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Abstract The cortical magnification matrix M is introduced founded on a notion
similar to that of the scalar cortical magnification factor M . Unlike M , this matrix
is suitable to describe anisotropy in cortical magnification, which is of particular
interest in the highly gyrified human cerebral cortex. The advantage of our tensor
method over other surface-based 3D methods to explore cortical morphometry is that
M expresses cortical quantities in the corresponding sensory space. It allows us to
investigate the spatial relation between sensory function and anatomical structure. To
this end, we consider the calcarine sulcus (CS) as an anatomical landmark for the
primary visual cortex (V1). We found that a stereotypically formed 3D model of V1
compared to a flat model explains an excess of cortical tissue for the representation of
visual information coming from the horizon of the visual field. This suggests that the
intrinsic geometry of this sulcus is adapted to encephalize a particular function along
the horizon. Since visual functions are assumed to be M-scaled, cortical folding can
serve as an anatomical basis for increased functionality on the horizon similar to a
retinal specialization known as visual streak, which is found in animals with lower
encephalization. Thus, the gain of surface area by cortical folding links anatomical
structure to cortical function in a previously unrecognized way, which may guide
sulci development.
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1 Introduction

The patterns of the highly folded surface of the cerebral cortex are prominent features
of the human brain (Fig. 1a). Primarily, folding permits a larger cerebral cortex sur-
face area to fit inside the skull. However, folding ensures that the additional surface
area is not homogeneously distributed, if the surface becomes intrinsically curved.
The surface gain is spatially concentrated in certain cortical regions. The cortex rep-
resents sensory information in distinguishable fields and therefore the question of the
relationship between anatomical structure and sensory function is naturally given.
We utilize the methods of continuum mechanics and complex analysis to explore this
relationship in the cortex.

Many studies of human cortical architecture show that sensory and motoric fields
have some relationship to the gross sulcal and gyral morphology, although a sub-
stantial variability in both size and location is observed [1–4]. In a few cases, very
precise correlations between sulci and functional entities could be demonstrated. Mo-
tor cortex can be identified by the position of the central sulcus [5] and the primary
auditory cortex has a clear spatial relationship with Heschl’s gyrus [6, 7]. The most
reliable relation is, however, the calcarine sulcus (CS) as a landmark of the primary
visual cortex (V1) [8–10]. Anatomical identification is also quite reliable for visual
areas outside V1, e.g., V5 lies at the intersection of the ascending limb of the inferior
temporal sulcus and the lateral occipital sulcus [11, 12].

In this paper, we consider V1 not only because of its structural anatomy, but also
of its functional retinotopy, i.e., the spatial organization of the neuronal responses to
visual stimuli (see below) is well studied in this field [13–18]. The CS, where V1
is located, begins near the occipital pole on the medial surface of a hemisphere. It
continues toward the posterior end of the corpus callosum (Fig. 1a). We will present
evidence that the 3D form of the CS indicates a selective magnification of the hori-
zon of the visual field that is neither accounted for in standard retinotopic maps nor
reflected in the density of retinal ganglion cells, although a modest increase of retinal
cell density, the so-called visual streak, can be found [19–21].

Already in 1984, Rovamo and Virsu [22] noted that locally isotropic (independent
of the direction of measurement) cortical magnification, that is also symmetric with
respect to the meridians, can be better approximated by taking the unfolded convex
3D form of the cortex into account. This does not imply that cortical magnification
has to be strictly locally isotropic, but curvature affects the overall layout. Recently,
the influence of cortical folding in primate did also take into account the concave folds
[23]. We apply tensor analysis to investigate how these symmetries, i.e., isotropy and
meridional symmetry, relate to the gross folding pattern, in particular the concave fold
of the CS that creates additional cortical space for the representation of the visual field
close to the horizon. To this end, we compare intrinsically flat and curved surfaces
of V1 and investigate how the 3D form affects cortical magnification. We propose
that in particular a horizontal stripe gains additional cortical space. The shape and
location of this stripe is similar to the visual streak as a retinal specialization found to
be very pronounced in some animals [24–30]. This suggests a link between cortical
folding, M-scaling and the functional development of cerebral sulci.

First evidence for the predicted selective cortical magnification of the visual hori-
zon can be found in the literature: perceptual filling-in [31] and traveling migraine
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Fig. 1 a The calcarine sulcus (CS) begins near the occipital pole on the medial surface of a cortical
hemisphere and continues toward the posterior end of the corpus callosum (thick black line). This is the site
of V1. Its border is marked with a dashed line. bMedial side of the occipital pole, as in a but with straight
course of CS. c The approximate 3D form of V1 in the (u, v, l) coordinates (see text). The representations
of the two vertical meridians are dashed and the fundus of CS is marked with a thick black line. d The
retinal surface is approximated by a quarter of a sphere, or e by a flat disc, as assumed in many experimental
data. fA Cartesian reference coordinate system of the visual field (ξ1, ξ2). g and h Coronal section through
V1. The red line traces the stria of Gennari. The M–L axis indicates the medial to lateral axis

scotoma [32]. The big advantage of psychophysical methods that measure scotoma
is that neither method requires surface reconstruction to measure cortical magnifi-
cation. But it is difficult to get reliable quantitative data, because these methods in-
volve psychophysical investigations with subjective evaluations from probands and
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patients. Furthermore, there is a brief report of such a phenomenon [33]. Only
computationally-intensive methods, which allow precise surface-based morphome-
try using anatomical magnetic resonance imaging and functional magnetic resonance
imaging (MRI and fMRI) [18, 34, 35], can provide a direct test of our predicted
correlation between CS, as an anatomical cortical landmark, and increased M , as a
functional cortical measure.

2 Material and Methods

We use concepts from continuum mechanics to describe the retino-cortical map [36].
In the Lagrangian description of continuum mechanics, the map is seen as a defor-
mation rather than a transformation. This description uses some coordinate system
in the sensory space as a reference configuration to express every quantity in the de-
formed configuration, i.e., as the cortical map of the sensory space. The deformation
language is intuitive but needs to be adapted for our purposes. We emphasize that
we take mostly a kinematic approach. No attention is paid to the dynamics of the
creation of a retinotopic map other than that we compare two discrete stages of V1,
one which is intrinsically flat and one that evolved from the latter such that it is in-
trinsically curved with a major sulcus. The Lagrangian description is also suited for
a dynamical description continuous in time of map development, for example with
self-organizing neural networks [37].

Let us start by briefly clarifying the terminology, in particular related to cortical
mapping and curvature; linear and areal cortical magnification; the naming of the
visual coordinate system; and, finally, tensor versus matrix methods.

