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Abstract Oscillations in the basal ganglia are an active area of research and have
been shown to relate to the hypokinetic motor symptoms of Parkinson’s disease. We
study oscillations in a multi-channel mean field model, where each channel consists
of an interconnected pair of subthalamic nucleus and globus pallidus sub-populations.

To study how the channels interact, we perform two-dimensional bifurcation anal-
ysis of a model of an individual channel, which reveals the critical boundaries in pa-
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rameter space that separate different dynamical modes; these modes include steady-
state, oscillatory, and bi-stable behaviour. Without self-excitation in the subthalamic
nucleus a single channel cannot generate oscillations, yet there is little experimental
evidence for such self-excitation. Our results show that the interactive channel model
with coupling via pallidal sub-populations demonstrates robust oscillatory behaviour
without subthalamic self-excitation, provided the coupling is sufficiently strong. We
study the model under healthy and Parkinsonian conditions and demonstrate that it
exhibits oscillations for a much wider range of parameters in the Parkinsonian case. In
the discussion, we show how our results compare with experimental findings and dis-
cuss their possible physiological interpretation. For example, experiments have found
that increased lateral coupling in the rat basal ganglia is correlated with oscillations
under Parkinsonian conditions.

Keywords Parkinson’s disease · Mean-field model · Bifurcation analysis · Beta
oscillations · Subthalamic nucleus · Globus pallidus · Wilson–Cowan equations

1 Introduction

The basal ganglia are a group of densely interconnected subcortical nuclei comprising
of the striatum, globus pallidus, subthalamic nucleus (STN), and substantia nigra.
Cortical projections to the ventral striatum and STN provide input to the basal ganglia
from almost all areas of the cortex [1–3]. In primates efferent output from the basal
ganglia innervates ascending and descending neurons in the thalamus and brainstem,
via the internal segment of the globus pallidus (GPi) and the substantia nigra pars
reticulata (SNr) [4, 5]. The basal ganglia therefore appear to be in a key position to
modulate the flow of information along motor and sensory pathways.

Parkinson’s disease is primarily a disease of the basal ganglia. Its main pathophys-
iological feature is the death of the neurons in the substantia nigra pars compacta
(SNc) that provide widespread dopaminergic innervation to the other basal ganglia
nuclei [6]. Electrical recordings from animal models of Parkinson’s disease and pa-
tients undergoing functional neurosurgery have revealed several characteristics of the
electrical activity in the Parkinsonian basal ganglia that presumably arise as a result
of this loss of dopaminergic input. Perhaps the most well studied of these pathologi-
cal features is a marked increase in the degree of widespread synchronised oscillatory
activity within the STN and GPi. This increased synchrony is shown by an increase
in spectral power of the local field potential (LFP) signal recorded from these nu-
clei, particularly within the so-called β frequency band (8–30 Hz) [7]. LFP power
in this range decreases when patients are taking the dopamine prodrug L-DOPA and
has been shown to be positively correlated with the severity of the main hypokinetic
motor symptoms of Parkinson’s disease: bradykinesia and rigidity [8]. Although in
general LFPs appear to better represent subthreshold synaptic currents rather than
widespread spiking activity [9], several studies have found that (in the STN at least)
the LFP signal is indeed linked to the activity of local neurons [10–12].

There is some experimental evidence that supports the idea that excessive levels
of synchronous β activity are the causal basis for bradykinesia and rigidity [13].
Macro-electrode stimulation of the STN at 20 Hz reduces the speed of movement
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during a finger tapping task [14] and slows force development in a grip task [15].
Exactly how synchronous β activity could have an anti-kinetic effect remains to be
seen. One theory considers the basal ganglia as one or more information channels in
which the available bandwidth corresponds to the degree of independence between
neurons [16]. In the pathological case where many neurons have become entrained
to fire synchronously in time with a particular rhythm then the ability for the basal
ganglia to convey meaningful information would clearly be limited. An alternative
hypothesis holds that β oscillations are a globally coherent signal that correspond
to tonic maintenance of the current pose [17]. This is supported by evidence from
monkeys [18] and humans [19] that shows that during tonic muscle activity there
are widespread synchronous β oscillations in both the central and peripheral nervous
system. It is suggested that this oscillatory activity may be subject to modulation in
the basal ganglia, with dopamine acting as an indicator of movement-related stimuli
that reduces the level of synchronous β activity [20].

