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Abstract Spike time reliability (STR) refers to the phenomenon in which repeti-
tive applications of a frozen copy of one stochastic signal to a neuron trigger spikes
with reliable timing while a constant signal fails to do so. Observed and explored
in numerous experimental and theoretical studies, STR is a complex dynamic phe-
nomenon depending on the nature of external inputs as well as intrinsic properties of
a neuron. The neuron under consideration could be either quiescent or spontaneously
spiking in the absence of the external stimulus. Focusing on the situation in which
the unstimulated neuron is quiescent but close to a switching point to oscillations,
we numerically analyze STR treating each spike occurrence as a time localized event
in a model neuron. We study both the averaged properties as well as individual fea-
tures of spike-evoking epochs (SEEs). The effects of interactions between spikes is
minimized by selecting signals that generate spikes with relatively long interspike
intervals (ISIs). Under these conditions, the frequency content of the input signal has
little impact on STR. We study two distinct cases, Type I in which the f—I relation
(f for frequency, I for applied current) is continuous and Type II where the f—I re-
lation exhibits a jump. STR in the two types shows a number of similar features and
differ in some others. SEEs that are capable of triggering spikes show great variety
in amplitude and time profile. On average, reliable spike timing is associated with an
accelerated increase in the “action” of the signal as a threshold for spike generation
is approached. Here, “action” is defined as the average amount of current delivered
during a fixed time interval. When individual SEEs are studied, however, their time
profiles are found important for triggering more precisely timed spikes. The SEEs
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that have a more favorable time profile are capable of triggering spikes with higher
precision even at lower action levels.

Keywords Spike triggered average - Neuronal excitability - Stochastic reliability

1 Introduction

A constant current applied to a neuron at different times usually triggers trains of
spikes that do not show reliable timing, due probably to the effects of intrinsic noise
and/or differences in the initial state of the neuron when the signal is turned on each
time. A stochastically fluctuating signal, however, is capable of generating spikes
with remarkably reliable spike timing [1]. This phenomenon has been called spike
time reliability (STR) [2], and has been widely observed experimentally in a num-
ber of different neurons [1-6] and investigated in several theoretical studies [7-10].
Known as a general property of spiking model neurons [11], STR is closely related
to the study of synchronization of uncoupled periodic or chaotic attractors driven by
a common noise (see, e.g., [12]).

Given the connection of STR both to the precise mapping of stimuli onto responses
and to synchronization, a variety of settings have been explored to better understand
the mechanisms and signal features that facilitate STR. For example, gamma range
fluctuations have been shown to facilitate the generation of more precisely-timed
spikes and induce higher variability in interspike intervals (ISIs) [3]. Effects of the
frequency content and the relative amplitude of periodic fluctuations on STR have
been investigated in [4, 5]. [11] showed that aperiodic inputs, contrary to periodic
ones, induced reproducible responses. Reliability in the timing of bursts of action po-
tentials can also be achieved through a frozen random input [13]. Galan et al. showed
in both experiments and simulations that STR exhibits a local maximum as the cor-
relation time of the external input is increased. In an apparently different context of
stochastic resonance, a mechanistically related phenomenon was also demonstrated
in a summing network of excitable units [14].

Even with the large range of studies of STR available, there are certain aspects
that have received less exploration. By considering the neural behavior without an
external stimulus, we can identify two general situations for STR that have received
significantly different levels of attention. In the first situation, which has been con-
sidered widely, the neuron is spontaneously spiking and exhibits self-sustained os-
cillatory activities in the absence of external stimulation. In this case, the frequency
component of the external noise has been shown to be important for STR [4, 5]. For
uncoupled spontaneous oscillators, [12, 15] showed that synchrony driven by a com-
mon noise is associated with the emergence of a negative leading Lyapunov exponent
in analytical studies, taking advantage of the phase theory. In the second situation, for
which there are considerably fewer results available, the neuron is quiescent in the ab-
sence of external noise. A number of different phenomena can occur in this situation.
For example, the introduction of noise could induce coherence resonance [16], thus
turning the neuron into a noise-induced coherent oscillator. Analytical results in [17]
provide an in-depth understanding of noise-induced transitions from quiescence to
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oscillations, but these did not consider STR. A computational study using conduc-
tance based models compared STR and its precision both in the mean-driven firing
range [18], where firing occurs without an external stimulus, and in the fluctuation-
driven regime, where firing occurs only with an external stimulus that drives threshold
crossing. There the influences of frequency and amplitude of oscillatory stimuli are
emphasized, and conditions where impedance profiles may be important were iden-
tified. In a recent theoretical study, STR in the case of quiescent neurons is analyzed
[19]. There stochastic amplitude and phase equations for two coupled canonical con-
ditional oscillators were derived in a subthreshold parameter regime and under the
influence of distinct intrinsic noises and a common external stochastic drive. The
asymptotic approximations for the probability density of the phase difference re-
vealed that, for dominant common extrinsic noise, the phase difference is strongly
peaked at zero for comparable intrinsic noise levels or at a nonzero phase difference
for different levels of intrinsic noise, indicating synchronized or phase-locked oscil-
lations. In addition, the spikes generated by the common external noise could appear
irregular and incoherent, yet spike timing is remarkably precise when a frozen copy
of the external noisy stimulus is applied, as observed in [1]. In the setting where
the neurons are quiescent without an external noisy stimulus, we have not yet seen
thorough theoretical or mechanistic explanations for the range of elements that can
promote STR. The present study is aimed at revealing some important aspects of such
mechanisms using a simple neuronal model.

For a more complete understanding of the STR in a quiescent neuron, in the
context of noise-induced irregular and incoherent spiking, it is necessary to deter-
mine which features of the input signal are crucial for triggering spikes with precise
timing. Spike initiation in a quiescent neuron is often associated with a threshold
phenomenon, which happens when a critical transmembrane potential is exceeded.
Therefore, spike-triggering can be regarded as a complex “pattern recognition” pro-
cess [1], a “feature detection/dimensional reduction” process [20, 21], or even a
“time-localized resonance” process, as we view it here and in [22], providing sup-
port for this concept in this paper. Mathematical models of neurons are useful tools
in exploring these aspects of STR. Unlike real neurons in which the dimensionality
and the intrinsic noise are both unknown, the dimension of a model and the intrin-
sic noise are well defined in mathematical models. We carry out a computational
analysis of the Morris—Lecar model [23], which has only two variables. Both the
intrinsic noise and external signals enter through the voltage equation. This model
allows an analysis of the threshold of spike-generation in the phase plane in order
to investigate previously unexplored aspects of the external stimulus that can sup-
port STR. An understanding of both the phase-plane dynamics and bifurcation of the
underlying system contributes to the identification of the key elements of the reliable
spike-evoking epochs (SEEs) in the signal. The dynamical analysis is particularly im-
portant in the context of quiescent neurons, where features like intrinsic frequencies
or well-defined regular oscillation are not necessarily contributing factors as they are
when the neurons exhibit repetitive firing in the absence of an input signal.