Conformal maps allow us to describe cortical magnification by a scalar field, sim-
ply referred to as cortical magnification factor. In fact, we start to consider conformal
maps between domains in the complex plane, that is, we consider intrinsically flat
domains. Conformal maps also exist between intrinsically curved domains. Note that
throughout the manuscript, we do not consider extrinsic curvature unless we say so.
Of course, to fit larger cerebral cortex surface area inside the skull, nature can make
primarily use of extrinsic curvature, but not exclusively (unless the cortex would be a
cylindrically scrolled structure). In the following, we will refer to V1 as being curved
(“curved V1”) if it is a surface with intrinsic curvature at least at some locations
within V1, i.e., locations that have a nonvanishing Gaussian curvature. As a conse-
quence, a curved V1 must be embedded in 3D even if it is mostly flat. And we will
refer to V1 as a “flat V1” if it is an intrinsically flat surface, i.e., the Gaussian curva-
ture is zero everywhere.

It can be important to distinguish linear and areal cortical magnification if we as-
sume M-scaling, i.e., the fact that a measured quantity remains qualitatively similar
across the entire visual domain when magnified in inverse proportion to M . For ex-
ample, the time required for a scotoma of certain size to fade and become replaced by
its background (perceptual filling-in, see discussion) can be proportional either to lin-
ear or areal cortical magnification. The underlying mechanism could involve merely
the scotoma diameter, which would suggest linear M-scaling or involve the total area
covered by the scotoma, which would suggest areal M-scaling. The term M-scaling
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is unfortunately sometimes used without mentioning which is meant. Note that the
distinction between linear or areal cortical magnification is in the cases where M is
a scalar field not essential as these factors can easily be converted, but one still must
specify which method was used and in which units M is given (see next section).

To specify loci in the visual hemifield, a polar coordinate system with its origin in
the viewer’s fixation point is used (Fig. 1e). The coordinate lines at fixed polar angles
are called meridians, with the horizontal meridian (HM) as the reference set to be
zero degrees (bold solid line in Fig. 1e). Meridians increase and decrease in the upper
and lower visual field quadrant to 90 degrees going anticlockwise and clockwise,
respectively, until the two vertical meridians (bold dashed lines in Fig. 1e) bound the
visual hemifield.

We will express the generalized cortical magnification in terms of a matrix M . We
want to stress that cortical magnification is a concept independent of the retinal and
cortical coordinate systems chosen to represent it. Therefore, M actually is a corti-
cal magnification tensor. It may lead to some confusion, when we later introduce M

based on the cortical metric in the sensory coordinate system. We need to consider
some sensory coordinate system, which merely reflects the fact that cortical magnifi-
cation is not exclusively a property of the intrinsic geometry of the cortex, but of the
sensory map in the cortex. In mathematical terms, M is the square root of the matrix
expressing the Riemannian metric of V1 in the sensory polar coordinates.

The Lagrangian formulation of such maps is a tensor approach. As an alternative
to Riemannian geometry, it provides by definition some retinal parameterization of
the cortical surface that is needed for the concept of magnification from retina to cor-
tex. In contrast, the cortical metric in an arbitrary parameterization can be used, for
example, to define the Laplace–Beltrami operator as a generalization of the Laplace
operator and much effort has gone in the development of computationally advanta-
geous parameterizations in this regard. However, since the cortical magnification is
usually discussed referring to meridians and eccentricity, it is natural to use exclu-
sively this polar coordinate system. Therefore, we refer to the generalized M as the
cortical magnification matrix and avoid the potentially daunting term tensor.

3 Results

We will first define the contour of an intrinsically flat V1. Then we will define the
cortical magnification matrix and use this concept firstly to compare cortical mag-
nification along different radial directions (from horizontal to vertical) on the flat
V1 and show that the vertical direction has an increased cortical magnification. Let
us emphasize that retinotopic maps that are assumed to be intrinsically flat can still
be extrinsically curved. We will define an intrinsically curved V1 starting from an
extrinsically flat V1 by plausible deformations. In the second step, the retinal coor-
dinate system is defined on this curved V1, preserving some symmetry constraints
while relaxing others. Finally, we use the concept of cortical magnification matrix to
predict a selective increase of cortical magnification along the horizon due to cortical
folding.
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3.1 Symmetries in the Retinotopic Map

As a starting point, we need the contour of the area of V1. The contour of V1 can be
defined by the bounded domain of the visual hemifield that V1 neurally represents.
Simply speaking, V1 has a map of one visual hemifield with a nonuniform map scale.
This scale is called cortical magnification. This map, or rather the retinotopic map-
ping function, governs the contour of V1 because it maps the bounded domain of the
visual hemifield, approximated by a half disc, that extents to a visual eccentricity of
nearly up to 90◦ (see Fig. 2a). We will contrast some empirical observations with
deductive reasoning based on plausible symmetry conditions on the retinotopic map
to obtain the contour of V1 and to introduce these symmetries that guide us through
the following sections.

The retinotopic map is usually expressed by the cortical magnification factor M .
For a mapping function from a one-dimensional domain (a line) to another, e.g., along
a single meridian, it is sufficient to know the value of M on this domain. Note, that
the term linear cortical magnification factor (see previous section) refers to the one-
dimensional domain. This can cause confusion because M is often modeled as an
inverse linear function of a single coordinate, the retinal eccentricity θ , the fact that
will be important in the following brief analysis of the involved symmetries.

In the one-dimensional case, M is simply a derivative of the mapping function.
The mapping function can therefore be determined up to a constant of integration.
This constant can be set to zero because it describes only a translational shift.

The complex logarithm provides a standard formulation of retinotopy in a flat V1.
Fischer [38] first suggested this analytic function for the transformation of a visual
field into its neuronal representation. While this relation was derived from visual in-
spection of ganglion cell density and receptive field size distribution, assuming these
quantities are M-scaled, it is supported by data of M(θ) [39], as shown by Schwartz
[40] with a power law 1

b
θ−n fit, the exponent n being sufficiently close to unity to

be replaced by it. The meaning of parameter b will be explained below. Thus, the
integral equation reads as

u(θ) =
∫

M(θ)dθ =
∫

1

b
θ−1 dθ = 1

b
log θ, (1)

where u is a cortical linear distance, for instance, the distance along the cortical rep-
resentation of the horizon in the visual field.

In two dimensions, the situation is more complicated. The exact unity value of the
exponent n = 1 can even be postulated ab initio from symmetry constraints for 2D
maps. It is therefore important to distinguish these two perspectives. In 2D, a possible
but purely hypothetical function is obtained by generalizing the real function in Eq. 1
to a corresponding complex function

w = 1

b
log z. (2)

The magnitude of z is the retinal eccentricity θ and its argument φ is the azimuth
(z = θeiφ), and the real and complex parts of w are Cartesian coordinates (u, v), re-
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Fig. 2 a Retinal grid which serves as a reference frame in the Lagrangian formulation of retinotopy. In
the inner 9◦, iso-eccentricity lines are drawn in 1◦-steps in green. From 10◦ to 90◦ iso-eccentricity lines
are drawn in 10◦-steps in blue. Meridians are drawn in 15◦-steps in red. b The neural representation of the
retinal grid mapped with Eq. 3 serves as a flat model of V1. c The blue surface serves as a curved model
of V1. It is created by forming b with lift functions (see Fig. 1g and h) in the third dimension. The neural
representation of the retinal grid on this surface is placed such that meridians are equidistantly spaced

spectively. Generalizing the real function in Eq. 1 to a corresponding complex func-
tion implies two rather obvious constraints on the retinotopic map and one more
subtle constraint.

