2‖|A‖|‖|C‖|. Therefore, because ‖|A‖| ≤ ‖A‖2,∥∥∥∥Wm

lm
· J · W

k−1−m

lk−1−m
·Ck,q · W

′q

lq

∥∥∥∥
2

≤ ‖|W‖|m
lm

∥∥∥∥Wk−1−m

lk−1−m
·Ck,q · W

′q

lq

∥∥∥∥
2

≤ u2m
‖|W‖|k−1

lk−1

‖|W‖|q
lq

.

Therefore,

∥∥dFW(J)
∥∥
2 ≤ u2m

l3

+∞∑
k,q=0

(
k
‖|W‖|k−1

lk−1

‖|W‖|q
lq

+ q
‖|W‖|k

lk

‖|W‖|q−1

lq−1

)

+ σ 2

2

∥∥∣∣(L−W)−1
∥∥∣∣2

≤ 2u2m
l3

(+∞∑
k=0

kpk−1

)(+∞∑
q=0

pq

)
+ σ 2

2

∥∥∣∣(L−W)−1
∥∥∣∣2

≤ 2u2m
l3(1− p)3

+ σ 2

2l2(1− p)2
.

This inequality is true for all J with ‖J‖2 = 1; therefore, it is also true for the
operator norm

‖|dFW‖| ≤ 2u2m
l3(1− p)3

+ σ 2

2l2(1− p)2
.

Therefore, F is a k-Lipschitz operator where k = 2u2m
l3(1−p)3

+ σ 2

2l2(1−p)2
. This means

‖F(W) − F(J)‖2 ≤ k‖W− J‖2.
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3. The equilibrium points of system (15) necessarily verify the equation W =
1
κ
F (W). If

2u2m
(1− p)3

+ lσ 2

2(1− p)2
< κl3, (32)

then 1
κ
F is a contraction map from Ep to itself. Therefore, the Banach fixed point

theorem says that there is a unique fixed point which we write W∗.
4. We now show that, under assumption (32), W �→ ‖W−W∗‖22 is an energy func-

tion for the system dW
dt ′ = −W + 1

κ
F (W) (which is a rescaled version of system

(15)).
Indeed, compute the derivative of this energy along the trajectories of the sys-

tem

2
d

dt

∥∥W(t) −W∗∥∥2
2 =

〈
W−W∗,−W+ 1

κ
F(W)

〉

= −〈
W−W∗,W−W∗〉 + 〈

W−W∗, 1
κ

F(W) −W∗
〉

= −∥∥W−W∗∥∥2
2 +

〈
W−W∗, 1

κ
F(W) − 1

κ
F
(
W∗)〉

≤ −∥∥W−W∗∥∥2
2 + ∥∥W−W∗∥∥

2

∥∥∥∥ 1κ F(W) − 1

κ
F
(
W∗)∥∥∥∥

2

≤ 1

κl3

(
2u2m

(1− p)3
+ lσ 2

2(1− p)2
− κl3

)∥∥W−W∗∥∥2
2 ≤ 0.

The energy is lower-bounded, takes its minimum for W = W∗ and the decreases
along the trajectories of the system. Therefore, W∗ is globally asymptotically sta-
ble if assumption (32) is verified.

5. Observe that if Assumption 3.1 is verified for p ≤ 1
3 , then

1
1−p

< 2
1−p

≤ 1
p
. There-

fore, Assumption 3.1 implies that (32) is also true. This concludes the proof. �

B.2.4 Explicit expansion of the equilibrium point

Recall the notations p̃ = u2m
κl3

+ σ 2

2κl2
and λ = σ 2l

2u2m
.

Theorem B.5

W = p̃l

1+ λ

(
λ +C0,0) + p̃2l

(1+ λ)2

(
λ2 + λ

(
C0,0 +C1,0 +C0,1)

+C0,0 ·C1,0 +C0,1 ·C0,0) + O
(
p̃3).

Actually, it is possible to compute recursively the nth term of the expansion above,
although their complexity explodes.
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Proof Define p∗ the smallest value in ]0,1[ such that Assumption 3.1 is valid. This
implies

p∗
((

1− p∗)2 + σ 2

2κl2

)
= u2m

κl3
+ σ 2

2κl2
.

The weak connectivity index p̃ controls the ratio of the connection over the strength
of intrinsic dynamics. Indeed, these two variables are of the same order because

p∗

p̃
= 1

(1− p∗)2 + σ 2

2κl2

= Op̃→0(1).

We want to approximate the equilibrium W∗, i.e., the solution of Ḡ(W∗) = 0,
in the regime p̃ � 1. Define � = W

p̃l
such that ‖|�‖| = O(1). We abusively write

Ḡ(�) = Ḡ(p̃l�) such that

Ḡ(�) = −p̃lκ� + u2m

l2

+∞∑
k,q=0

(p̃�)k ·Ck,q · (p̃�)q + σ 2

2l

+∞∑
k=0

(p̃�)k.