STR in the context of our study is closely related to three important factors of
the external noisy input signal: (i) the ability of external fluctuations to eliminate the
memory of accumulated variations in the neuron; (ii) the ability of a fluctuation to
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trigger a spike reliably in the presence of different copies of intrinsic noise; and (iii)
the potentiation of a time localized temporal epoch in the input that “resonates” with
the neuron to trigger a spike reliably at low amplitude. Focusing on these factors
allows us to identify the key features of individual spike-evoking epochs (SEEs) that
drive reliable spike timing, even though these SEEs show great variety in amplitude
and time profile. On average, two specific features are shown to be crucial for reliable
spike timing: (1) the accelerated increase in “action” level (defined as the amount of
current delivered during a fixed time interval) as the spiking threshold is approached
and (2) the time profile of a SEE. The SEEs that have a more favorable time profile
trigger more precise spike timing at a reduced level of action. These results are in
good agreement with experimental observations [1].

The effects of the three key factors mentioned above are best studied when the
effects of other dynamic properties of a neuron are minimized, such as the inter-
spike refractory period (IRP) and the intrinsic frequency of an oscillatory neuron. It
has been shown that STR is reduced when the frequency of the stimulus-induced re-
sponse is high [6], typically due to interference with the IRP or intrinsic frequency.
To minimize the influence of IRP and intrinsic frequencies on model neurons that
are quiescent in the absence of external inputs, we use specifically generated input
signals that only trigger spike trains with relatively long ISIs. An important part of
the input signals are spike-triggered averages (STAs), obtained from averaging many
time-varying spike-generating stimuli over small time windows preceding the spikes
[24]. Using STAs rather than signals with a specific frequency is necessary for our
setting, since the dynamics of the quiescent neuron is not associated with a specific
intrinsic frequency. In fact, we show that the reliability is insensitive to frequency
content of the noisy signal, as long as the ISIs are sufficiently long.

The phase-plane analysis presented here indicates how the combination of action
and time profile leads to reliable spike timing in the setting of quiescent neurons.
This analysis is complemented by studying both the averages and distributions of
properties of the SEEs and the STAs obtained from subsets of the SEEs. Additional
important elements are suggested by the characteristics of different subsets of the
SEEs that are found to be reliable, such as a time profile that allows the system to
“settle” near the steady state while providing sufficient current over a time interval. In
combination, these characteristics contribute to the three important factors mentioned
above, and increase the precision of the firing over repeated trials.

Furthermore, we see that the underlying bifurcation structure of the neuron, which
characterizes its quiescence-to-spiking transition, can also influence the effectiveness
of the action-time profile combination. We study two distinct sets of parameter val-
ues that give rise to two bifurcation types, and thus two different scenarios of spike
transition. Type I is characterized by a gradual increase in the frequency from zero as
the bifurcation parameter—here the (base) input current—changes beyond the transi-
tion point. Type II is characterized by a jump increase in the oscillation frequency as
the bifurcation parameter reaches the quiescence-to-spiking transition point (see [25,
26] for details about Type I and Type II neurons). The behavior in the spiking transi-
tion is considered in connection with the slow- (or pseudo-slow) manifold in Type I
(or II), and related to the firing threshold for each type. The significance of a mani-
fold, rather than a single point, in firing thresholds has been recognized in a range of
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contexts, starting with FitzHugh [27], and more recently in the areas of excitability,
bursting, and mixed-mode oscillations [28, 29]. The relationship of different neuron
dynamics to phase plane structures that approximate the firing threshold has been
developed as a diagnostic tool to understand variable neuron responses to fluctuating
environmental parameters (see, e.g., [30] and references therein). Here, we compare
the transitions and the underlying threshold dynamics in the phase plane, to reveal
the differences and similarities in the roles that action and time profile play in the
two types. For example, in Type I neurons the fluctuations near the slow manifold al-
low for reliable spiking transitions over a smaller range of action levels, with greater
variation in the precision. Thus, we indicate the role that the bifurcation structure can
play in identifying features that support STR.

The remainder of the paper is organized as follows. In the model and methods
section, we introduce the Morris—Lecar model that we used in the simulations. We
discuss the measure we employed to calculate the reliability of spike timing, as well
as the computational methods employed in the simulation and analysis. The main
results are presented in the results section that is followed by the discussion section.

2 Model and Methods
2.1 The Model

We use the Morris—Lecar (ML) model [23] in the present study. The noise terms are
included additively to the voltage equation.

dv
= —gCaMoo(V — Vca) — gxw(v —vg) — gL(v —vr)
+Ibias+81771(t)+1ext, (2-1)
d
d—lt” = 2(0) (oo (v) — W),

where v is the membrane voltage potential; w represents the probability of open-
ing of K* channels (0 < w < 1). mgo(v) = 0.5(1 + tanh((v — v1)/v2)), Weo (V) =
0.5(1 + tanh((v — v3)/v4)), A(v) = ¢ cosh((v — v3)/(2v4)). Here, Ipias is a base or
bias current that is constant in the neuron, typically viewed as the underlying fixed
control or bifurcation parameter related to different states in the dynamics. The term
817n1(t) is the intrinsic noise, where 7n1(¢) is modeled as a standard Brownian mo-
tion, with a distinct realization of the intrinsic noise used on each trial. We refer to
the coefficient §; to indicate the intensity of the intrinsic noise. The term /Iex; is an
additional extrinsic current, given by lex; = I + 82712, where the constant I, is just
a shift of Iyi,s, and 8212(¢) is a stochastic current. The coefficient 8, is a constant
and the contribution 1,(¢) is obtained by convolving a Gaussian white noise and an
alpha function «(t) = (¢/ 72) exp(—t/t) with a time constant 7. Therefore, the actual
standard deviation (SD) of the external noise §>712(¢) is 6202 where o is the SD of
n2(1). In the rest of this paper, we use the SD to refer to the intensity of the extrinsic
noise. Note that the extrinsic signal I is a frozen copy of a noisy external input used
across trials.
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Table 1 Parameters of Type I and Type II models

Shared parameter Different parameters

Values Type I Type I Type I Type I
vg  —84mV gk 8mS/em? 5 mS/cm? Tnias 33 pA/cm? 63 pA/cm?
vr —60 mV gL 2 mS/em? 3 mS/em? Isnic 377 |.1A/cm2
vca  120mV gca 44mS/em?  5.6mS/iem? gy 67.31 uA/cm?
c 20 pF/cm? v 12mV —45mV Iug  77.62pAlem?  68.05 pA/em?
vy —1.2mV v4 17.4 mV 15 mV T 7 ms 3 ms
vy 18mV é 1/15ms~!  004ms~! I 4.3 pAlem? 4.1 pA/em?