Firstly, a complex function implies a conformal mapping, that is, cortical magnifi-
cation becomes a scalar field. This is a symmetry, namely that cortical magnification
at any location is invariant with respect to direction. Therefore, cortical magnification
is locally isotropic. At least for some M-scaled visual functions, this seems to be a
natural symmetry requirement, such as for visual acuity. Secondly, complex functions
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are conformal maps between domains in the complex plane, that is, intrinsically flat
domains, which, of course, can still be extrinsically curved to accommodate the lim-
ited extend of the skull. This is another symmetry, namely that the Gaussian curvature
is constant and zero everywhere.

These symmetries, which are given by the constraints of analytical functions, look
rather reasonable. But even if these symmetries were reasonable in the light of miss-
ing or uncertain experimental data (see discussion), they should not be given prefer-
ence to further symmetries that could also be found in the retinotopic map, in partic-
ular meridional symmetry of cortical magnification, i.e., M is invariant under retinal
rotations around the center.

We will discuss whether the meridional symmetry of M should be considered as
a plausible constraint, but let us end this section by emphasizing its severe conse-
quences.

The real and imaginary parts of an analytic function are conjugate harmonic func-
tions that solve Laplace’s equation. From Laplace’s equation in polar coordinates, it
can be easily shown that Eq. 2 is harmonic and that any harmonic function that de-
pends only on the eccentricity θ must be of this form. Alternatively, this follows from
Cauchy–Riemann differential equations in complex analysis, which must be satisfied
if we assume that the analytical mapping function is differentiable [41].

Thus, it is readily shown that any meridional symmetric analytic function must be
of the form of Eq. 2. Therefore, any retinotopic map that is an analytic function with
a meridional symmetric magnification factor M implies that cortical magnification is
an inverse linear function (in fact, a linear function with the axis intercept at zero).
So, if cortical magnification is investigated under the following three assumptions:
(a) independent on direction (conformal map), (b) intrinsically flat (with (a) this leads
to analytical functions), (c) meridional symmetry of M , one should be aware of the
implicit assumption of inverse linear cortical magnification in the form of Eq. 2.

Even more importantly, Eq. 2 fails to describe the retino-cortical map close to the
representation of the fovea (θ < 1) because the foveal point at θ = 0 is a singularity.
To include the foveal region, an offset can be introduced

w = 1

b
log

(
b

a
z + 1

)
(3)

together with another parameter a. Equation 3 is not meridionally symmetric. It fol-
lows from the reasoning before that a retinotopic map that is based on an analytic
function and includes the representation of the fixation point (θ = 0) cannot be merid-
ionally symmetric.

Both parameters can now be interpreted easily when Eq. 3 is differentiated: 1
a
is

the value of the linear cortical magnification factor M at the center of the visual field
in terms of millimeters of cortex per degree of visual angle. The parameter b is the
linear growth rate (slope) of the inverse linear cortical magnification factor on the
real axis (φ = 0), i.e., along the horizon. This map is called a monopole map (see
Fig. 2a–b). Values of the parameters a and b are given in the literature [42]. Note
that sometimes different parameters are used, in particular w = A log(z + E2) with
a = E2/A and b = 1/A.
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We use normalized values in units of a. The value of b is chosen as 0.57265a,
which would correspond to a = 0.117 and b = 0.067 as in [43]. When Eq. 2 is used,
for example, by [18], there is only parameter b. Our dimensionless parameter a can
be estimated from the contour of the flat map.

The inverse linear magnification holds in the map given by Eq. 3 only at the hori-
zon. Due to the shift, none of the other meridians take a simple course in the complex
domain (overlapping with coordinate lines of the real and imaginary part or the coor-
dinate lines of the absolute value and argument). Therefore, to investigate the cortical
magnification factor along other meridians, we introduce the cortical magnification
matrix, which can express magnification at arbitrary points along arbitrary directions
most easily. Furthermore, unlike the scalar factor M , this matrix is also suitable to
describe anisotropy in cortical magnification, which is of particular interest in the
highly gyrified human cerebral cortex. But it can also be useful for conformal maps,
in which case the matrix at any point can be transformed to the identity matrix mul-
tiplied by a scalar.

3.2 Generalized Cortical Magnification

The natural description for a generalized cortical magnification is the Lagrangian
description. It uses the retinal configuration as a reference to express every quantity
in the cortical configuration. Mathematically this is expressed as

Φ : DR → DV1 : r �→ p = Φ(r), (4)

where r and p are points in the retinal and cortical domain DR and DV1, respectively.
The Jacobian matrix of the map Φ can be interpreted as a deformation gradient

JΦ(r) = ∇Φ(r). (5)

It is a homogeneous transformation tangent to the transformation Φ attached at the
image of r . Caution is needed when the classical linear cortical magnification fac-
tors are derived from the components of JΦ . Usually non-Cartesian coordinates are
utilized to describe the retinal reference state. Furthermore, JΦ contains a rotation
which carries the retinal directions onto its neural representations. This rotation intro-
duces problems if cortical magnification is not isotropic. To obtain the linear cortical
magnification factor in accordance with its definition [39], one must use the scalar
product of a vector in the considered direction. The linear cortical magnification fac-
tor Mvr of a retinal tangent unity vector vr (‖vr‖ = 1) attached at r is the norm of its
cortical image under the homogeneous transformation:

Mvr = ∥∥∇Φ(vr)
∥∥. (6)

This norm and the underlying scalar product is defined via the cortical metric in
retinal parameterization

gV1 = J T
ΦgRJΦ, (7)

where gR and gV1 are the metrices of retina and cortex, respectively. The cortical
metric gV1 leads to the definition of the cortical magnification matrix. This matrix
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is founded on a notion similar to that of the linear cortical magnification factor M ,
but is much broader in conception. Once we have this matrix, we can calculate the
linear and cortical areal magnification factors on the flat and curved model of V1 and
compare the results.

In continuum mechanics, gV1 is called the right Cauchy–Green tensor and
termed C. For the sake of simplicity, we follow p. 44 in Salencon [36] and adopt
the term (cortical) expansion tensor for C. This name may better convey the mean-
ing of this matrix. Its eigenvalues and eigenvectors give the shape and orientation of
an ellipsoid representing an initially spherical infinitesimal area in the retina. Further-
more, this alternative name reminds us that we are not interested in the cortical metric
expressed in an arbitrary coordinate system, but in one that is related to the sensory
space. This would be sufficient for other surface-based 3D geometric tasks using,
for instance, the Laplace–Beltrami operator to create flat maps with minimal surface
area distortions. Using this particular cortical surface parameterization, namely some
sensory coordinates, makes the choice fundamental. It links the metric to sensory
function and it allows us to describe changes of the cortical surface from the sensory
perspective.