Recalling λ = σ 2l

2u2m
leads to

Ḡ(�) =
(

u2m

l2
+ σ 2

2l

)(
−� + 1

1+ λ

+∞∑
k,q=0

(p̃�)k ·Ck,q · (p̃�)q + λ

1+ λ

+∞∑
k=0

(p̃�)k

)
.

Now, we write a candidate �(m) = ∑m
a=0 p̃a�a , then we chose the terms �a =

O(1) so that the first mth orders in Ḡ(�(m)) vanish. This implies that ‖Ḡ(�∗) −
Ḡ(�(m))‖ = O(p̃m+1), where �∗ = W∗

p̃l
. Then, we use the fact that the minimal ab-

solute value of the eigenvalues of Ḡ is larger than κ − (
2u2m

l3(1−p)3
+ σ 2

2l2(1−p)2
) > 0.

Indeed, it means∥∥W∗ −W(m)
∥∥ <

1

κ − (
2u2m

l3(1−p)3
+ σ 2

2l2(1−p)2
)

O
(
pm+1) <

1

κ − (
2u2m
l3

+ σ 2

2l2
)

O
(
pm+1),

i.e., �(m) = �∗ + O(p̃m+1).
Thus, we need to find the �a such that the first mth orders in Ḡ(�(m)) vanish.

Therefore, we need to expand all the terms in Ḡ(�). The first term is obvious. In the
following, we write the second term F(�) associated to the correlations and look for
an explicit expression of the Fa such that F(�) = ∑+∞

a=0 p̃aFa . Second, we write the
third term Q(�) associated to the noise and look for an explicit expression of the Qa

such that Q(�) = ∑+∞
a=0 p̃aQa .

• Finding the Fa :
First, observe that

�q =
+∞∑
i=0

p̃i
∑

η∈Nq ,
∑

k ηk=i

�η1 · �η2 · . . . · �ηq . (33)
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This leads to

F(�) = 1

1+ λ

+∞∑
k,q=0

+∞∑
i,j=0
j≤i

p̃i+k+q
∑

η∈Nj ,
∑

n ηn=k

θ∈Ni−j ,
∑

n θn=q

�η1 · . . . · �ηj

×Cj,i−j · �′
θ1

· . . . · �′
θi−j

.

The ath term in the power expansion in p̃ verifies a = i + k + q . More precisely,
this reads

Fa = 1

1+ λ

+∞∑
k,q,i=0

a=i+k+q

i∑
j=0

∑
η∈Nj ,

∑
n ηn=k

θ∈Ni−j ,
∑

n θn=q

�η1 · . . . · �ηj
·Cj,i−j · �′

θ1
· . . . · �′

θi−j
.

This equation is scary but it reduces to simple expressions for small a ∈ N.
• Finding the Qa :

Using equation (33) leads to

Q(�) = λ

1+ λ

+∞∑
i,q=0

p̃i+q
∑

η∈Nq ,
∑

k ηk=i

�η1 · �η2 · . . . · �ηq .

The ath term in the power expansion in p̃ verifies a = i + q . More precisely, this
reads

Qa = λ

1+ λ

+∞∑
q,i=0
a=i+q

p̃i+q
∑

η∈Nq ,
∑

k ηk=i

�η1 · �η2 · . . . · �ηq .

Therefore,

a (1+ 1
λ
)Qa (1+ λ)Fa

0 Id C0,0

1 �0 �0 ·C1,0 +C0,1 · �0

2 �2
0 + �1 �2

0 ·C2,0 +C0,2 · �2
0 + �0 ·C1,1 · �0 + �1 ·C1,0 +C0,1 · �1

Therefore, it is easy to compute �a = Fa +Qa for a ∈ N. By definition W = p̃l� =
p̃l(F+Q), which leads to the result. �

B.3 Trace learning with damped oscillators and dynamic synapses

Theorem B.6 If Assumption 3.1 is verified for p ∈]0,1[, then system (16) is asymp-
totically well posed in probability and the connectivity matrixWε , solution of system
(16), converges to W in the sense that for all δ, T > 0,

μ

lim
ε→0

P

[
sup

t∈[0,T ]

∣∣Wε
t −Wt

∣∣2 > δ
]

= 0,
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where W is the deterministic solution of

dWij

dt
= Ḡ(W)ij = −κWij︸ ︷︷ ︸

decay

+μ

τ

∫ τ
μ

0
(v̄i ∗ gβ)(s)(v̄j ∗ gβ)(s) ds︸ ︷︷ ︸

correlation

+ Q22︸︷︷︸
noise

,

where v̄(t) is the τ
μ
-periodic attractor of d v̄

dt
= (W − L) · v̄ ∗ gβ + u(μt), where

W ∈ Rn×n is supposed to be fixed. And Q22 is a noise matrix described below.

Proof First, let us recall the instantaneous reformulation of (16)⎧⎨
⎩d

( vε

zε
) = 1

ε1

[( 0 W−L
β −β

)( vε

zε
) + ( u( t

ε2
)

0

)]
dt + ( σ√

ε1
dB(t)

σz√
ε1

dB(t)

)
,

dWε

dt
= −κWε + zε ⊗ zε .