In the absence of noise, the deterministic ML model can be tuned into condi-
tions for both a Type I and a Type II neuron. For the Type I parameters listed in
Table 1, the bifurcation diagram is presented in Fig. la (top) together with the f—
Ipias relationship (bottom). The latter shows a continuous change in the oscillation
frequency from zero as Ipjys increases beyond a SNIC (saddle-node on an invari-
ant circle) bifurcation point. The SNIC point is located at Isnic & 37.7 pA/cmz.
For the Type II parameter values, the bifurcation diagram and the f—Iyi,s rela-
tionship are shown in Fig. 1b. A saddle-node (SN) bifurcation on the periodic
branch occurs at Isy ~ 67.31 pA/cmz. A subcritical Hopf bifurcation (HB) occurs
at Iyg = 68.05 pA/cm?. The transition from a steady state to an oscillatory state can
occur at both the SN and the HB points. The oscillatory solutions that emerge in each
case have a finite, nonzero frequency as can be seen in the lower panel of Fig. 1b.

The Type I and Type II behaviors with additive noise were studied in [31], where
computations of the stationary densities and potential stochastic bifurcations were
analyzed. While there are no noise-induced bifurcations in both types, additive noise
drives spiking in the excitable regime, where Ipj,s is below the critical bifurca-
tion value and the attracting state is a stable equilibrium. In Type I, the spiking
occurs through a coherence-resonance like phenomenon where the excursions fol-
low heteroclinic orbits between an equilibrium and a saddle point. The behavior
is similar for Type II, but the excursions follow unstable limit cycles. The simula-
tions in the present study are carried out under the following conditions. Near the
Type 1 transition, we picked Ipjas = 33 uA/cm?® and an external current injection
with I, = E[lex] = 4.3 uA/cmz. The total external current, liot = Ipias + lext, has
an average amplitude that is equal to E[[i] = 37.3 pA/cmz, which is still below
Isnic. As shown in Figs. 2a and b, a constant input (§2 = 0) with this amplitude
generates unreliable spikes while a fluctuating input (62 # 0) with identical expected
value can generate a train of spikes with rather reliable timing. Near the Type II
transition, we picked Ipjas = 63 ;1A/cm2 and I, = E[lx] = 4.1 pA/cm2 such that
E[lit] = 67.1 pA/cm2 which is also below Isy and Iygg. In this case, a constant in-
put (82 = 0) can generate a train of spikes but with unreliable timing (Figs. 2a, c).
When replaced by a fluctuating input (8> # 0) with identical expected value, the tim-
ing of the spikes triggered by the signal becomes more reliable (Figs. 2b, d). In Fig. 2,
we use 81 =5 and 63 = 0.91 for both Types for illustration purposes. In the following
figures, we use §; =2 and §> = 0.91 for Type I, and §; = 5 for §, = 1.64 for Type II,
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Fig. 1 Bifurcation diagrams and the corresponding f—1I};,s relationship near a Type I (a) and a Type II (b)
transition in the Morris—Lecar (ML) model. Iy, is the control parameter. Stable and unstable equilibria
are marked with solid and dashed lines, respectively. Stable and unstable periodic solutions are marked
with filled and open circles, respectively. The intrinsic frequency of a steady state is determined by the
imaginary part of the eigenvalues of the Jacobian matrix for the corresponding system linearized about the
steady state. These diagrams were obtained using the XPPAUT package by Ermentrout [35]

as indicated in the captions of Figs. 3, 4, and 6, 7, 8. For Fig. 5, the signal is composed
of SEEs and other epochs that do not trigger a spike, constructed in a way to provide
certain spectral properties.

2.2 Computational Methods

2.2.1 A Measure for Spike Time Reliability

In the present study, a correlation based measure [32] is used to determine spike time
reliability, which is defined as

s,s]
N(N —5. Z Z (2.2)

|sl||sj

where N is the number of trials and §; (i = 1;...; N) are the filtered spike trains,
that is the convolution of the spike train of a trial and a Gaussian filter with a filter
width of o, =20 ms. R ranges from 0 (nonreliability) to 1 (full reliability). This cor-
relation based reliability from trial to trial has been used by many other studies (e.g.,
[2, 8, 18]), and we would expect similar results for other correlation based measures.
For example, (2.2) has a strong correlation (0.96) with the reliability measure based
on time series variance presented in [4]. Other STR measures based on the largest
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Fig. 2 Raster plots showing spike-time reliability (STR) of the ML model in the Type I conditions (upper
panels, a-b) and the Type II conditions (lower panels, c—d). Parameter values used are given in Table 1.
The coefficient §; of the intrinsic noise is 5 plA/cm2 for (a)—(d), and the coefficient §, of the external noise
is 0.91 pA/cm? in (b) and (d)

Lyapunov exponent (see, e.g., [9]), used in networks, and the phase measure based
on the period of the input [7] used in the self-sustained oscillatory regime, do not suit
the context of the fluctuation-driven firing regime studied here.

This reliability measure changes as the number N changes. However, in simula-
tions carried out in this study, R usually settles to a constant level for values of N
larger than 30 (results not shown), with remaining parameters unchanged. Therefore,
for each R value, we calculated in the results section, we chose N = 45 to ensure that
changes in R are not due to changes in N in this range.

2.2.2 Simulation of Stochastic Differential Equations

The stochastic model equations in the present work are numerically solved using
MATLAB. To reach a good balance between accuracy and computational efficiency,
the fourth-order Runge—Kutta scheme is often used for neuron models. The evolution
of the deterministic terms of the equations are calculated using a fourth-order Runge—
Kutta scheme with a fixed step of Ar = 1/30 ms, while the influence of the noise
terms is renewed at each time step At based on the nature of the noise. Noting that
(2.1) has the form

dv
c— =F @, w) + Ipias + Ic + 8111 (1) + 8212(1),
dt
(2.3)
W _ Gow)
dt - 9 9
then the increment in the V equation takes the form
At
Vg1 =V + ?(kl + 2ko + 2k3 + kg) + 81 Any + 8242, (2.4)
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where k; are the standard contributions from a Runge—Kutta 4 (RK4) [33] method
for V/(t) = F (v, w) + Ipjas + I.. The white noise increment An; term is distributed
as a Gaussian random variable with mean 0, variance /At and the increment of
the external stochastic signal 7, is the convolution of a white noise & and an alpha
function,

na () = /0 E(t — T)a(T)dT

Then Anj is simulated by ~/AtZ, for Z a standard normal random variable and

Anp =f0 a(T)[A&(t —T)]|dT (2.5)

where A& is a white noise increment, Gaussian with mean zero, variance At. The
increment in the w equation is composed simply of the contributions from the RK4
method, as there are no stochastic contributions there. As noted above, 1, is a frozen
copy across trials of the stochastic part of the extrinsic input, while the intrinsic noise
n1 varies from trial to trial.