Understanding the nature of abnormal β oscillations in Parkinson’s disease may
lead to new treatments and, more generally, insights into the motor functions of the
basal ganglia. Two important questions are where the oscillations arise and the mech-
anism by which they are generated. While it is possible that they are of cortical origin
[21], Parkinson’s disease primarily affects the nuclei of the basal ganglia so it seems
plausible that these nuclei are somehow involved in the generation of β rhythms. Two
potential sources within the basal ganglia that have been suggested by experimental
and theoretical work are the striatum and the reciprocally connected neurons of the
STN and external segment of the globus pallidus (GPe). LFP recordings from healthy
monkeys show transient β oscillations that are synchronous across large areas of the
striatum [22]. In [23], McCarthy et al. develop a computational model of a network of
striatal medium spiny neurons that shows a peak in the β power of a simulated LFP
that increases under reduced dopamine conditions. The basis for these oscillations
in their model is a non-inactivating potassium current known as “M-current”. A key
prediction of the model, that increased striatal acetylcholine levels will increase β

power, was verified in rodent experiments as part of the same study.
The reciprocally connected neurons of the GPe and STN have been more exten-

sively studied as a possible source of β oscillations than the striatum. Intra-cellular
tracing studies suggest that both the inhibitory GABAergic projection from GPe to
STN and the excitatory glutamatergic projection from STN to GPe show a great de-
gree of spatial selectivity, with individual groups of pallidal neurons projecting to
individual groups of subthalamic neurons, which in turn project back to their affer-
ent pallidal neurons [24]. Since STN neurons are capable of rebound firing upon
release from GABA-mediated hyperpolarization [25], this arrangement suggests that
reciprocally connected groups of STN-GPe neurons may be able to act as pacemaker
circuits. In vitro co-cultures of cortical, striatal, pallidal, and subthalamic cells show
that neurons in the GPe-STN circuits are indeed capable of generating oscillatory
firing patterns in the absence in rhythmic inputs [26]. Experiments in Parkinsonian
primates in which synaptic connections in the basal ganglia were selectively blocked
demonstrated that β oscillations were dependent on glutamatergic input to the STN
and the reciprocal connections between the STN and GPe [27].

Computational and mathematical modelling has also demonstrated that the GPe
and STN are capable of acting as a pacemaker circuit. The detailed conductance-
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based models of Terman et al. [28] show that GPe-STN networks with various topolo-
gies are capable of producing a wide range of different activity patterns, including
transient oscillations. An average firing rate model of a coupled pair of GPe and
STN populations suggests that robust β-band oscillatory activity is possible provided
that self-excitation within the STN population exceeds a certain level [29]. It seems
unlikely, however, that STN neurons exert any excitatory influence over other STN
neurons since there is no evidence of local axon collaterals or gap junctions within
the nucleus [30, 31]. A similar modelling study has demonstrated that with the ad-
dition of synaptic delays, coupled GPe-STN populations can generate β oscillations
without any STN self-excitation [32].

The aim of this work is to extend the population-level models of [29] and [32]
to investigate the behaviour when multiple interactive groups (or “channels”) of GPe
and STN neurons are present. This is based on the idea that information flows through
the basal ganglia in circuits that remain largely segregated [3, 33, 34]. It should be
noted that it is unclear from the current biological data to what level of represen-
tation this segregation is maintained and, therefore, whether channels correspond to
body regions, limbs, individual muscles or even particular motor actions. In general,
we do not assume any level of representation and simply seek to identify what dy-
namics are possible in a system of coupled parallel channels. We initially study a
single isolated channel and use two-parametric bifurcation analysis to find the criti-
cal boundaries in parameter space that separate regions of different dynamics. This
bifurcation analysis provides useful guidance for the study of the collective behaviour
of locally coupled channels (arranged in either a circle or line topology); in particular
it suggests parameter values that correspond to oscillatory dynamics. Additionally,
while [29] studied the dynamics of the system under changing levels of excitatory
and inhibitory striatal GPe input, the neurons that project from striatum to GPe are
usually silent [35]. We investigate the possibility that the direct cortical projection to
the STN (the “hyper-direct” pathway) plays an important role in modulating pallidal
and subthalamic activity [36].