Starting from this system, the structure of the proof of Theorem 3.1 remains un-
changed. The correlation term is to be replaced by μ

τ
v̄ · Gβ · G′

β · v̄′. The noise term
we are looking for is Q22 in the Lyapunov equation (see (9)) below(
0 W−L
β −β

)
·
(
Q11 Q′

12
Q12 Q22

)
+

(
Q11 Q′

12
Q12 Q22

)
·
(

0 β

W′ −L −β

)
+

(
σ 2 0
0 σ 2

z

)
= 0.

Because the learning rule is symmetric, then the space of symmetric matrices is
invariant and we can restrict this section to the symmetric case. It is easy to show that
this Lyapunov equation has a unique solution, because the sum of two eigenvalues of
the drift matrix is never null (provided W stays in Ep). This leads to the system⎧⎪⎨

⎪⎩
(W−L) ·Q12 +Q′

12 · (W−L) + σ 2 = 0, (a)

β(Q11 −Q12) +Q22 · (W−L) = 0, (b)

Q22 = Q12+Q′
12

2 + σ 2
z

2β Id . (c)

One solution of equation (a) is Q12 = σ 2

2 (L−W)−1. Equation (c) defines Q22 prop-

erly. Indeed, because W is symmetric, so is Q12 and Q22 = σ 2

2 (L − W)−1 + σ 2
z

2β Id .
Similarly, equation (b) defines Q11 but it remains to be checked that this definition is
that of a symmetric matrix. In fact, it works because W is assumed symmetric and

the noise has no off-diagonal terms. Indeed, in this case,Q11 = σ 2

2 (L−W)−1 + σ 2

2β +
σ 2
z

2β2 (L−W). This solution is thus the unique solution of the Lyapunov equation.
Therefore,

Ḡ(W) = −κW+ μ

τ
v̄ · Gβ · G′

β · v̄′ + σ 2

2
(L−W)−1 + σ 2

z

2β
Id.

Thus, this application of Theorem 2.2 to the instantaneous system with σz �= 0, leads
to the previous averaged equation. To recover the initial case (16), we can let σz → 0.
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We see that the function Ḡ tends to

Ḡ∗(W) = −κW+ μ

τ
v̄ · Gβ · G′

β · v̄′ + σ 2

2
(L−W)−1,

which we will rewrite Ḡ for simplicity in the following. Thus, this definition of Ḡ

defines the averaged system for the original equation (16).
In the derivation of the condition under which ‖|W‖| remain smaller than lp, the

upper bound of the term A changes as follows. Define M ∈ R+ so that ‖v̄(t)‖ ≤ M

for all t > 0. Because we assume v̄(R−) = 0, the variation of parameters formula
for linear retarded differential equations with constant coefficients (see Chapter 6 of
[34]) reads v̄(t) = ∫ t

0 U(t − s) · u(μs) ds where the resolvent U is the solution of
U̇ = (W−L) · (U ∗ g). We use Corollary 1.1 of Chapter 6 of [34], which is based on
Grönwall’s lemma, to claim that ‖U(t − s)‖ ≤ e(t−s)(α∗−l). Therefore,

∥∥v̄(t)∥∥ ≤
∫ t

−∞
∥∥U(t − s)

∥∥∥∥u(μs)
∥∥ds ≤ um

[
e(t−s)(α∗−l)

l − α∗

]t

−∞
≤ um

l − α∗ = M.

Then, we used Young’s inequality for convolution to get ‖(v̄ ∗ g)(t)‖2 ≤ ‖v̄‖2‖g‖1 =
‖v̄‖2.

Therefore, the upper bound of A remains unchanged.
Therefore, the polynomial P remains the same and Assumption 3.1 is still relevant

to this problem. �

Lemma B.7 If v̄ is the solution, with zero as initial condition, of d v̄
dt

= (W − L) ·
v̄ ∗ gβ + u(t), it can be written by the sum below which converges if W is in Ep for
p ∈]0,1[.

v̄ =
+∞∑
k=0

Wk

lk+1
· u · W̃ · Ṽ k,

where W̃ and Ṽ are convolution operators respectively generated by the functions w̃

and ṽ detailed below

w̃ : t �→ l

2�

(
(1+ �)e− β

2 (1−�)t − (1− �)e− β
2 (1+�)t

)
H(t),

ṽ : t �→ l

�

(
e− β

2 (1−�)t − e− β
2 (1+�)t

)
H(t),

where H is the Heaviside function, � =
√
1− 4l

β
. If � is a pure imaginary num-

ber, the expression above still holds with the hyperbolic functions sh and ch being
turned into classical trigonometric functions sin and cos and � being replaced by its
modulus.

If W is in Ep for p ∈]0,1[, then this expansion converges.

Proof See the second example of [25]. �
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Using Lemma C.3, on can redefine

C̃k,q = 1

u2mτ‖v‖k+q+2
1

u · V k+1 · (u · V q+1)′,
where V is the convolution operator generated by v(t) = l

μ�
(e

− β
2μ (1−�)t −

e
− β

2μ (1+�)t
)H(t) (see Appendix C for details). Observe that applying Young’s in-

equality for convolutions leads to ‖C̃k,q‖2 ≤ 1.
Therefore, we can rewrite Theorem 3.3 into

Theorem B.8

μ

τ
v̄ · Gβ · G′

β · v̄′ = u2m‖v‖21
l2

+∞∑
k,q=0

Wk

(l/‖v‖1)k · C̃k,q · W′q

(l/‖v‖1)q .