2.2.3 Computation of Probability Values (p-Values)

p-Values are used to statistically quantify the significant difference of the means of
two groups of data in order to determine if the data share the same source [34]. In
order to examine characteristics that can be used to differentiate between reliable and
unreliable SEEs, we calculate the p-values to measure the average level of differ-
ence of “action” levels, as shown in Sect. 3.4, using the paired t-test (due to their
time-related properties). The p-value measures whether the data from reliable and
unreliable SEE is significantly different, with a small p value, normally p < 0.05, in-
dicating a small probability that the data from the two classes of SEE’s have the same
means. Using the t-test, we also calculated p-values for the values of w observed at
firing as generated from reliable spikes and unreliable spikes, and the standard devia-
tion of the firing times for different subgroups of reliable SEEs, as shown in Sects. 3.4
and 3.5.

2.2.4 Slow Manifolds and Pseudo-slow Manifolds

As discussed further in Sect. 3.4, it is valuable to compute an invariant manifold with
XPPAUT [35], in order to identify the slow or pseudo-slow manifolds that can play a
role in understanding the transition from quiescence to spiking. As can be seen from
Fig. 1a, under the Type I conditions, the model has three fixed points with the mid-
dle fixed point an unstable saddle. Normally, a slow manifold refers to the unstable
invariant sets of this saddle point in the phase plane. The Type II setting has only
one stable fixed point (see Fig. 1b); however, there exists a well-defined separatrix
when the Type II model is in the excitable regime associated with a subcritical Hopf
bifurcation as shown in [25] where it is referred to as a threshold manifold. This sep-
aratrix has the same function as the slow manifold in the Type I model, thus here we
call it a pseudo-slow manifold. The pseudo-slow manifold separates the phase space
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Fig. 3 Reliability R of the
Type I (a) and Type II (c) ML
models is plotted in the left
columns against the SD of the
external noise that is either
convoluted (solid) or white
(dashed). R is plotted against ©
for Type I (b) and Type II (d) in
the right columns. Parameter
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02F
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into two regions, and the dynamics evolve in opposite directions in the two regions
on either side of it. In one region, the trajectories flow to the stable fixed point (i.e.,
rest potential) quickly without firing; in the other region, the trajectories follow a
large excursion (i.e., action potential) before returning back to the stable fixed point.
Since XPPAUT plots the trajectories of the Type II model automatically, we chose
the trajectory that separates the phase space into two regions as described above
as the pseudo-slow manifold. The stochastic stimulus drives the voltage dynamics,
so that the voltage nullcline (dV /dt = 0) varies with time as does the correspond-
ing (pseudo-)slow manifold. Figure 6a and ¢ provide snapshots of the (pseudo-)slow
manifold when the injected current has different values at different times, as discussed
further in Sect. 3.4.

3 Results
3.1 Reliability as a Function of Signal Strength and Correlation Time

Reliability of both the Type I and Type II ML models are studied for increasing input
signal strength as measured by the SD of the external input (see Figs. 3a and c). The
solid curves represent the case when the noisy signal is generated by convolving a
Gaussian white noise and an alpha function with a time constant 7. Therefore, t can
be regarded as a measure of the correlation time of the input signal. In both Type I and
Type II neurons, R increases monotonically as the input amplitude increases, consis-
tent with previous studies. Close to full saturation is obtained for SD > 20 pA/cm?
for both types. Figure 3 also shows the reliability measure as a function of the cor-
relation time when the convoluted input is considered for both the Type I (b) and the
Type II (d) models. Reliability for the Type II model shows a local maximum near
a 7 value of about 8 ms (Fig. 3d). This is consistent with previous results obtained
in both experiments and simulations [8], with typically a less strong peak for R as a
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function of t for lower intrinsic frequencies. There is no maximum as a function of t
for the Type I model, where R shows a monotonic increase as t increases (Fig. 3b).

When white noise with zero correlation was used instead, good reliability could
also be obtained (dashed curves in Figs. 3a and c). But a larger SD value is required
if one wants to achieve the same level of reliability. This suggests that higher noise
intensity helps improve the reliability. However, at identical noise intensity correlated
noise leads to higher reliability. An optimal correlation time exists for the Type II
model. The mechanism underlying the improved reliability at higher values of the
correlation time is not known. However, one potential explanation is provided later
in this paper.

3.2 Spike Triggered Averages Are Effective in Triggering Reliable Spikes

The spike triggered averages (STA) are obtained by averaging many time-varying
stimuli in a small time window preceding every spiking event [24]. The averaging
process over a large population of stochastic stimulation epochs cancels out the tem-
porally changing components that a spike does not prefer, leaving the optimal signal
for a neuron response. Thus, STAs have been widely used to study the sensory filter
properties of neurons in auditory neurons [36, 37], electrosensory systems [38, 39]
and even in visual systems [40, 41].

Here, the spike triggered averages (STAs) are calculated for both the Type I and
Type I models over a time duration of 100 ms. Specifically,

1 N
STA() = > [t — ti + Astar) — u(t — 1) {Lext (1) 3.1)

i=1

where N denotes the number of spikes, #; is the spike time, Agta? is the binwidth
of STA, u(t) is the Heaviside unit step function (0 if t < 0 and 1 if ¢ > 0). The
STA for each type is calculated using 195 SEEs taken from some test signals. Many
copies of the STA for each type are then connected by background fluctuations of
different lengths that are not capable of triggering a spike. Figure 4 shows that the
STAs inserted in these background signals are effective in triggering spikes reliably.
Special care was taken to guarantee that the average value of these signals is not
altered by such connections between pieces of signals.