Section 2.1 will describe the model and introduce its equations and parameters.
In Sect. 3, we will present the results of bifurcation analysis and numerical simula-
tions of the model in the case of a single uncoupled channel. These results are used
to inform the analysis of the locally coupled model, which we will present in Sect. 4.
Section 5 will discuss a possible physiological interpretation of our results and com-
pare them with previous experimental and theoretical studies.

2 Methods

2.1 Model Description

The model consists of 2N coupled non-linear differential equations, where N is the
number of channels being modelled:

τs ẋi = −xi + Zs(wssxi − wgsyi + I ) (1)

τgẏi = −yi + Zg

(
−wggyi + wsgxi − αwgg

∑
j∈Li

yj

)
, i = 1,2, . . . ,N (2)
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These equations are based on those developed by Wilson and Cowan [37]. The
time-dependent variables xi and yi represent the mean field activity of the excita-
tory STN subpopulation and inhibitory GPe subpopulation of channel i, respectively.
Taken together the equations represent a pair of reciprocally connected STN-GPe
sub-populations corresponding to one of many hypothesised basal ganglia informa-
tion channels [34]. The connection strength parameters (wss , wsg , wgg , and wgs ) are
non-negative and represent the strength of synaptic connectivity within and between
the populations, where wpq is the connection strength from population p to popula-
tion q (e.g. wsg is the synaptic connectivity from STN to GPe). τs and τg represent
the average membrane time constants of neurons in the two populations, while I rep-
resents a constant level of cortical excitation of the STN (the hyper-direct pathway).
For simplicity, this study is restricted to the case when there is the same degree of
constant cortical input to each of the channels.

Connections between the channels take the form of lateral inhibition between GPe
sub-populations. The strength of this lateral coupling is taken to be a proportion α of
the coupling strength within GPe sub-populations (wgg), where α ≥ 0. Different con-
nection schemes are possible and are specified by the term Li in Eq. (2). For a given
channel i, Li is a set of indexes that specifies which channels the GPe subpopulation
receives inhibition from. In this study, we consider only local connections to imme-
diate neighbours, with two different arrangements of channels: on a line (Eq. (3)) and
on a circle (Eq. (4)).

Li =

⎧⎪⎨
⎪⎩

{i − 1, i + 1} 1 < i < N

{i + 1} i = 1

{i − 1} i = N

(3)

Li =

⎧⎪⎨
⎪⎩

{i − 1, i + 1} 1 < i < N

{i + 1,N} i = 1

{i − 1,1} i = N

(4)

The system is non-linear due to the functions Zs(·) and Zg(·), which represent
how different levels of synaptic input influence the activity of the population. The
functions are sigmoidal in shape and are described by Eq. (5):

Zj (x) = 1

1 + exp(−aj (x − θj ))
− 1

1 + exp(aj θj )
(5)

Here, j = s or g. This adds four new parameters, as , ag , θs , and θg , which represent
the maximum slope of the sigmoid and its position on the horizontal axis respectively,
for STN and GPe sub-populations. The constant term that is subtracted in Eq. (5) is
used in the Wilson–Cowan formalism to ensure that Zj (0) = 0, which means that
when a subpopulation receives no inputs its activity tends to a single stable fixed
point [37]. The model is summarised in Fig. 1. Note that the cortex is not modelled
as a population, it simply provides a constant level of input to each STN subpopula-
tion.
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Fig. 1 Model schematic. Schematic diagram showing the system arranged in a line topography, includ-
ing the excitatory STN sub-populations, the inhibitory GPe sub-populations, and the connections between
them. Red represents excitatory sub-populations and connections; blue represents inhibitory sub-popula-
tions and connections

2.2 Parameter Values

For the values of as , ag , θs , and θg we use the typical values for excitatory and
inhibitory sub-populations specified by Wilson and Cowan [37]. For the remaining
fixed parameters, the values determined by Holgado et al. [32] are used. Due to a
lack of experimentally determined electrical characteristics of neurons in the primate
basal ganglia, the membrane time constants used are those from rodent studies. It
should be noted, however, that neurons in the rodent globus pallidus appear to vary
widely in their electrical characteristics, and the value for τg used here (from [32])
lies below the range of values estimated by some experimental studies (see, e.g. [38]).