Proof Similar to that of Theorem 3.3. �

Theorem B.9 If Assumption 3.1 is verified for p ≤ 1
2‖v‖31+1

, there is a unique equi-

librium point which is globally, asymptotically stable.

Proof Similar to the proof of Theorem B.4. �

With the same definitions for p̃ = u2m
κl3

+ σ 2

2κl2
and λ = σ 2l

2u2m
, we can show

Theorem B.10 The weakly connected expansion of the equilibrium point is

W∗ = p̃l

1+ λ

(
λ + ‖v‖21C̃0,0)

+ p̃2‖v‖1l
(1+ λ)2

(
λ2

‖v‖1 + λ
(‖v‖1C̃0,0 + ‖v‖21C̃1,0 + ‖v‖21C̃0,1)

+ ‖v‖41C̃0,0 · C̃1,0 + ‖v‖41C̃0,1 · C̃0,0
)

+ O
(
p̃3‖v‖21

)
.

Proof Define � = W
p̃l

so that

Ḡ(�) =
(

u2m

l2
+ σ 2

2l

)(
−� + ‖v‖21

1+ λ

+∞∑
k,q=0

(
p̃‖v‖1�

)k · C̃k,q · (p̃‖v‖1�
)q

+ λ

1+ λ

+∞∑
k=0

(p̃�)k

)
.

So, the expansion will be in orders of p̃‖v‖1 with ‖v‖1 ≥ 1.
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Therefore,

a (1+ 1
λ
)Qa

1+λ

‖v‖21
Fa

0 Id C̃0,0

1 �0‖v‖1 �0 · C̃1,0 + C̃0,1 · �0

2
�2
0+�1

‖v‖21
�2

0 · C̃2,0 + C̃0,2 · �2
0 + �0 · C̃1,1 · �0 + �1 · C̃1,0 + C̃0,1 · �1

Actually, it is possible to compute recursively the nth terms, although their complex-
ity explodes. Therefore, it is easy to compute �a = Fa +Qa for a ∈ N. By definition
W = p̃l� = p̃l(F+Q), which leads to the result. �

B.4 STDP learning with linear neurons and correlated noise

Consider the following n-dimensional stochastic differential system:{
dvε = 1

ε1
(−L · vε +W · vε + u( t

ε2
)) dt + 1√

ε1
� · dB(t),

dWε

dt
= G(vε,Wε) = −κWε + a+vε ⊗ (vε ∗ gγ ) − a−(vε ∗ gγ ) ⊗ vε,

where u is a continuous input in Rn, l, ε1, ε2, κ ∈ R+, a+, a− ∈ R, � ∈ Rn×n and
B(t) is n-dimensional Brownian noise, and for all γ > 0, gγ : t �→ γ e−γ tH(t) where
H is the Heaviside function. Recall the well-posedness Assumption 3.2

Assumption B.1 There exists p ∈]0,1[ such that
|a+| + |a−|
p(1− p)

(
s2γ

2(1+ γ /l − p)
+ u2m

(1− p)

)
< κl3.

Theorem B.11 If Assumption 3.2 is verified for p ∈]0,1[, then system (17) is asymp-
totically well posed in probability and the connectivity matrix Wε , the solution of
system (17), converges to W in the sense that for all δ, T > 0,

μ

lim
ε→0

P

[
sup

t∈[0,T ]
∣∣Wε

t −Wt

∣∣2 > δ
]

= 0,

where W is the deterministic solution of

dWij

dt
= Ḡ(W)ij

= −κWij︸ ︷︷ ︸
decay

+μ

τ

∫ τ
μ

0
a+v̄i (s)(v̄j ∗ gγ )(s) − a−(v̄i ∗ gγ )(s)v̄j (s) ds︸ ︷︷ ︸

correlation

+ Q12︸︷︷︸
noise

,

where v̄(t) is the τ
μ
-periodic attractor of d v̄

dt
= (W−L) · v̄+u(μt), whereW ∈ Rn×n

is supposed to be fixed. And Q12 is described below.



Page 54 of 64 M. Galtier, G. Wainrib

Proof We recall the instantaneous reformulation of the original system (17)⎧⎨
⎩d

( vε

zε
) = 1

ε1

[(W−L 0
γ −γ

)( vε

zε
) + ( u( t

ε2
)

0

)]
dt + ( σ√

ε1
dB(t)

σz√
ε1

dB(t)

)
,

dWε

dt
= −κWε + a+vε ⊗ zε − a−zε ⊗ vε.