3.3 The Frequency Content Is not Essential for STR Provided ISIs Are Long

A number of previous works, both experimental and computational, have demon-
strated the significance of the frequency content in the external signal to achieve reli-
able timing in spikes [3-5, 18, 42]. Here, we demonstrate that under the conditions of
STR in an otherwise quiescent neuron, the frequency content is not of special signifi-
cance for reliability. This is because the stochastic signals we generated in the present
study only trigger spike trains with ISIs that are long as compared to the intrinsic IRP.
When ISIs are too short, spike time reliability is typically reduced [6] since an SEE is
more likely to interact with larger fluctuations at the beginning of the IRP, resulting
in a reduced ability of the SEE to trigger a spike. We examine the impact of differ-
ent frequencies in the input signal in our context, motivated by previous observations
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Fig. 4 Spike triggered averages (STAs) for Type I (a) and Type II (¢) ML models together with the
corresponding response in membrane voltage. Artificial signals are generated (the upper panel in b and d)
by connecting many copies of the STA with pieces of background fluctuations of different lengths that are
known to be incapable of generating a spike. A typical response of a Type I (b) or a Type II (d) ML model
to such a signal is shown in a raster plot. Noise coefficients ; and 8, for Type I and Type II are as in
Figs. 3b, d. The reliability measure R is calculated and marked in the figure for each type

that the existence of a significant component of the intrinsic frequency in the signal
typically enhances the STR through a resonance effect. In the Type I model, no in-
trinsic frequency is defined in the vicinity of the SNIC since periodic solutions start
with a frequency that is equal to zero. Therefore, we focus on the Type II model. Two
intrinsic frequencies can be defined in the vicinity of the Hopf point. The intrinsic
frequency of the linearized system for i = 67.1 pA/cm2 is 0.00715 kHz. The fre-
quency for the stable periodic solution at I,o; = 67.1 pA/ecm? is close to 0.00641 kHz.
These two frequencies become identical at the HB point in this particular case (see
Fig. 1b).

Input signals with very different spectral components are tested in the Type II set-
ting, of which four are shown in Fig. 5. These signals were generated as follows.
We stimulated the model neuron with 5 segments of convoluted external noise (with
T = 3 ms), each 10000 ms long. We picked a total of 112 SEEs and 45 epochs that
typically cannot trigger a spike. By connecting these epochs in different combina-
tions, we were able to generate test signals with different spectral content, each one
6000 ms in duration. Figure 5a shows the response to a test signal with a spectral
peak at the intrinsic frequency. This is achieved by connecting different SEEs at al-
most regular intervals that is close to the intrinsic period. This signal triggered a train
of spikes with highly reliable spike timing. Figure 5b shows a case where a reliabil-
ity that is almost identical to the previous case is obtained by a signal with a much
less concentrated spectrum. In this case, the highest peak of the spectrum occurs near
f = 0.0044 kHz. Figure 5c contains another case in which the spectrum is highly
concentrated at one single frequency that is equal to 0.01 kHz, which is far from the
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Fig. 5 Reliability is insensitive to the frequency content of the noise signal when ISIs are long, shown for
Type II. Test noise signals are generated by connecting distinct samples of spike-evoking epochs (SEEs)
with intervals of samples that are known to be incapable of generating a spike. The power spectrum for
each signal is plotted in the right panel. From top to bottom, the peak frequency component is located at
0.00641 kHz in a, 0.004 kHz in b, 0.01 kHz in ¢, and is insignificant in d. The values of R are calculated
with data collected from 100 trials, each containing more than 45 spikes

intrinsic frequency. Reliability remains high in this case although slightly reduced
due partly to the shortening of ISIs when the frequency is higher than the intrinsic
frequency. In the case shown in Fig. 5d, there is no obvious peak in the spectrum
when it is plotted using the same vertical scale as in a and b. However, the reliability
remains close to 0.8 in this case.

These results suggest that to achieve high reliability in the noise-induced spike
train, there is no need for the signal to contain a major fraction of the Fourier compo-
nents with frequencies that are near or identical to the intrinsic frequency of either the
subthreshold state or the oscillatory state. This result typically applies to the situation
when the ISIs in the signal-induced spike trains are relatively long, as in the context
of quiescent neurons considered here.

3.4 Reliable SEEs on Average Show Accelerated Increase in Action

By focusing on stochastic signals that trigger spike trains with relatively long ISTs,
we can ask the following important questions. What are the features that separate the
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Fig. 6 Phase plane trajectories traced out by the responses of the model to two different SEEs (panels
a and ¢) and the SEEs profiles (top) and the corresponding voltage responses (bottom) (panels b and d).
Four time points A, B, C, and D are chosen and the corresponding location of the (pseudo-)slow manifolds
(dashed lines) M, Mc, and Mp are plotted in a and c. Dotted lines are nullclines when I = Iy;a5 + lext-
Note that the location of the points A—D vary around the location of the slow manifold in Type I (top
row), while for Type II (bottom row) these values fluctuate less, thus yielding values of the response well
below the (pseudo-)slow manifold as the input signal strength increases for Type II. Note in particular that
the value of w for Type II, point D, is well below the values on the pseudo-slow manifold Mp. Noise
coefficients 8; and &, for Type I and Type II are as in Figs. 3b, d

epochs of the signal that trigger a spike with reliable timing from those that cannot?
Let us call the SEEs of the signals that reliably drive spiking “reliable SEEs” and
those that do not reliably drive spiking the “unreliable SEEs.” We aim to answer the
following question. Is there a unique, dominant feature that separates the reliable and
unreliable SEEs? The answer to the latter question is probably no, if one examines
simply the time series or traces of the two groups SEEs. When a large number of SEEs
are examined, they all appear very different from one another, so it is not obvious
what features may be appearing more frequently in the reliable SEEs (see for example
the two SEEs in Figs. 6b, d). However, comparing distributions of key features of the
SEEs indicates a direction to partly answer this question.

For the purpose mentioned above, we need a simple measure to segregate the
reliable SEEs from those that are unreliable. We seek an event-based definition. An
SEE is called reliable if the spikes it triggers over 30 trials are distributed within a
time interval that is smaller than 20 ms. An SEE is regarded as unreliable if the spikes
it triggered over 30 trials are spread over a time interval that is larger than 20 ms, in a
range between 23 to 115 ms. The cutoff of 20ms was chosen as a natural measure for
clearly characterizing the SEE’s, as follows from observations. This measure allows
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us to set up a database for both reliable and unreliable SEE pools. A total of 450
reliable SEEs and 600 unreliable ones were collected. This leads us to the study of
the following features of each SEE.

We also need to identify a critical threshold for providing a clear identification
of the initiation of a spike. For a deterministic Type I neuron, the threshold can be
clearly defined in terms of the slow or invariant manifold associated with a saddle
point. In contrast, in a Type II neuron this threshold has to be determined by finding
a separation of the phase space, dividing those trajectories evolving towards a stable
fixed point and those following a larger excursion corresponding to firing. Without
sufficient input current, the trajectory can not transition from the quiescent region to
the firing region, so the (pseudo-)slow manifold here serves as the firing threshold.
Both the slow and pseudo-slow manifolds are found with XPPAUT, as described in
Sect. 2.2. Since the input current is fluctuating, the (pseudo-)slow manifold is also
fluctuating, calculated at a specific time, with the given value of the input at that
time. This movement is highlighted in Fig. 6 where dashed lines indicate the slow
(Type I) and pseudo-slow (Type II) manifolds, that shift with fluctuations in the input.
It is also useful to identify a working threshold in v only, that can be used to com-
pare the behaviors for the two types of neurons. With the presence of noise shifting
the (pseudo-)slow manifolds, there is some complication in setting a common value
of vy,. For simplicity, we chose vy, = —20 mV as this working threshold, where the
slope of v(¢) turns significantly positive preceding each spike (see Figs. 4a, c), for
both Type I and Type II neurons.