Two sets of values for the connection strengths are used, which will be termed
the “healthy” and “Parkinsonian” parameters. Holgado et al. determined these pa-
rameters on the basis of previously published experimental recordings of unit activity
from the STN and GPe of monkeys. Recordings were used from both healthy an-
imals and animals that were rendered Parkinsonian via 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) lesioning. In each case, the recorded firing rate under a
variety of conditions (normal, transmitter block, current injection) was compared to
the firing rate predicted by their model under the same (simulated) conditions, and
a genetic algorithm was used in order to find two sets of connection strengths that
best fit the data. The parameter fitting that Holgado et al. performed suggested that
all connections became stronger under Parkinsonian conditions, and they cite several
experimental results that support this increase, including the presence of D2 receptors
in the STN [39] and GPe [40, 41] and the enhanced effect of GABA on STN neurons
[42, 43] and glutamate on GPe neurons [41, 44] when dopamine is reduced. We note
that MPTP lesioning represents chronic dopamine depletion, which is the condition
under which synchronised β activity is seen in experiments. In Holgado et al.’s model,
the system has only steady-state behaviour when the healthy parameters are used, but
linearly scaling the parameters towards the Parkinsonian values causes stable β os-
cillations to appear. See Table 1 for fixed parameter values. It should be noted that
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Table 1 Fixed parameter values
for the healthy and Parkinsonian
conditions

Healthy Parkinsonian

wgg 6.6 12.3

wgs 1.12 10.7

wsg 19.0 20.0

τs 6 ms

τg 14 ms

as 4

θs 1.3

ag 3.7

θg 2

the equations in Holgado et al.’s model directly represent the average unit firing rate
of the populations. In this regime, each weight parameter has a direct physical mean-
ing: it represents how many spikes/s the target population increases (or decreases) by
when the source population’s firing rate increases (or decreases) by 1 spike/s. Our
model does not directly represent the firing rates of populations, and so the param-
eters should therefore be interpreted as representing the general relative strengths of
synaptic connections.

2.3 Technical Details

For qualitative investigation of the isolated channel model, we used the software
package XPPAUT [45] with the default integrator, a fourth-order Runge–Kutta
method and a fixed step size of 0.5 ms. Numerical continuation in the isolated channel
model was carried out using XPPAUT and LOCBIF [46]. In a few cases, numerical
continuation failed to compute some parts of the 2D bifurcation diagram and in these
cases the analysis was performed by fixing one parameter and observing the changing
dynamics as the other was carefully varied. Qualitative investigation of the coupled
channels model was done using XPPAUT and associated XPPy Python interface [47].
Numerical continuation of this system was carried out using CONTENT [48].

The frequency visualisation plots were computed using XPPAUT and XPPy for
the numerical simulation and the FFT routine from the SciPy library [49]. When cal-
culating the FFT the total integration time was 2.048 s, but only the second half of
the integration output was passed to the FFT routine to try to ensure that the trajec-
tory was close enough to the stable limit cycle for only truly oscillatory activity to be
included. This gave the FFT output a range of 0–1024 Hz across 1024 bins. This was
repeated five times for each parameter pair, with random initial conditions. The fre-
quency and amplitude of the most powerful FFT bin over the ten runs were recorded
and plotted.

3 Isolated Channel Model

This section will consider the simplified system that is obtained by setting α = 0. This
condition corresponds to the case where neurons from each STN and GPe subpopula-
tion never make synapses onto neurons outside their own channel. The detailed study
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of a single element enables us to understand some aspects of the dynamics in the sys-
tem of interactive channels. For example, the boundaries of oscillatory regimes in the
2D bifurcation diagram allow estimation of the level of input channels must receive
from the cortex and their neighbours in order to give oscillatory dynamics.

Since it is only necessary to consider two equations in this reduced model, bifur-
cation analysis can be used to completely understand the different dynamical regimes
that are possible within a single channel. We consider the bifurcations of the system
under variation of the following two parameters:

• The level of cortical input to the STN (I ). There are two major pathways by which
cortical input reaches the basal ganglia: one via the striatum and one projecting
directly to the STN. Striatal projection neurons fire very infrequently during peri-
ods of rest, so the system’s behaviour in response to varying levels of steady-state
input via the cortico-subthalamic “hyper-direct” pathway is studied.