With this linear expression, the structure of the proof of Theorem 3.1 remains
unchanged. The correlation term is to be replaced by μ

τ
(a+v̄ · G′

γ · v̄′ + a−v̄ · Gγ · v̄′).
The noise term we are looking for is Q12 in the Lyapunov equation (see (9)) below(

W−L 0
γ −γ

)
·
(
Q11 Q′

12
Q12 Q22

)

+
(
Q11 Q′

12
Q12 Q22

)
·
(
W′ −L γ

0 −γ

)
+

(
� · �′ 0

0 σ 2
z
2 Id

)
= 0.

This leads to the system⎧⎪⎨
⎪⎩

(W−L) ·Q11 +Q11 · (W′ −L) + � · �′ = 0, (a)

γ (Q11 −Q12) +Q12 · (W′ −L) = 0, (b)

Q22 = Q12+Q′
12

2 + σ 2
z
2 Id . (c)

(34)

The matrixQ11 is the solution of a Lyapunov equation (see equation (a)). Lemma D.1
gives an explicit solution: Q11 = ∑+∞

k=0W
k · � · �′ · (2L−W′)−(k+1). Equation (b)

leads to

Q12 = γQ11 ·(L+γ −W′)−1 = γ

+∞∑
k=0

Wk ·� ·�′ ·(2L−W′)−(k+1) ·(L+γ −W′)−1
.

We see that it does not depend on σz, which, once Theorem 2.2 is applied, can be
considered null so that the average system Ḡ corresponds to the original system (17).

Therefore,

Ḡ(W) = −κW+ μ

τ

(
a+v̄ · G′

γ · v̄′ − a−v̄ · Gγ · v̄′) + a+Q′
12 − a−Q12. (35)

We show that for W already in Ep , it will stay forever in Ep:

1. Inequality W ≥ 0:
Decomposing the connectivity as W = S + iA leads to 〈X,W · X〉 = 〈X,S ·

X〉 + i〈X,A · X〉. By hermiticity of S and A, 〈X,S · X〉 and 〈X,A · X〉 are real
numbers. This means we only have to show that the eigenvalues of S remain pos-
itive along the dynamics. Taking the symmetric part of equation (35) leads to

dS
dt

= −κS+ μ(a+ − a−)

2τ
v̄ · (Gγ + G′

γ

) · v̄′ + (a+ − a−)Q22.

Suppose we take an initial condition S0 > 0. It is clear that if v̄ · (G + G′) · v̄′ and
Q22 are always positive, then S will remain positive. This would prove the result.
Therefore, focus on
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• Proving v̄ · (Gγ + G′
γ ) · v̄′ ≥ 0:

According to the first point of Lemma C.1, Gγ + G′
γ = 2Gγ · G′

γ . Therefore,
v̄ · (Gγ + G′

γ ) · v̄′ = 2v̄ · Gγ · (v̄ · Gγ )′ is a Gramian matrix and therefore it is
positive.

• Proving Q22 ≥ 0:
Q22 is the covariance matrix of the random value z, therefore, it is positive-

semi-definite.

2. Inequality ‖|W‖| < lp:
For all x ∈ Cn such that ‖x‖ = 1, define a family of positive numbers (αx)

whose supremum is written α∗ and a family of functions (gx) such that

gx : J → 〈x,J · x〉 − αx.

Because g is linear, dgx
W(J) = 〈x,J · x〉. For W ∈ gx−1(0), i.e., 〈x,W · x〉 = αx,

compute

dgx
W

(
Gμ(W)

) = −κ 〈x,W · x〉︸ ︷︷ ︸
=αx

+μ

τ

〈
x, v̄ · (a+Gγ − a−G′

γ

) · v̄′ · x〉︸ ︷︷ ︸
=A

+ (|a+| + |a−|) 〈x,Q12 · x〉︸ ︷︷ ︸
=B

.

• Upper bound of A:
Cauchy-Schwarz leads to

|A| ≤ |a+|∥∥v̄ · Gγ · v̄′ · x∥∥ + |a−|∥∥v̄ · G′
γ · v̄′ · x∥∥.

As before, we can use Young’s inequality for convolutions to find an upper
bound of A which reads

A ≤ τu2m(|a+| + |a−|)
(l − α∗)2

.

• Upper bound of B:
According to Proposition 11.9.3 of [35] the solution of the Lyapunov equa-

tion (a) in system (34) can be rewritten

Q11 =
∫ +∞

0
e−t (L−W) · � · �t · e−t (L−W′) dt,

because (W−L) ⊕ (W−L) is not singular due to the fact W ∈ Ep .
Observe that for A a positive matrix whose eigenvalues are the λi , then

the spectrum of e−A is {e−λi : i = 1, . . . , n}. Therefore, ‖|e−A‖| = e−min(|λi |).
Therefore, if A = L−W, then ‖|e−A‖| ≤ eα∗−l . This leads to

‖|Q11‖| ≤ s2
∫ +∞

0
e2(α

∗−l)t dt = s2
[

e2(α
∗−l)t

2(α∗ − l)

]+∞

0
= s2

2(l − α∗)
.
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Then we apply the same arguments to say that

|B| = ‖|Q12‖| ≤ ‖|Q11‖|
∥∥∣∣γ (L+ γ −W)−1

∥∥∣∣
≤ s2γ

2(l − α∗)(l + γ − α∗)
.