The fluctuations of the (pseudo-)slow manifolds as shown in Fig. 6 indicate how
the fluctuations in the input signal can promote the transition to firing. These curves
also illustrate important differences between Type I and Type II dynamics. For ex-
ample, by comparing the points A, B, C, and D in the input signal, in the voltage
response, and in the phase plane, in Type II neurons we see less fluctuation in the
values of v and w as the input signal fluctuates and drives also fluctuation in the
pseudo-slow manifold. For Type I neurons, there is more variation in the response
values, which tend to take values closer to the slow manifold, even as it is fluctuating.

One of the main differences between a reliable and an unreliable SEE is the in-
crease in the average “action” level over progressively shorter time intervals imme-
diately preceding the time the spiking threshold is reached. This action level is cal-
culated as the average amount of current delivered during that time interval, i.e., the
area under the SEE divided by the length of the interval. On average, the action level
of reliable SEEs is significantly higher as the threshold is approached as shown in
Figs. 7a, ¢ (p < 0.01 for both types). Notice that the average action level of reli-
able SEEs (thick solid curve) during a brief time interval (say 20 ms long) before
the spiking threshold is significantly higher than the corresponding average action
level of unreliable SEEs (thin solid curve) for both the Type I and Type II models.
As the time interval is pushed further back into the past, the difference between the
two is reduced more and more until it disappears at about 40 ms and beyond. This
means that when a history longer than 40 ms is taken into account, the difference
between the average action levels of reliable and unreliable SEEs is minimal. This
reduced difference for longer periods before the spike is a property one would expect
for a system exhibiting STR. It suggests that the memory for past events does not last
more than 40 ms.
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Fig. 7 Average action in progressively shorter time intervals before the spike threshold is reached for
both Type I (a) and Type II (¢) ML models. The horizontal axis represents the duration of time over which
action is calculated, starting at the time when spiking threshold is reached. The shorter the time interval,
the closer it is to the threshold. The thick solid curve represents the average action of reliable SEEs and
the thick dotted curves represent the upper and lower limits based on the SD. The thin solid curve denotes
the average action of unreliable SEEs and the thin dotted curves mark the upper and lower limits of the
SD. The thick solid curves are averages of 400 reliable SEEs and the thin solid curves are averages of
600 unreliable SEEs. The histogram of the values of the gating variable w when the reliable (bold line)
and unreliable (thin line) spike trajectories pass through the threshold at vy, = —20 mV are plotted in b
and d for Type I and II models, respectively. Noise coefficients §; and 8, for Type I and Type II are as in
Figs. 3b, d

The increase in action levels of the reliable SEEs (thick curve) continues almost
all the way to about 5 ms before reaching the threshold for the Type II model. For this
type, the action for the unreliable SEEs (thin curve) also increases as the threshold
is approached, reaching a maximum at about 15 ms and starts to decrease for shorter
time intervals. For the Type I model, the increase in the thick curve is less steep and
reaches a plateau around 15 ms before the spiking threshold. For this type, the thin
curve for unreliable SEEs started decreasing at about 35 ms before the spike threshold
is reached.

By comparing a large number of SEEs, we found that the responses of a Type II
model to reliable SEEs in the phase plane are regularly characterized by a lower
value of the gating variable w at the moment the voltage variable crosses the working
threshold at vy, = —20 mV. This lower value of w is then below the pseudo-slow
manifold, and thus in a region where the dynamics move easily to increased v with
increased chance for escape to spiking. Phase plane trajectories traced out by the
responses of the model to two different SEEs are plotted in Figs. 6a, c. The corre-
sponding SEEs and the voltage changes in time are shown in Figs. 6b, d, with top
figures Type I, bottom figures Type II. Figure 6 also illustrates that pseudo-slow man-
ifolds shift with the input signal, which shows some similarity to the experimental
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observations [43, 44] in which the voltage “threshold” changes with the random gat-
ing of the Na™ channel. The time series shows the increase in v leading to spiking that
follows point D, where w takes a lower value and the trajectory moves into a range
where there is no strong attraction to the fixed point of the underlying deterministic
system. The histograms shown in Figs. 7b and d suggest that, on average, the value
of the gating variable w as the voltage passes through the threshold of vy, = —20 mV
is significantly lower for reliable SEEs (thick curve) than that of the unreliable ones
(thin curve) for both Type I and II (p < 0.01 for both types).

This observation suggests that the unreliable spikes are triggered at larger values
of w on average after spending more time in the close vicinity of the pseudo unstable
manifold. Also, there is a larger relative shift between the densities of w of the reliable
and unreliable spikes of Type II, where the difference in means for the two groups is
larger than one standard deviation. This result, together with the observations that the
response values tend to fluctuate near the slow manifold in Type I and that spiking
occurs for slightly lower action values as shown in Fig. 7, suggests that the threshold
crossing related to firing in the Type I neuron may be more dependent on the signal
amplitude. We discuss this further in Sect. 3.5, in the context of the standard deviation
of firing times.

3.5 The Influence of Time Profiles Revealed by Individual Features of Reliable
SEEs

By studying specific examples of reliable SEEs defined above, one realizes immedi-
ately that they still appear very different from each other. This motivated us to divide
the reliable SEEs further into three subclasses each one third in numbers: the high
action, the medium action, and the low action ones (see the histograms Figs. 8a, d).
The goal is to find out if the time profile of an SEE plays a role in determining the
reliability of spike timing and, if the answer is positive, what time profile is more
favorable for each type.