The square root of C is a pure stretch tensor that is directly related to the classical
concept of cortical magnification and it could therefore also be termed cortical mag-
nification tensor, yet the term matrix is probably more intuitive in the neuroscience
community

M = √
C. (8)

The matrix M is alternatively obtained from a polar decomposition of JΦJΨ . The
Jacobian matrix JΨ is the homogeneous transformation tangent to Ψ , which maps
Cartesian coordinates to the visual field coordinates, i.e., either spherical or polar
(retinal) coordinates. The distinction between spherical and polar coordinates should
be formally made, since data of the visual field position can be obtained either with
perimetry or campimetry. We can avoid this, however, if we transform the retinal
system into the Cartesian coordinates (ξ1, ξ2) of the visual field (see Fig. 1g), because
data is often available in these coordinates, for instance, migraine aura scotoma drawn
on paper and subsequently scanned.

3.3 Linear Cortical Magnification Factor Derived from the Matrix M

The linear cortical magnification factor Mvr can be defined at any point r for arbitrary
directions v. In experiments, Mvr is usually measured along a constant meridian,
though not necessarily along this direction. In conformal maps, e.g., the monopole
map (Eq. 3), Mvr depends only on position r but not on direction v.

We compare the Mvr on the monopole map (flat V1) with the one on the curved
V1 along the θ -direction. This direction is most frequently used in the definition of
the classical linear cortical magnification factor. Therefore, we will use M without
any index for linear magnification in this direction. It is convenient to plot the inverse
linear cortical magnification factor because this is a linear function in θ on HM in
the monopole map. As the meridians in the monopole map change from horizontal
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Fig. 3 Inverse linear magnification factor as a function of eccentricity θ along different meridians (hori-
zontal meridian (HM) 0◦: blue; 30◦: cyan; 60◦: green; vertical meridian (VM) 90◦: red, see inset). Solid
lines are on the flat model, dashed on the curved model of V1. M has an inverse linear dependence on
retinal eccentricity θ only along the neural representation of HM on the flat model of V1 (solid blue line).
While on the flat model of V1, M increases with azimuthal distance at constant eccentricity (solid lines).
This meridional asymmetry is reversed on the curved model of V1 (dashed lines). In particular meridians
close to HM gain cortical surface on the 3D model of V1

to vertical, the inverse linear cortical magnification factor grows slower than linear
(see Fig. 3). This is readily understood, considering the layout of the visual hemidisc
mapped by Eq. 3 into its neuronal representation (Fig. 2b). While the representations
of all meridians extend approximately equally long into the cortical u-direction (in
anatomical terms the posterior–anterior axis), the more vertical they are, the larger
is their evasion into the cortical v-direction (into the dorsal and ventral direction for
the upper and lower visual quadrant, respectively). The increase in the cortical space
on the vertical meridian (VM) as compared to HM is about 20 %. While in fact one
study indicates the opposite asymmetry with HM being cortically over represented
with respect to the vertical meridian [33].

3.4 3D Model of V1 with Curved Retinotopy

We construct the 3D model of V1 based on our own and published data obtained at
autopsy of neurologically normal human brain [8, 10]. The dimensions of V1 were
determined from cross-sections in both hemispheres. The surface of V1 can easily be
identified postmortem by the stria of Gennari. This band of myelinated axons can be
traced (see Fig. 1g–h). Such traced curves provide lift functions l(u, v) for forming
the originally flat monopole map (Eq. 3) into its 3D from. We will only summarize
the data obtained by visual inspection of the stria of Gennari used to define plausible
functions that define the 3D form. In particular, we outline the restrictions we impose
regarding plausible symmetry principles.
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First, we transform the complex function in Eq. 3 into the real R
2 domain

u(θ,φ) = 1

2b
log

(
a2 + 2bθ cos(φ)a + b2θ2

a2

)
,

v(θ,φ) = 1

b
arctan

(
bθ sin(φ)

a + bθ cos(φ)

)
.

(9)

Equation 9 describes a (θ,φ)-parameterized surface in R
3 together with the lift func-

tion l(u, v), that is, in the Cartesian coordinates (u, v, l). Note that the lift functions
are used in the first step to describe the surface, but not the retinotopy on it. We de-
fine lift functions in such a manner that the initially flat surface becomes intrinsically
curved. Note that we may introduce a bias since we actually treat the intrinsically
flat surface also as extrinsically flat at this step of the construction. But the bias does
not necessarily affect retinotopy, because we rearrange the location of the meridians.
Applying the lift function directly to the retinotopic grid (Fig. 2b) would drive some
adjacent meridians farther away from each other than others, depending on ∂l(v,u)

∂v
.

Therefore, to obtain a curved retinotopy, we need to rearrange the location of the
meridians by an inverse sampling technique, as will be described at the end of this
section.

V1 is located entirely or nearly entirely on the medial surface of the occipital lobe.
We align parallel to this surface the (u, v)-plane and define the lift functions l(u, v)

such that about two-thirds will lie within the CS walls. Furthermore, l(u, v) depends
on the steepness of the walls of CS and on its course in the (u, v)-plane (see Fig. 1a).
Due to the large variations among individuals, we have to make some simplifications.
We assume that the course of CS can be deformed to follow a straight course.

To finally construct the lift functions l(u, v), it is useful to define another land-
mark: the fundus of CS (FCS). Roughly speaking, it is the curve of maximum depth
that spans the length of the CS. A more precise definition can be given based on cur-
vature or based on distance functions [44]. Based on FCS, the assumption that the
course of CS is straight can be formulated in a different way. In this case, the FCS
assumes a curved line without torsion and its projection onto the (u, v)-plane is a
straight line (see Fig. 1c). For simplicity, we assume that CS has a bilateral symme-
try with the symmetry plane going through this line. Furthermore, the mathematical
description of V1 is w.l.o.g. simplified if the projection of FCS onto the (u, v)-plane
lies on the u-axis. Then the family of parametric profiles lu(v) ≡ l (u = const., v) in
the coronal planes (v, l)u completely describe the 3D-configuration of V1.

It significantly simplifies the later performed resampling to define the lift functions
along curved coordinate lines in the (u, v)-plane with constant θ , instead of along the
straight coordinate lines with constant v. Since the family of parametric profiles l̃θ (φ)

live in curved planes, we transform them into a Cartesian (ξ1, ξ2) plane (see Fig. 1f).