• The amount of self-excitation within the STN (wss ). The work of Gillies et al. [29]
suggests that there must be some ability for STN neurons to provide excitation to
other STN neurons in order for the STN-GPe network to exhibit oscillations. Since
the biological plausibility of this is contentious, bifurcation analysis is used to
determine how much STN self-excitation is required for oscillations and how this
depends on the level of hyper-direct input. It is also useful to study the behaviour
of the isolated channel model under variation of wss because the laterally coupled
GPe sub-populations in the full coupled model introduce a similar effect.

3.1 There Are no Globally Stable Limit Cycles when wss = 0

When there is no self-excitation within the STN (i.e. wss = 0) then it can be seen
from the equations of the isolated channel system that there cannot be a globally
stable limit cycle. Under these conditions, the Jacobian matrix at any fixed point has
a negative trace and positive determinant, therefore, the fixed point must be stable.
Let q = (1 + exp(aj θj ))

−1 (i.e. the constant term in Eq. (5)) and consider the box in
phase space bounded by x = −q , y = −q , x = 1 − q , y = 1 − q; note that in general
q is very small and so this box covers almost all of the phase space. It can be seen
that the vector field around the edges of the box must point inwards. The box must
therefore contain just one fixed point, which is stable. This means that globally stable
oscillations are not possible. This analysis does not rule out the existence of pairs of
stable and unstable limit cycles surrounding the fixed point, however, and so we will
use qualitative analysis to investigate this possibility.

3.2 An Isolated Channel Cannot Oscillate Under Healthy Conditions

The dynamics of the system when the healthy set of values for the fixed parameters
were used can be understood qualitatively by examining the stability of the system’s
fixed points and the shape of its nullclines for different values of the bifurcation
parameters. Figure 2 shows the nullclines for a particular pair of values for wss and I .
With these parameters, the system is bi-stable, such that all trajectories in state space
tend toward either a high or low level of activity in both nuclei depending on initial
conditions. Also shown in Fig. 2 are the stable and unstable manifolds of the saddle
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Fig. 2 Isolated channel phase space under healthy conditions. Behaviour of the isolated channel system
under healthy conditions with wss = 3.4, I = 0. Left: The nullclines and fixed points of the system. Right:
Fixed points, stable and unstable manifolds of the saddle point, and example trajectories

point. Trajectories cannot cross these manifolds and the stable fixed point that any
given trajectory tends toward depends on which side of the stable manifold its initial
conditions lie upon.

Adjusting the two parameters changes the ẋs = 0 nullcline (the red line in Fig. 2):
increasing wss makes the slope of the middle branch steeper, while increasing I shifts
the nullcline upward. Both of these changes increase the proportion of initial condi-
tions that give trajectories tending to the high activity state, as would be expected
from increased STN self-excitation or cortical input. If the parameters are raised past
a critical point, the system undergoes a saddle-node bifurcation whereby the low ac-
tivity stable fixed point and the saddle meet and annihilate, leaving the high activity
state as the only fixed point of the system. Alternatively, if the parameters are lowered
past a critical point then the high activity stable state disappears in the saddle-node
bifurcation instead, leaving only the low activity state. Since these saddle-node bi-
furcations are the only bifurcations that the system undergoes, there is no possibility
for limit cycles to arise when using the healthy fixed parameter values. The system
displays hysteresis because increasing the parameter passes a critical value can cause
trajectories to “jump” from one stable point to another, and reducing the parameter
back past this critical value does not cause a jump back to the original fixed point.

3.3 Oscillatory Regimes Are Possible in Isolated Channels Under Parkinsonian
Conditions

Applying the qualitative methods in the previous section to the system using the
Parkinsonian set of fixed parameter values revealed a much richer array of possi-
ble dynamics and also suggested a parameter range within which bifurcations could
be present. To fully understand the different dynamical regimes, numerical continu-
ation was used. Continuation was first performed in one dimension by starting at a
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Fig. 3 2D bifurcation diagram
for isolated channel under
Parkinsonian conditions. 2D
bifurcation diagram showing the
bifurcations that the isolated
channel system undergoes under
variation of I and wss in the
Parkinsonian case. A zoom of
the area inside the small
rectangle in the lower
right-hand corner is shown in
Fig. 4

Fig. 4 2D bifurcation diagram
for isolated channel under
Parkinsonian conditions (zoom).
Zoom of the part of the diagram
inside the black rectangle in
Fig. 3

fixed point and varying a single parameter and then in two dimensions by starting at
a bifurcation point and allowing both parameters to change.