The precision of the timing of spikes triggered by individual SEEs is shown in the
histograms in Fig. 8c (Type I) and Fig. 8f (Type II), and we relate that precision to
the time profile. In these panels, the distributions of the three subclasses are given
for the standard deviation (SD) in the spike times triggered by the SEEs over 40
different trials. A larger value of SD corresponds to a lower precision in spike timing.
Notice that the highest precision is achieved by the one-third of SEEs with the lowest
action levels, for both Types I and II. By plotting the temporal profiles of the spike-
triggered averages (STAs) of the three subclasses (see Figs. 8b, e), one notices that the
temporal profile of the low action STA is characterized by a stereotypical wave form
of a downward change followed by a steep upward swing. This is true for both Type I
and Type II models. The profile for the STA of the low action SEEs is consistent
with the stereotypical STAs observed in a number of experimental studies [1, 6, 8].
This suggests that, with a more favorable wave form, an SEE is capable of triggering
spikes with higher spike time precision even though its action is in the lowest one-
third among all the reliable SEEs. This result also suggests that the spike-triggered
average of all SEEs, including both reliable and unreliable ones (see Figs. 4a, c), does
not likely possess the most favorable time profile of an SEE that triggers the spikes
with most reliable timing.
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Fig. 8 The distributions of action values over a brief time interval of 20 ms for all reliable SEEs. Plotted
in a and d are the action distributions for Type I (top row) and Type II (bottom row) models, respectively.
The distribution is equally divided into three subclasses. The STA of each subclass is shown in b and e with
different line types each marking one subclass as in a and d. The histograms for the standard deviation
of the spike times over all 40 trials for each subclass of reliable SEEs, as identified in panels a and d,
are shown in ¢ and f. Note that the subclass of reliable SEEs with lower actions typically have smaller
standard deviations (SDs) of firing times, thus indicating more closely synchronized spike time reliability.
Noise coefficients §1 and §, for Type I and Type II are as in Figs. 3b, d

Comparison of the precision of the low action SEEs (thin line) and high action
SEEs (thick line) show significant differences in the standard deviation of the firing
times for both types (p < 0.01). Observations about the distribution of the action,
time profile, and firing times shown in Fig. 8 and time profile in b, e can also be
connected with the observations from the phase plane. Time profiles with a downward
change can encourage the dynamics to shift toward the steady state, thus settling the
response and removing the memory of earlier stimuli. The steep increase of the signal
following this downward change then shifts the (pseudo-)slow manifold up, allowing
the possibility of a rapid transition to firing. SEEs with high action typically push the
response over the firing threshold, but in a way that the dynamics fluctuate around the
(pseudo-)slow manifold, resulting in more variation of the location and timing of the
transition to firing.

From Figs. 8a, d, we see that the reliable SEEs for Type II neurons have a distri-
bution of action levels with a significantly larger variance (with a probability below
0.01 for the F statistic comparing variances of Figs. 8a, d). Comparing the distribu-
tion of the SDs for the firing times shown in Figs. 8c, f, we see that while there is not
a significant difference between types for the means of these distributions (p > 0.1),
the distribution for Type II is somewhat shifted to lower SDs. For example, there is
typically 5-10 % more of observed SDs of firing times below the cutoffs in the range
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1.5 < SD < 2 for the subclasses of Type II, as compared with the corresponding
Type I subclasses.

The wave form of the thin curves in Figs. 8b and e occurs more frequently when
an appropriate correlation time t is used in the convolution. This brings our discus-
sion back to the problem proposed previously. Which features of the SEEs are crucial
for STR? The answer is probably a combination of the action level immediately pre-
ceding the time when the spiking threshold is reached and a stereotypical wave form
of the SEE. We believe the influence of the correlation time t is probably indirect,
making it more likely for the stereotypical wave form to occur at increasing values
of t.

4 Discussion

STR is a complex dynamic phenomenon that depends on both the features of the in-
put signal and the intrinsic properties of the neuron. In a carefully designed study of
spike initiation by a current injection in the form of a Gaussian white noise [1], it was
revealed that a wide variety of current wave forms could be effective in triggering a
spike reliably. It was therefore concluded that a number of stimulus parameters, in-
cluding polarity, amplitude, variability, slope, acceleration, and temporal correlation,
are relevant in spike triggering. It was believed that the absence of one feature in
one particular spike-evoking epoch (SEE) of an input signal may be compensated for
by the presence of another. Temporal profiles of a SEE favorable for precise spike-
generation should be related to the dimensionality of the equations required to de-
scribe the dynamics of a neuron and the geometric structure of the manifolds in the
phase space that define the thresholds beyond which a spike is generated. The na-
ture and the magnitude of intrinsic noise also play important roles in the reliability
of spike timing. These intrinsic properties of a neuron in an experimental setting are
typically unknown. This is where computational models, combined with analysis of
dynamical structure and comparison of statistical quantities, are helpful for reveal-
ing these properties and potentially the roles of different channels in shaping such a
favorable profile.

There is a large number of neuronal types where STR has been observed, rang-
ing from neocortical neurons [2] to neurons in visual cortex [3], motor neurons [1,
4, 45], mitral cells [46], pyramidal cells, and interneurons [42, 47]. This variety has
motivated different model choices for computational and theoretical studies of STR,
ranging from integrate-and-fire [48], conductance-based models [18], theta-neurons
[9], and combinations of these [10]. Although a large number of theoretical works
have been devoted to the study of STR, a general theory that explains all observed
features of STR remains elusive. Here, we were partly motivated by the work of
Tateno and Robinson [15], showing that the regular spiking (RS) pyramidal neurons
exhibit a Type I continuous f—1Ip;ss relationship while the fast-spiking (FS) interneu-
rons show a Type II discontinuous f—Iniss relation. As a result, the RS neurons show
properties of a rate-code integrator while the FS neurons behave like resonators con-
trolling the coherence of synchronous firing. We aimed at studying a few important
features of STR using a mathematical model that has both Type I and II properties,
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with the goal of revealing some similarities and differences between neurons that dif-
fer in threshold dynamics. Although results presented in this work were obtained in a
rather simple, two-variable current based model of neurons and with specific additive
internal and external noise inputs, the main conclusions are strikingly similar to the
experimental data obtained in Aplysia california abdominal ganglia [1]. The action
explanation proposed here is very similar to the experiments in which Gaussian white
noise with very different amplitudes (38 and 17 nA, respectively) were applied to the
neurons, noting that the action level of the corresponding STAs only differ by 14 %.
This led to the following conclusion: “when evaluating the spike triggering effective-
ness of different waves forms, one must decide on criteria by which to describe and
compare them: results . ..suggest that the amount of delivered charge is a defensible
choice.” In that study, “the amount of delivered charge” is identical to our definition
of action.

Comparisons between the Types I and II indicate some key features that contribute
to STR. On one hand, one can relate STR to the fact that the system contains some
kind of a threshold. A fluctuating stimulus that is frozen across trials yields threshold
crossings that are more robust with occasional large amplitude fluctuations, thus mak-
ing the spike timing more reliable. This is particularly true when the intrinsic noise
is relatively small. This observation is consistent both with the monotonic increase
in reliability as a function of noise intensity (Fig. 3) and, with the typically increased
reliability of SEEs related to higher action levels. In both types, we observe this in-
crease in action level as the voltage approaches the spiking threshold in a reliably re-
producible spike. On the other hand, dynamic properties of a neuron sometimes make
it respond in an amplified way to certain stimulus profiles. In a recent study, Paydafar
[22] showed that a specific wave form of noise facilitates the switch between a stable
fixed point and a stable periodic solution. This helps explain why SEEs with certain
time profiles are more favorable for inducing reliably timed spikes. Results in Fig. 8,
obtained by subdividing the individual “reliable” SEEs into subgroups with differ-
ent temporal profiles, suggest that, among all the reliable SEESs, the one-third that has
lower action level, but with a more favorable time profile actually triggers spikes with
higher precision (Fig. 8). While this relationship between action level and precision is
observed for both types, the two types differ in the magnitude of the increased action
level before the spike, the distribution of observed action levels, the distribution of
the values of the gating variable w when the voltage reaches its threshold, and shifts
in the precision distributions for the reliable SEEs.