The rest of the proof is identical to the Hebbian case. Assumption 3.1 is changed
to Assumption 3.2 for Ep to be invariant by the flow Ḡ. �

Define

Dk,q = 1

u2mτ(|a+| + |a−|)u · Gk+1
l/μ · (a+G′

γ − a−Gγ

) · G′
l/μ

k+1 · u′,

such that ‖Dk,q‖2 ≤ 1.
In this framework, one can prove

Theorem B.12 The correlation term can be written

μ

τ

(
a+v̄ · G′

γ · v̄′ − a−v̄ · Gγ · v̄′)
= u2m(|a+| + |a−|)

l2

+∞∑
k,q=0

Wk

lk
·Dk,q · W

′q

lq
.

Proof Similar to that of Theorem 3.3. �

Theorem B.13 If Assumption 3.2 is verified for p ≤ 1
3 , there is a unique equilibrium

point which is globally, asymptotically stable.

Proof Similar to the previous case. �

Now, we proceed as before by defining

p̃ = |a+| + |a−|
κl3

(
s2

2( 1
l
+ 1

γ
)

+ u2m

)
and λ = s2

2u2m( 1
l
+ 1

γ
)
.

Theorem B.14

W = p̃l

1+ λ

(
λ(α+ − α−)

� · �′

d
+D0,0

)

+ p̃2l

(1+ λ)2

(
λ2(a+ − a−)2

(
1+ 1

1+ γ /l

)
� · �′2

d2

+ λ

(
a+ − a−

2

)((
D0,0 + 2D0,1) · � · �′

d
+ � · �′

d
· (D0,0 + 2D1,0))
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+ λ

1+ γ /l

(
a+D0,0 · � · �′

d
− a−

� · �′

d
·D0,0

)

+D0,0 ·D1,0 +D1,0 ·D0,0
)

+ O
(
p̃3).

Proof First, we need to work on the noise term Q = a+Q′
12 + a−Q12. Recall Q11 is

the solution of the Lyapunov equation (L−W) ·Q11 +Q11 · (L−W)′ + � · �′ = 0.
Lemma D.1 says that

Q11 =
+∞∑
k=0

Wk · � · �′ · (2L−W′)−(k+1)

is a well-defined solution. We now use the fact that (2L − W′)−(k+1) = 1
(2l)k+1 ×∑+∞

n=0

(
n+k
n

) W′n
(2l)n to show that

Q11 =
+∞∑

k,n=0

1

(2l)k+n+1

(
n + k

n

)
Wk · � · �′ ·W′n

and therefore

Q12 = γ

2l(l + γ )

+∞∑
k,n,q=0

1

2k+n(1+ γ /l)q

(
n + k

n

)
Wk

lk
· � · �′ · W

′n+q

ln+q
.

Thus, writing α± = a±
|a+|+|a−| and ck,n,q = 1

2k+n(1+γ /l)q

(
n+k
n

)
, the noise term is

Q = d(|a+| + |a−|)
2l2( 1

l
+ 1

γ
)

+∞∑
k,n,q=0

ck,n,q

(
α+

Wn+q

ln+q
· � · �′

d
· W

′k

lk

− α−
Wk

lk
· � · �′

d
· W

′n+q

ln+q

)
.

Define � = W
p̃l

such that ‖|�‖| = O(1). We improperly write Ḡ(�) = Ḡ(p̃l�)

such that

Ḡ(�) = −p̃lκ� + u2m(|a+| + |a−|)
l2

+∞∑
k,q=0

(p̃�)k ·Dk,q · (p̃�)q

+ d(|a+| + |a−|)
2l2( 1

l
+ 1

γ
)

+∞∑
k,n,q=0

ck,n,q

(
α+(p̃�)n+q · � · �′

d
· (p̃�′)k

− α−(p̃�)k · � · �′

d
· (p̃�′)n+q

)
.
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This leads to

Ḡ(�) =
(

u2m(|a+| + |a−|)
l2

+ d(|a+| + |a−|)
2l2( 1

l
+ 1

γ
)

)

×
[
−� + 1

1+ λ

F̃︷ ︸︸ ︷
+∞∑

k,q=0

(p̃�)k ·Dk,q · (p̃�)q + λ

1+ λ

×
+∞∑

k,n,q=0

ck,n,q

(
α+(p̃�)n+q · � · �′

d
· (p̃�′)k − α−(p̃�)k · � · �′

d
· (p̃�′)n+q

)
︸ ︷︷ ︸

Q̃

]
.

We are looking for Fa and Qa in the expansions F̃ = ∑+∞
a=0 Fap̃

a and Q̃ =∑+∞
a=0Qap̃

a . Recall

�p =
+∞∑
i=0

p̃i
∑

η∈Np,
∑

k ηk=i

�η1 · �η2 · . . . · �ηp .