Figures 3 and 4 show the complete 2D bifurcation diagram of the system under
Parkinsonian conditions.

The bifurcation curves divide the parameter space up into six regions. Within each
region the phase portraits of the system are topologically equivalent, having the same
number of stable and unstable fixed points and limit cycles. The characteristics of
these features (such as frequency and amplitude of oscillation) may vary within re-
gions. Figure 5 shows example phase portraits that are representative of the system’s
behaviour in each of the regions. The parameters corresponding to each region in the
figure are given in Table 2.

Region A makes up the majority of the parameter space. Within this region, the
system possesses a single, stable, fixed point. The location of this fixed point in both
dimensions increases with I and wss , as is expected from increased external stimu-
lation or self-excitation. The behaviour of the system is more interesting in the other
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Fig. 5 Phase portraits of isolated channel system under Parkinsonian conditions. Example phase portraits
showing the behaviour of the isolated channel system within each of the regions of parameter space

Table 2 The parameter values
that were used for each of the
regions in Fig. 5

Region I wss

A (low) 2 4

A (high) 2 18

B 2 11.8

C 2 9

D 3.5 5

E 10.45 2.345

F 10.495 2.29

five regions (B–F), which together make up the large wedge-shaped area in the mid-
dle of the bifurcation diagram.

As one or both of the parameters is reduced from values that give a constant high
rate of firing (the area above the wedge in the bifurcation diagram), they move toward
and eventually pass through the saddle-node bifurcation curve and into region B. Two
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Fig. 6 Oscillatory population
activity in isolated channel
model. Population activity over
time for three points in region C,
showing periodic pauses (top),
bursts of high activity (bottom)
and roughly even oscillation
between high and low activity
(middle). As in previous figures,
the red and blue lines represent
the activity of the STN (x(t))
and GPe (y(t)), respectively

additional fixed points appear at this point, both unstable. Although in region B all
trajectories still tend to the single stable fixed point, the effects of the saddle point’s
manifolds causes some trajectories to take long paths around the phase space first.
At the point where the parameters cross the saddle-node on invariant circle (SNIC)
bifurcation curve, the stable node and the saddle point join together and the stable
and unstable manifolds of the saddle point form a loop (a homoclinic orbit). Beyond
the bifurcation, in region C, the saddle and the stable node have disappeared leaving
the unstable spiral as the only fixed point. The homoclinic orbit has now become a
stable limit cycle and so in this region all trajectories are attracted to the limit cycle
and the system displays robust oscillations no matter what the initial conditions.

Both the frequency and amplitude of the stable oscillations in region C vary as the
parameters move around within it. Close to the SNIC bifurcation line the frequency is
extremely low, since the effects of the “ghost” saddle point cause trajectories to pass
very slowly through the part of the limit cycle that is close to where the saddle was lo-
cated.1 When the parameters are within region C the activity of the sub-populations
may show either low activity with short pulses of high activity, or the opposite, or
something in between. Figure 6 illustrates this by showing a number of plots of pop-
ulation activity against time from within region C.

The lower border of region C is, for the most part, an Andronov–Hopf bifurca-
tion curve. This curve is divided into three segments—two supercritical parts that
are separated by a long subcritical A-H curve. The points where the criticality of the
bifurcation changes are the co-dimension-2 Bautin bifurcation points. The change in
behaviour of the system as its parameters pass through the lower border of region C
depends on whether they cross a sub- or super-critical A-H curve. In the case of two
supercritical curves, this change is simple: the limit cycle shrinks around the unsta-
ble spiral until, at the bifurcation point, its amplitude becomes zero. At this point,
the limit cycle disappears and the spiral becomes stable: the system has returned to
region A.