This results in a family of parametric profiles ˜̃
lξ1(ξ2), which we finally choose to be

Gaussian-shaped

˜̃
lξ1(ξ2) = de

−ξ22 /σ 2
ξ2 . (10)

The parameter σξ2 defines the width of CS. Its value is
π
10 (see Fig. 2c). The parameter

d gives the depth of FCS as a function of the new eccentricity coordinate ξ1 in the
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Fig. 4 The Gaussian curvature
on the curved model of V1 (cf.
Fig. 2c)

(ξ2, l)-plane. Again, we choose a Gaussian-shaped profile

d(ξ1) = dmax

s

(
1− e

−ξ22 /σ 2
ξ1

)
. (11)

The parameter σξ1 defines the steepness of CS. Its value is π
50 (see Fig. 2c). The

parameter dmax = 170.94 gives the maximal depth of CS in units of a, equivalent

to 20 mm. The factor s = 1
π

∫ π/2
−π/2

√
1+ ( du

dθ
)2 dθ is needed to resize the profiles,

since we define the lift function on the (ξ1, ξ2) plane but want to have a Gaussian-
shaped FCS in the (u, l) plane. Each arc with constant eccentricity spans an angle
π in the visual field. On the (ξ1, ξ2) plane these arcs have all the same length, while
on the (u, v)-plane their arc length is πs. Therefore, we have to resize lξ1(ξ2) by this
quotient.

The Gaussian curvature K is determined by this construction because it depends
only on the metric (the retinotopy depends on the metric in a retinal coordinate sys-
tems). In Fig. 4 we show K in a color code on this surface. It is nearly everywhere
close to zero, except for two main locations. One is at the saddle-shaped entrance
of the FC. Here, K is negative (blue). Father along the fundus, when CS reaches its
maximal depth, K changes to positive values (red).

To summarize, four hypotheses have been make about the area V1: (i) two-thirds
will lie within the CS walls, (ii) the walls are symmetric with respect to the fundus,
(iii) the shape of the walls can be approximated with smooth Gaussian-shaped pro-
files with constant standard deviation, and (iv) the shape of the fundus can also be
approximated with smooth half Gaussian-shaped profile (we have alternatively cho-
sen cosine-shaped profiles for both walls and fundus, with almost identical results).

3.5 Retinotopy on a 3D Model of V1

To compare retinotopy on the flat and curved model of V1, we now define the retino-
topic grid on the latter. Although this may seem obvious, we want to note that we
actually define the retinotopy on the curved 3D surface by this.

Firstly, assume that HM maps to the fundus of the curved model surface. By def-
inition HM splits the retinotopic map into two quarter fields, a dorsal (v > 0), lower
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field (φ < 0), and a ventral (v < 0), upper field (φ > 0). If we simply lift the neural
representations of the meridians from the flat surface model of V1 onto the dorsal
and ventral part of the curved model by Eq. 10, the meridians drive away from each
other in proportion to ∂l(v,u)

∂v
. In fact, meridians should by equidistantly spaced in

the curved model of V1, as they are on the flat surface (see red coordinate lines in
Fig. 2c). This can be achieved by rearranging φ on the flat model of V1 before lifting
with the inverse sampling equation

φ(φ̃) = 
−1
θ

(
2φ̃ − π

π

θ

(
π

2

))
. (12)

The function 
θ (φ) gives the arc length of the profile lθ (φ) between the origin
(φ = 0) and the value of the argument φ. 
−1

θ is the inverse function with the new
value of φ as the return value. The rearranged meridians are then lifted down from the
flat model with a lift function (Eq. 10). Finally, we need to place the iso-eccentricity
coordinates, i.e., the green (inner 10◦) and blue (10◦–90◦) coordinate lines in Fig. 2c.
They are lifted from the flat model with the lift function (Eq. 10) without rearrange-
ment.

3.6 Areal Magnification and Surface Area Gain

Figure 5a shows the areal cortical magnification factor projected in the visual hemi-
field for the curved V1. This factor predicts the retinal ganglion cell density, assuming
this quantity is M-scaled [20]. There is a larger value of detM on a stripe centered
around HM. The inverse profile of M along this stripe is visualized in Fig. 3. The
graph of M in Fig. 5b visualizes this stripe as a shoulder in the exponentially de-
creasing curve M(θ) at HM. The shape and location of this stripe in the visual field
(see Fig. 5a) are similar to a retinal specialization known as a visual streak. The vi-
sual streak is a stripe of elevated neuronal density along HM in the retina. It is found
in some animals [24–30] but it is not pronounced in humans [19–21]. The stripe
centered around HM can be thought of as a virtual visual streak as described in the
following.

The neuronal density in the retina is assumed to be M-scaled (areal magnification).
Let us define a virtual counterpart of the visual streak as the elevation of inversely
retinotopic projected densities of cortical cells. Along the horizontal meridian, the
retinal representation of cortical cells is largely elevated with respect to other more
vertical meridians outside this visual streak. A virtual visual streak is related to sur-
face area magnification, but also to surface gain by folding. Just as Eq. 6 defined the
stretch of a unity vector, we can calculate the surface area gain of a unity area in the
retina via the expansion tensor C. Considering rigid body transformations, C is the
unity tensor 1 and surface area gain is a measure that must be zero. This led us to
define the strain tensor ε = 1

2 (C −1). In continuum mechanics ε is called the Green–
Lagrange strain tensor. The tensor ε is a measure of surface gain from retina to cortex.
The measure of surface area gain by cortical folding is obtained when the retinal ref-
erence frame is replaced by its neural representation on the flat model surface of V1.
The strain tensor of the curved model of V1, with the cortical flat reference frame, is
called E. It measures the surface gain by folding.
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Fig. 5 a Areal cortical magnification factor detM projected onto the visual hemifield. The color bar
indicates the normalized value in units of a2. The yellow blob at an eccentricity θ = 3◦ along the horizon
indicates the virtual visual streak. b Linear cortical magnification M vs. eccentricity θ in units of a along
the horizontal meridian at φ = 0◦ (HM) and the meridian at φ = 60◦ (dashed and solid lines on flat and
curved model of V1, respectively). c Normalized surface area gain detE and d Gaussian curvature along
HM and φ = 60◦

The value of detE corresponds to the elevation of retinal density that is needed
to satisfy M-scaling in a folded cortex. To show that this is in good agreement with
some experimental data [31, 32] (see also discussion), we look at detE along differ-
ent meridians (Fig. 5c). For all meridians, folding provides equally increased cortical
space for the representation of the periphery of the visual field. This increase is mainly
limited to the periphery because the calcarine sulcus just starts at the neural represen-
tation of the fovea and additional surface area is mainly gained when the calcarine
sulcus has reached its maximum depth. Close to the fovea, meridians close to HM
also gain cortical surface area for their neural representation (see peak in Fig. 5c at
HM).