Therefore,

Q̃ =
+∞∑

k,n,q,i,j=0

ck,n,q p̃k+n+q+i+j
∑

η∈Nk,
∑

m ηm=i

θ∈Nn+q ,
∑

m θm=j

α+�η1 · . . . · �ηn+q

× � · �′

d
· �′

θ1
· . . . · �′

θk
− α−�η1 · . . . · �ηk

· � · �′

d
· �′

θ1
· . . . · �′

θn+q
.

Leading to

Qa =
+∞∑

k,n,i,j=0
a=k+n+q+i+j

ck,n,q p̃k+n+q+i+j
∑

η∈Nk,
∑

m ηm=i

θ∈Nn+q ,
∑

m θm=j

α+�η1 · . . . · �ηn+q

× � · �′

d
· �′

θ1
· . . . · �′

θk
− α−�η1 · . . . · �ηk

· � · �′

d
· �′

θ1
· . . . · �′

θn+q
.

This equation is scary but it reduces to simple expressions for small a ∈ N.

a Qa Fa

0 (α+ − α−)�·�′
d

D0,0

1 α+−α−
2 (�0 · �·�′

d
+ �·�′

d
· �′

0) + 1
1+γ /l

(α+�0 · �·�′
d

− α− �·�′
d

· �′
0) �0 ·D1,0 +D0,1 · �′

0

Recall that W= p̃l� = p̃l( 1
1+λ

F̃+ λ
1+λ

Q̃) to get the result. �
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Appendix C: Properties of the convolution operators Gγ , W , and V

Recall Gγ , W , and V are convolution operators respectively generated by gγ , v, and
w defined in (30). Their Fourier transforms are respectively

ĝγ : ξ �→ γ

γ + 2iπξ
,

v̂ : ξ �→ 4β

(β(1+ �) + 4iπμξ)(β(1− �) + 4iπμξ)
,

ŵ : ξ �→ 4β + 8iπμξ

(β(1+ �) + 4iπμξ)(β(1− �) + 4iπμξ)
.

C.1 Algebraic properties

Lemma C.1

Gγ + G′
γ

2
= Gγ · G′

γ .

Proof Compute

(
Gγ · G′

γ

)
xy

= γ 2
∫ +∞

−∞
e−γ (x−z)H(x − z)e−γ (y−z)H(y − z) dz

= γ 2e−γ (x+y)

∫ min(x,y)

−∞
e2γ z dz = γ 2e−γ (y+x)

[
e2γ z

2γ

]min(x,y)

−∞

= γ

2
e−γ (y+x−2min(x,y)).

Therefore, if y ≥ x, then (Gγ · G′
γ )xy = γ

2 e−γ (y−x), and if x ≥ y, then (Gγ · G′
γ )xy =

γ
2 e−γ (x−y). The result follows. �

Lemma C.2

G′
γ − Gγ = 1

γ
D · (G′

γ + Gγ

)
,

where D is the time-differentiation operator, i.e., (X · D)(t) = dX
dt

(t).

Proof Gγ and G′
γ are two convolution operators respectively generated by gγ : t �→

γ e−γ tH(t) and g′
γ : t �→ γ eγ tH(−t). The Fourier transform of gγ is ĥ(ξ) = γ

γ+2iπξ
.

Therefore, the Fourier transform of g′
γ − gγ is

̂g′
γ − gγ (ξ) = γ

γ − 2iπξ
− γ

γ + 2iπξ
= 2iπξ

γ

2γ 2

γ 2 + 4π2ξ2

= 2iπξ

γ

(
γ

γ + 2iπξ
+ γ

γ − 2iπξ

)
= 2iπξ

γ

(
̂g′
γ + gγ (ξ)

)
.
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Because d̂f
dt

(ξ) = 2iπξ f̂ , taking the inverse Fourier transform of ̂g′
γ − gγ (ξ) gives

the result. �

Lemma C.3

W · V k · Gβ/μ = V k+1.

Besides, if � ∈ iR, V k is a convolution operator generated by

vk : t �→
√

πβ

k! e− β
2 t

(
t

|�|
)k+ 1

2

J
k+ 1

2

(
β|�|
2

t

)
H(t),

where Jn(z) is the Bessel function of the first kind. If � ∈ R, the formula above holds
if one replaces Jn(z) by In(z), the modified Bessel function of the first kind.

Proof We want to compute W · V k · Gβ/μ. Compute the Fourier transform of w ∗ vk ∗
gβ/μ, where vk is the result of k convolutions of v with itself

̂w ∗ vk ∗ g β
μ
(ξ) = ŵ(ξ)ĝ β

μ
(ξ)v̂k(ξ)

=
(

β

(
β(1+�)

2 + 2iπμξ)(
β(1−�)

2 + 2iπμξ)

)k+1

= v̂k+1(ξ).

This proves the first result.
Then observe that

vk+1(t) = βk+1F −1
(

ξ �→ 1

(
β(1+�)

2 + 2iπμξ)k+1

)

∗ F −1
(

ξ �→ 1

(
β(1−�)

2 + 2iπμξ)k+1

)
(t)

= βk+1
(

s �→ sk

k! e
− β(1+�)

2 sH(s)

)
∗
(

s �→ sk

k! e
− β(1−�)

2 sH(s)

)
(t)

= βk+1

k!2 e− β(1−�)
2 t

∫ t

0
sk(t − s)ke−β�s dsH(t).