The significance of the shape of the time profiles of SEEs is also clearly revealed.
A STA with a characteristic downward bias followed by a swift upward swing was
found when a depolarizing d.c. was present. A similar profile was also found in [6,
8]. This STA is similar in shape to the favorable profiles shown in Fig. 8 in our study.
The importance of higher action immediately preceding a threshold value was also
demonstrated both in the STA profiles and in the minimal standard deviation for that
element of the SEEs. Unfortunately, the SEEs found in these experiments were not
further subdivided into reliable and unreliable ones to further confirm the existence of
favorable temporal profiles. The remarkable agreements between these experimental
data and our model results seem to suggest that the two mechanisms demonstrated
here are probably of more general relevance than the model itself. High action ba-
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sically confirms that robust threshold crossing is possible and temporal profile sen-
sitivity is a clear indication that a low amplitude fluctuation should still be able to
trigger spikes reliably provided that the response is amplified through a time local-
ized resonance process. Differences in the underlying dynamical structure relate to
the favorable time profiles. In Type II, the variation in the state variables relative to
the pseudo-slow manifold is more prominent, leading to reliable responses over a
larger range of action. In Type I, there is not a strong deviation from the pseudo-slow
manifold, so that initiation of the spike has a greater dependence on the action and
signal amplitude rather than temporal profile. The influence of correlation 7 of the
extrinsic noise was also seen to improve reliability through increasing the likelihood
of the favorable temporal profiles. As the conclusions made in this study are statisti-
cal in nature by averaging over many spike triggering events, the approach is relevant
to both experimental and computational studies and could be of general interest to
a wide variety of audiences. While reliable spike-evoking epochs on average have
higher action, further dividing them into subgroups revealed the sensitivity of STR
to temporal profiles of the signal. This is particularly visible in Type II neurons. The
connection between these two conclusions is observed when regarded in a statistical
context.

It is also important to contrast two different situations under which STR can occur:
(1) in neurons that are spontaneously spiking, and (ii) in neurons that are quiescent in
the absence of external input. In the first situation, input signals containing the intrin-
sic frequency of the neuron can trigger spike trains with more reliable timing [4, 5]. It
has been emphasized in a number of studies that STR is closely related to the fact that
the input signal possesses a spectrum that contains a significant fraction of frequency
modes that are identical to an intrinsic frequency, with a range of computational and
experimental results that explore mechanisms that contribute to low- or high-pass fil-
tering of the input [48, 49]. The theory that predicts the emergence of noise-induced
negative Lyapunov exponent in noise-driven synchrony between uncoupled phase os-
cillators [12] provides a rather convincing theoretical explanation for the underlying
mechanism. A phase analysis in a more general setting [50] provides consistent and
complementary results for noise-driven synchrony in oscillators in an active state
analogous to (i). The computational study of [18] considered sinusoidal stimuli in (i)
and (ii), termed mean-driven and fluctuation regimes, respectively, focusing on the
significance of frequency in the spiking probability and precision. There it was noted
that noise could enhance reliability in the fluctuation-driven setting, and that for mod-
erate amplitudes of the sinusoidal stimuli, the most reliable response rate selected a
frequency resonant with the subthreshold voltage oscillations.

To show that the frequency content of the stimulus is not always of central impor-
tance, we aimed at studying STR in an idealized and simplified model in situation
(ii), quiescence in the absence of external input. In this setting, without strong, high
frequency inputs, the spike trains triggered by the stochastic signals contain long ISIs
only. This makes the frequency content of the input signal of little importance for
STR (Fig. 5). In response to stochastic external inputs, both the Type I and Type 11
neurons are capable of generating trains of spikes with reliable spike timing. In both
types, the reliability measure R shows monotone increase as the intensity of the noisy
input increases. When R is plotted as a function of the correlation time of the extrinsic
input, Type II shows a local maximum while Type I gives only a monotone increase.
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For the second situation (ii), however, the phase theory alone does not apply, as in-
dicated by the study of conditional oscillators synchronized through a common noisy
input signal [19]. There it was shown that a combined phase and amplitude analysis is
needed to completely describe the phenomenon. In addition, [51] explores scenarios
where geometry and phase-space structures play a critical role, so that perturbative
approaches based on phase response curves can not predict the dynamical behavior.
Since the approach of [19] does not apply to full spiking induced by noise, a cor-
responding theory is still needed for such a case. Mechanisms for spike initiation by
subthreshold fluctuations are probably of crucial importance in such a theory. Encour-
aging progress has been made toward understanding these mechanisms based on the
concept of “feature detection” [20]. The ideas for key features for spiking combined
with the stochastic theory for the synchrony of two uncoupled, noise-induced coher-
ent oscillators driven by a common noise input in [19] should open up promising
directions toward a theoretical explanation of STR in the case of underlying quies-
cence.

The results for neurons that are quiescent in the absence of an external input sug-
gest a number of other future directions for investigation. For example, experimental
and computational studies have explored STR in networks, exploring the effects of
network interactions, coupling, and different sources of heterogeneity. In a study of
single and two-layered networks of theta neurons [9], STR was analyzed using Lya-
punov exponents and synaptic variance in the context of local noise, trial-to-trial vari-
ation affecting only select neuron, and global noise, trial-to-trial variation as an input
to the entire network. A recent computational study of network dynamics indicates
mechanisms that allow reliability to appear even in systems where chaotic dynamics
are prominent, also suggesting that certain classes of initial states may play an impor-
tant role [52]. In [19], specific results for synchronized and phase-locked responses
were obtained for different relative strengths of global and local noise, including some
first steps in spatial heterogeneity of the noise. However, the concepts of action and
time profiles have not been analyzed in the network case, and heterogeneity of cou-
pling and neural properties have not been analyzed in the case where the underlying
state of the network is quiescence. Experimental results in [53] showed that network
interactions enhance the frequency range of reliable responses, in the context where
the networks are in an active state without the (noisy) external input. The question
remains whether similar network tuning of otherwise quiescent neurons increases the
reliability, or if the same insensitivity to signal frequency is observed for the network
as in the single quiescent neuron case considered in the present work.
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