The location of the virtual visual streak, i.e., increased values of detE, depends on
the particular form of V1. Our 3D surface model of V1 averages over the observed
substantial variability [8–10]. A statement about the location of the virtual visual
streak independent of this variability can be done when we describe the location of
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the virtual visual streak relative to the curvature of V1. For this purpose, one needs to
consider the Gaussian curvature, because it is determined only by intrinsic properties
of the surface. The Gaussian curvature of a point on a surface is the product of the
maximal and minimal curvature of all curves passing through this point. As a con-
sequence, a saddle-shaped surface has negative Gaussian curvature while a spherical
surface is positively curved. The entrance of CS is saddle-shaped and has therefore
negative Gaussian curvature. The location where the fundus of the calcarine sulcus
reaches its maximal depth has positive Gaussian curvature. The peak of the virtual vi-
sual streak is located at the transition between negative and positive Gaussian-curved
areas (Fig. 5d). While this provides only a rough estimate of the location of a virtual
visual streak, it is not only independent from the variability, but can also be used as a
prediction for selective magnification in other areas in the cerebral cortex.

4 Discussion

Cortical magnification is the local description of retinotopy or, in fact, of recepto-
topic maps in general. Tonotopic and somatotopic maps are other prominent exam-
ples [5–7] for which cortical magnification can be defined in the same manner as
for the visual modality. Cortical magnification is the most fundamental quantity of
cortical feature maps that describes how much cortex is devoted to processing sen-
sory information. A thorough mathematical foundation of magnification is needed if
we want to describe anisotropies and other symmetry breaking constraints in such
maps that may serve distinct purposes in sensory information processing. We will
start our discussion with experimental evidence supporting our predictions, continue
with methods able to verify them, and provide the context to current alternative ten-
sor methods. Then the limitation in symmetry properties of flat models of retinotopy
and our assumptions concerning the 3D surface model of V1 are discussed. We finish
with conclusions that can be drawn from our results on sulcal development.

4.1 Experimental Studies Supporting Meridional Asymmetry

The approximate form of human retinotopy has long been established from various
methodologies. Some methods obtain M indirectly, they measured a quantity that is
assumed to be M-scaled. However, these methods were only advantages before non-
invasive imaging became available. If M is known at various loci and also additional
constraints are given, such as certain symmetries, one can determine the layout of the
global retinotopic map. Psychophysical studies that obtain an M-scaled quantity pro-
vide an elegant measure of cortical magnification mainly because they do not require
an explicit reconstruction of the cortical surface. They greatly simplify the analysis
bypassing any potential problems related to surface reconstruction. Despite this ad-
vantage, these methods suffer from limited resolution, poor quantification, and are
unable to directly measure M . They rely on the assumption of M-scaling, a principle
that could be violated.

Anyway, evidence for the predicted meridional asymmetry is found in a study
investigating perceptual filling-in [31] and in a report about the shape of traveling
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Fig. 6 a Four subsequent snapshots of a traveling migraine scotoma drawn by Lashley [32]. The small
cross at the left indicates the center of gaze, and the numbers state the time in minutes elapsed before the
location of the scotoma was outlined. The point of time when the neurological symptoms were first noticed
was chosen as the start. The scotoma travels across the left visual hemifield. b and c Two different neural
patterns in V1 that can explain the scotoma in a. Either the noticeable notch in the scotoma pattern along
the green path in a is reflected in the neural pattern by a narrow wave width along the neural representation
of the green path (b) or the retinotopic map is distorted and the wave width is constant (c). In this case, the
green path marks the fundus of the calcarine sulcus

migraine scotoma [32]. Both studies indicate that cortical magnification is not merid-
ional asymmetric but selectively increased on or close to horizontal meridian (HM).

The perceptual filling-in refers to the tendency of stabilized retinal stimuli to fade
and become replaced by their background. The time required for this illusion was
investigated [31]. It varies with the azimuthal angle φ of the target in the visual field.
The filling-in was facilitated as the target position changed from the horizontal to
the vertical meridian. The time was maximal in the horizontal direction and minimal
in the vertical. The absolute value differed in the several experiments, which were
performed to exclude artifacts. But in general, for a target presented at 8◦ eccentricity,
the response time for the horizontal condition was more than 30 % longer than that for
the vertical one. The author was aware of the fact that his findings can be explained by
anisotropic cortical magnification. If magnification on HM is selectively increased,
the neural representation of stimuli located on HM is increased too, and the time
required for perceptual filling-in is prolonged.

Similar support for selectively increased cortical magnification on HM comes
from the shape of traveling scotoma observed during a migraine attack with aura
(Fig. 6a). One of the first scientific reports on migraine with aura was given by Lash-
ley [32]. He described in astonishing detail the spatio-temporal patterns of traveling
scotoma in his visual field during migraine. The cortical magnification was not con-
sidered directly. But the shape of the scotoma in his left visual hemifield clearly hints
to meridional asymmetry in M . Figure 6a reproduces the spatio-temporal patterns
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drawn by Lashley. For the purposes of illustration, it was modified: a polar grid was
added, the first marked position of the scotoma is not shown, and the latest observed
loci of the scotoma is shown as a curve being filled black. This particular shape and
location was observed about 13 minutes after the onset of the attack. Two possibly
underlying neural patterns are shown in Fig. 6b and c. Assuming a constant speed of
2.5 mm/min of the pathophysiological process within V1, the scotoma at minute 13
(filled) is about 32.5 mm away from the neural representation of the fovea. Mapped
with Eq. 3 and the parameter values a = 0.117 and b = 0.067, this would correspond
to 13.6◦ degrees eccentricity. This is in sufficient agreement with the position of the
retinal blind spot marked by the dashed circular curve.

Independent of the parameter values for a and b of the monopole map in Eq. 3, the
scotoma shown in Fig. 6a cannot be mapped so that its gross shape changes. In other
words, the narrow notch along the green path will not disappear. Therefore, either the
width of the underlying cortical wave (a spreading depression [45, 46]) varies along
its path in the cortex (Fig. 6b) or, muchmore likely, retinotopy is distorted from that of
the monopole map (Fig. 6c). The latter is in agreement with our predicted selective
increase of cortical magnification along the visual location of the steep fundus of
the calcarine sulcus (green path). This provides a test for our 3D model retinotopy.
When the selectively increased magnification follows a path not exactly on HM but is
shifted to the upper (or lower) field, the neural representation of this path should have
the largest length from the neural representation of the fovea to the most anterior part
of the retinotopic map. If this path mainly overlaps with the steep fundus, the cortical
representation of the horizontal meridian is shifted to the ventral (or dorsal) bank of
calcarine sulcus. A qualitative analysis shows that one can measure linear cortical
magnification precisely by comparable but simpler drawings of visual migraine aura
[47]. Unfortunately, this data was pooled for all meridional directions.