The last integral can be analytically computed with the help of Bessel functions. In
fact, it gives different results depending on the nature of � (whether it is real or
imaginary).

• If � ∈ R, then defining In(z), the modified Bessel function of the first kind, leads
to ∫ t

0
e−β�ssk(t − s)k ds = √

πe− β�
2 t k!

(
t

β�

)k+ 1
2

I
k+ 1

2

(
β�

2
t

)
.
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• If � ∈ iR, then defining Jn(z), the Bessel function of the first kind, leads to

∫ t

0
e−β�ssk(t − s)k ds = √

πe− β�
2 t k!

(
t

β|�|
)k+ 1

2

k+ 1
2

(
β|�|
2

t

)
.

This concludes the proof. �

C.2 Signed integral

1.
∫ +∞
−∞ gγ (t) dt = γ 0−1

−γ
= 1.

2. For � =
√
1− 4l

β
∈ C, compute

∫ +∞

−∞
v(t) dt = l

�μ

(∫ +∞

0
e
− β

2μ (1−�)t
dt −

∫ +∞

0
e
− β

2μ (1−�)t
dt

)

= l

�μ

(
0− 1

− β
2μ(1− �)

− 0− 1

− β
2μ(1+ �)

)

= 2l

�β

1+ � − (1− �)

1− �2
= 4l

β

β

4l
= 1.

3. Similarly, ∫ +∞

−∞
w(t) dt = l

2�μ

(
(1+ �)

∫ +∞

0
e
− β

2μ (1−�)t
dt

− (1− �)

∫ +∞

0
e
− β

2μ (1−�)t
dt

)

= l

�β

(1+ �)2 − (1− �)2

1− �2

= l

�β

4�β

4l
= 1.

C.3 L1 norm

• For 4l ≤ β , i.e., � =
√
1− 4l

β
∈ R+, then

1. gγ (t) > 0 and ‖gγ ‖1 = ∫
R

gγ (t) dt = 1.

2. v(t) = 2l
�μ

e
− β

2μ t sh(β�
2μ t)H(t) ≥ 0 and ‖v‖1 = ∫

R
v(t) dt = 1.

3. w(t) = l
�μ

e
− β

2μ t
(sh(β�

2μ t) + �ch(β�
2μ t))H(t) ≥ 0 and ‖u‖1 = ∫

R
u(t) dt = 1.

• For 4l > β , i.e., � is a pure imaginary, we rewrite � =
√

4l
β

− 1 and observe that

1. gγ (t) > 0 and ‖gγ ‖1 = ∫
R

gγ (t) dt = 1.
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2. v(t) = 2l
�μ

e
− β

2μ t sin(β�
2μ t)H(t) which changes sign on R+. Therefore,

‖v‖1 = 2l

�μ

∫ +∞

0
e
− β

2μ t

∣∣∣∣sin
(

β�

2μ
t

)∣∣∣∣dt = 4l

�2β

∫ +∞

0
e− s

�

∣∣sin(s)∣∣ds

= 4l

�2β

+∞∑
k=0

(−1)k
∫ (k+1)π

kπ

e− s
� sin(s) ds

= 4l

�2β

+∞∑
k=0

(−1)k
(−1)ke− kπ

� − (−1)k+1e− (k+1)π
�

1+ 1
�2

= (
1+ e− π

�
) +∞∑

k=0

e− kπ
� = 1+ e− π

�

1− e− π
�

= coth

(
π

2�

)
.

3. w(t) = l
�μ

e
− β

2μ t
(sin(β�

2μ t) + � cos(β�
2μ t))H(t) which also changes sign on

R+. We have not found a way to compute ‖w‖1 and write the result elegantly.

Appendix D: Solution of a Lyapunov equation

Lemma D.1 The solution of the following Lyapunov equation

(L−W) ·X+X · (L−W)′ +D = 0,

where L = lId is

X = −
+∞∑
k=0

Wk ·D · (2L−W′)−(k+1)
. (36)

Proof First, observe that if {|λ| : λ eigenvalue ofW} ∈ ]0, l[ and W > 0, then
‖|W‖|‖|(2L−W)−1‖| < 1. Therefore, X is well defined by equation (36).

Observe that (2L − W′)−1 · (L − W)′ = Id − L · (2L − W′)−1. Assuming X is
defined by equation (36), then based on the fact L commutes with any matrix (because
it is a scalar matrix),

(L−W) ·X+X · (L−W)′

= −
(
L ·

+∞∑
k=0

Wk ·D · (2L−W′)−(k+1) −W ·
+∞∑
k=0

Wk ·D · (2L−W′)−(k+1)

+
+∞∑
k=0

Wk ·D · (2L−W′)−k −L ·
+∞∑
k=0

Wk ·D · (2L−W′)−(k+1)

)

= −
(+∞∑

k=0

Wk ·D · (2L−W′)−k −
+∞∑
k=0

Wk+1 ·D · (2L−W′)−(k+1)

)
= −D.

�
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