4.2 Alternative Tensor Methods

By definition, methods that obtain M indirectly suffer from the possibility that the as-
sumption of M-scaling locally fails. Only direct methods that precisely delineate the
retinotopic organization of human visual can measure cortical magnification. These
techniques are mainly used today to model structural and functional variation of the
human brain. They can detect group differences, for example, disease effects on cor-
tical anatomy [48, 49], but also M was investigated [15, 17, 50]. Problems occur
in these studies by smoothing and flattening experimental data, because these tech-
niques are based on mathematical models of retinotopy that introduce certain sym-
metries (see next section). A recent approach to estimate M [18] avoids many of
these problems because it is completely data-driven. It preserves geodesic distances
by directly computing M on the folded cortical surface. They found that M is similar
in the dorsal and ventral compartments of V1 within each hemisphere. A selective
analysis of M on HM is not included.

These direct methods to obtain M also use a tensor approach to morphometry.
They are mainly related to the Laplace–Beltrami operator. One may ask: How do
these approaches compare to our tensor description?
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In these studies the specific cortical surface parameterization is not essential,
though much effort has gone in the development of computationally advantageous pa-
rameterizations. If gV1 denotes the cortical metric in an arbitrary parameterization, its
components can be used to define the Laplace–Beltrami operator as a generalization
of the Laplacian differential operator. In contrast, to derive the cortical magnification
tensor M , the parameterization is essential. The cortical surface parameterization by
sensory coordinates is, in fact, the very idea behind cortical magnification. That is
why we have introduced the term cortical expansion tensor C for this particular form
of gV1. For other tensor approaches, it is natural and often convenient for the pur-
poses of visualization to parameterize the cortex after inflating it to a sphere using
the induced spherical coordinates. One has to define sulcal curves as anchors, e.g.,
the Talairach coordinate system [51], to achieve that corresponding anatomical land-
marks, such as the very cortical sulci, occur at the same spherical coordinate across
subjects. The Lagrangian formulation of a receptotopic map is a tensor approach that
provides a natural and independent parameterization of the cortical surface. Accord-
ing to this description, data is pooled across subjects in the sensory reference frame,
which sort of replaces anatomical anchors by functional labels. A similar idea is used
by individual-subject region of interest analysis to identify functional labels [52–54].

4.3 Influence of Ocular Dominance

The wedge–dipole model of retinotopy [55] introduces two extensions two the
monopole map. It is firstly introduced to model multiple fields (V1–V2–V3 com-
plex) and also to improve the representation of peripheral data. The term “dipole”
in its name refers to the latter, which is, however, rather irrelevant to our study. The
corresponding mathematical changes that also introduce additional parameters are
therefore not further considered here. We will only discuss the other extension re-
ferred to by the term “wedge”. In mathematical terms, wedge refers to a method
that compresses the visual hemifield along iso-eccentricity lines (θ = constant) to a
wedge with apex angle below π . Usually, it is a half disc (apex angle equals π/2).
This extension can actually serve two purposes. Firstly, but not relevant in the context
of this study, the compression allows a unified model for the topography of the full vi-
sual field in areas V1, V2, and V3. Secondly, the compression induces a topographic
shear. Such a shear was stated to relate to the combination of two full representations
of the visual field into V1 by ocular dominance columns [56, 57]. The orientation of
the stripes, in which ocular dominance organize and which define the direction of the
topographic shear, may well relate to the 3D form of V1.

In primates the patterns of segregated ocular dominance stripes run mostly parallel
to the neural representations of θ coordinate lines (for the pattern in human, see [58]).
At least for non-human primates in a region close to the fovea stripes tend to run
horizontally [59]. In the direction perpendicular to the stripes, twice as much cortical
space is needed to inject the two ocular representations of the visual field. Therefore,
M depends on direction. For the sake of simplicity, consider the patterns of ocular
dominance stripes running parallel to θ coordinate lines in the whole visual field.
M is usually measured along the θ direction perpendicular to the ocular dominance
stripes. The value of M should be only half as large in opposite direction parallel to
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the ocular dominance stripes, because only one visual hemifield is mapped along this
direction. The effect of such a constant rotational shear, which is not accounted for in
our model, is just a scale factor of 1

2 . For example, the flat and curved model of V1
would be half as wide. Since this induces a quasi-conformal map on the flat surface
model, the symmetry arguments given above are still valid except for the scaling.
However, in the foveal region stripes tend to run horizontally. The opposite scaling
effect is obtained when M is measured only in this region. If data for M is obtained as
an average from both regions, the effects can partly be canceled. A detailed analysis
of the effect of dominance stripes on cortical magnification and cortical curvature is
an open problem.

4.4 3D Model of V1 and Its Parameterization

We have made four partly interlinked hypotheses to construct the averaged 3D form
of V1, namely that (i) two-thirds of the surface area lie within the CS walls, (ii) the
ventral and dorsal half of V1 are symmetric with respect to the fundus, in particular,
they extend equally long into the anterior direction, (iii) the shape of the walls can be
approximated with smooth profiles (Gaussian-shaped profiles with constant standard
deviation), and (iv) the shape of the fundus can also be approximated with a smooth
half Gaussian-shaped profile. To obtain a curved retinotopic map on this surface area
of V1, three further hypotheses are made: namely, that (v) the horizontal meridian
maps to fundus of the calcarine sulcus, (vi) that meridians are equidistantly spaced in
the curved V1 (Eq. 12), and that (vii) in all other respects, the retinotopy is governed
by the original monopole map.

The hypotheses (i)–(iv) are, to our mind, justified because some smaller deforma-
tions within the gross shape of the calcarine sulcus are probably not systematic, and
we assume that, on average, their influence is small compared to the curvature effects
we investigate in this study. The course of calcarine sulcus varies widely among in-
dividuals and the lunate sulcus, which is roughly oriented vertically to it, appears to
mark the anterior boundary of V1 in non-human primates, but it is often missing in
humans [60]. Autopsy data suggest that V1 proceeds farther anteriorly in the lingual
gyrus [8, 10], while fMRI data show that the dorsal and ventral compartments of V1
are at least similar in absolute extent [18]. If V1 proceeds farther anteriorly in the
lingual gyrus, this can be balanced by higher curvature of this gyrus.

Our main results are robust to some small deviations of these hypotheses, because
we only investigate the influence of the gross sulcal pattern on a standard retinotopic
layout. For example, we have replaced the Gaussian-shaped profiles ((iii), (iv)) with
cosine-shaped profiles with similar results. Furthermore, if (v) holds only approxi-
mately and a meridian in the lower or upper quadrant of the visual hemifield with
a mild negative or positive shift away from horizontal meridian, respectively, maps
onto the fundus, cf. [61], we can still draw our conclusions as to where is the virtual
visual streak. In this case, the retinotopy and, in particular, its derivation M can still
be rather similar in the dorsal and ventral compartments of V1, because hypotheses
(v) and (ii) are interlinked and the ventral and dorsal half of V1 (ii) can shift accord-
ingly to respect the major symmetry between upper and lower visual quarter fields
[18].
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In fact, it provides a test to verify the predicted correlation between anatomical
landmarks and functional properties if (v) does not hold exactly, and instead of the
horizontal meridian, another path in the visual field, possibly with a variable az-
imuthal offset with respect to the horizon, maps onto the fundus. Suppose, for ex-
ample, that a meridional path with a positive shift away from the horizon (upper
visual quadrant) is found with an increased cortical magnification, as suggested by
data shown in Fig. 6. Then the neural representation of horizontal meridian should be
on the ventral bank, because according to our prediction, this path is the location of
the fundus in the visual field (if reversed retinotopically mapped). Overall, these hy-
potheses mainly establish a symmetry between the neural representation of the upper
and lower visual field quadrant, as found in [18].

While the 3D form of V1 affects the intrinsic properties of the surface, the layout
of the retinal grid on this curved surface ultimately determines M . It has been cho-
sen in a somewhat teleological manner by enforcing that meridians are equidistantly
spaced (vi) while at the same time providing more cortex along the fundus that is
created by the fold. Although this seems reasonable, one should notice that the lo-
cation of the virtual visual streak depends on this assumption. Furthermore, because
of this assumption, M is not sensitive to the precise shape of the profiles of the lift
function (in particular the Gaussian-shaped profiles with constant standard deviation
(iii)). An alternative and completely self-organized method can be provided by neu-
ral networks such as a Kohonen net. To model retinotopy on the curved V1, the 2D
net of the Kohonen layer must represent the metric of the curved V1 in its lateral
connections. The natural learning set is the cell density in the retina. We have inves-
tigated such networks and found similar results [37]. The major difference is that the
increased areal magnification on the horizontal meridian is shifted slightly into the
periphery, where the 3D form of V1 has positive Gaussian curvature. Whereas the
maximum areal magnification in this analytic study is found in between the change
from negative to positive Gaussian curvature (Fig. 5d).

4.5 Development of Cerebral Sulci

On functional grounds, an increased cortical representation of the horizon with re-
spect to the average cortical magnification on meridians (Fig. 5a) serves a similar
purpose as a visual streak. It is important to note that our model predicts where a
virtual visual streak is located, while the existence of a virtual visual streak is a math-
ematical consequence of the fact that a surface with non-constant Gaussian curvature
cannot be isometrically embedded in one with constant Gaussian curvature (e.g., in-
trinsically flat surface). Hence, the purpose of our tensor approach is to predict the
shape and location of a virtual visual streak within V1. These are not intrinsic prop-
erties of the cortical surface alone but also depend on retinotopy. The virtual visual
streak therefore provides a link between cerebral sulci and encephalization of a func-
tion because it links anatomy to retinotopy. The virtual visual streak is defined for the
visual modality as a selective increase of the number of cortical neurons mapped into
the visual domain. It can in principal be defined more generally for all senses and also
for a motor function. Such a quantity requires, as cortical magnification does, a no-
tion of distance in the sensory or motor space. For the sensory modalities like visual,
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auditory, and tactile, the distance between stimuli can be defined based on retina,
basilar membrane, and body surface, respectively. The receptor densities must also
be considered (detE vs. detM). For the sensory modalities like olfactory or also for
kinetic modalities, this concept is not readily clear. For example, given two odorants,
is it possible to define a notion of distance between them? There is a stereotyped map
of odorant receptor inputs in the olfactory bulb [62], but the concept of magnification
requires two such maps. Nevertheless, we believe our approach can be applied to all
modalities. It may even guide us in the search for a notion of sensory distance for
modalities where it is not naturally given.

Animals with a real visual streak have lower encephalization than humans, even
with rather lissencephalic cerebral hemispheres [24–30]. When a retina has developed
a visual streak, it is not possible to map visual input spatially homogeneous onto a
functional field of a lissencephalic cortex without changing the global layout of the
map. In other words, the M-scaling principle is likely to be locally violated. In such
a case (e.g., Macropus eugenii), a correlation between retinal ganglion cell density
and M was found only along VM but not HM [27]. Hence, neural input is increased
at the cortical site of the representation of the visual streak. A surface undulation can
provide more cortical surface area for this increased input thereby reestablishing the
M-scaling principle. Dasyprocta leporina, another mammalian, in which M along
HM approximately corresponds to its visual streak, shows gradual encephalization of
the visual streak. Nevertheless, its retinotopy has asymmetries that are not directly
related to the topography of the retinal ganglion cell density [25].

Irrespective of phylogenetic relationships, species that inhabit open spaces may in-
dependently have evolved a visual streak or a virtual visual streak that enables them
to better scan the horizon. In other words, if we approach human retinotopy from the
comparative standpoint, we can explain why the sulcal position is where it is, though
not necessarily how sulci develop. The specific location of CS might be a convergent
evolutionary solution to enhance visual function on HM. The human retina poses a
very mild visual streak [19, 21] and even without taking the visual streak into account,
the M-scaling is violated in all current theoretical models of human retinotopic maps,
because they have a decreased cortical representation of the horizon with respect to
the average cortical magnification on meridians. At the location where M-scaling is
violated either less or more cortical surface area is available to process information
from a certain number of retinal ganglion cells. Therefore, our predicted selective
increase of cortical magnification due to cortical folding, i.e., the virtual visual streak
with selectively increased detE, indicates a form of encephalized visual magnifica-
tion. If the virtual visual streak is actually a phylogenetic shadow of a visual streak
in human ancestors, which is supported by its mild occurrence [19, 21], thus it is not
an independent evolutionary solution: a switch from selectively increased retinal to
cortical magnification on HM took place.

To summarize, the theme from structure to function is central to biology, as is
the reverse direction from function to structure. We doubt that the precise correlation
between the primary visual cortex, as an functional area, and the calcarine sulcus, as
an anatomical structure, occurred by chance.

None of the existing mathematical models is suited to describe retinotopy in re-
lation to the cortical geometry. Most of them are in fact either 1D functions assum-
ing an inverse linear mapping given by two parameters (a, b or A, E2, see Eq. 3),
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without taking into account that a 2D generalization is not trivial, or they are intrin-
sically flat maps described by an analytical function. The monopole map and its five-
parameter extension, called wedge-dipole map [55], are by definition conformal and
quasi-conformal, respectively. Any analytic function has a high inner structure, i.e.,
exhibits certain symmetries. Alternative nonconformal maps suffer from inconsisten-
cies with the definition M [63]. It is assumed that single components of the Jacobian
matrix JΦ (Eq. 5) scale with M . But JΦ , unlike M , contains a rotation carrying the
retinal directions onto its neural representations. This renders the assumption implau-
sible if conformal mapping is not presumed in the first place.

Generally, when cortical functions became encephalized and even completely new
sensory and motor areas simultaneously arose, this constituted a developmental force
for the prominent patterns in the highly convoluted surface of the cerebral cortex
in humans. Linking cortical magnification to anatomy with methods of continuum
mechanics and complex analysis may shed some light on the underlying pattern for-
mation principles.
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