1The saddle’s ghost also has an effect on the amplitude of oscillations in this case (though this is not
generally true of SNIC bifurcations). This is because the shape of the limit cycle is defined by the position
of both the unstable spiral and the saddle’s ghost. As the parameters are varied in region C, these two
points move in relation to each other.
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Fig. 7 Phase portrait of
Parkinsonian region D. Enlarged
portion of Fig. 5 showing the
nullclines and phase portrait of
the isolated channel system in
region D

The situation when the system leaves region C across the subcritical A-H curve
is more interesting. In this case, the spiral becomes stable before the limit cycle has
shrunk to zero amplitude. An expanded phase portrait of the system in this region
is shown in Fig. 7. Since both the stable fixed point and the stable limit cycle have
local basins of attraction, the region inside the stable limit cycle is divided into two
concentric areas. Trajectories that begin within the inner area tend to the fixed point
and trajectories that start within the outer area tend to the stable cycle. The border
between these two areas is a new unstable limit cycle that appears at the point of sub-
critical bifurcation. The behaviour of the system within region D is therefore bi-stable
and, depending on initial conditions, may show either steady-state or oscillatory ac-
tivity levels. As the parameters move from the top to the bottom of region D, the
stable limit cycle continues to shrink while the unstable limit cycle grows. The point
at which the cycles meet and annihilate lies on the fold of cycles bifurcation curve.
This leaves just one stable fixed point, returning the system to region A.

While regions A–D make up the majority of the parameter space, there are two
small additional regions (shown in detail in Fig. 4). The point at which the A-H curve
terminates on the saddle-node curve is a co-dimension-2 Bogdanov–Takens (B-T)
bifurcation point. Due to the normal form of the B-T bifurcation, this point must
also be one end of a homoclinic bifurcation curve. The other end of the homoclinic
curve is also located on the saddle-node curve at the saddle-node/homoclinic point;
here the two curves merge and the saddle-node curve becomes a SNIC curve. At the
point where the parameters cross the homoclinic curve from region B (unstable spiral,
saddle, stable node) to region E, the stable and unstable manifolds of the saddle form
a closed loop with each other. Beyond this bifurcation point, the two manifolds have
crossed one another and a stable limit cycle appears between the saddle’s unstable
manifold and the unstable spiral (see pp. 185–190 in [50]). Like region D, region
E has a bi-stability between steady-state and oscillatory behaviour that depends on
initial conditions. The set of initial conditions that leads to oscillations is very small,
however, due to the shape of the saddle point’s manifolds.

If the system’s parameters leave region E through the supercritical A-H curve, then
the unstable spiral becomes stable and the limit cycle is destroyed. Behaviour in this
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Fig. 8 Effect of parameters on oscillation frequency and amplitude in an isolated channel. The frequency
and amplitude of the strongest oscillation present for each pair of parameter values for the isolated channel
system under Parkinsonian conditions. The bifurcation curves and regions are shown for ease of compari-
son with Fig. 3

region (region F) is still bi-stable, but the two stable states are both fixed points so
there can be no oscillation. Furthermore, these two states are extremely close to each
other in phase space, both being regions of high activity. The parameters can leave
region F through one of two parts of the saddle-node curve. Crossing either of these
parts results in the loss of one of the stable fixed points and the saddle, leaving just
one fixed point, which is stable.

Since bifurcation analysis revealed a number of oscillatory regions in the parame-
ter space a further numerical experiment was performed to investigate the character-
istics of these regions. Specifically, a large scale set of numerical simulations were
performed to determine how the frequency and amplitude of the limit cycles varied
with the parameters. The parameter space was divided up into a uniform grid and,
for each pair of parameter values, the system was simulated for a period of time. The
power spectrum of the resulting activity was computed using a fast Fourier transform
(FFT) and the frequency of the strongest oscillation visualised. Figure 8 shows the re-
sults of these computations. The same simulations were performed using the healthy
fixed parameters, but as expected no oscillations were seen and so the results are not
shown.

These results are what would be expected based on the bifurcation analysis. Only
regions C and D contain oscillatory activity (the only other oscillatory area in Fig. 4,
region E, is too small to be shown here). The frequency of oscillations decreases
to zero as the parameters move toward the SNIC bifurcation curve (the boundary
between regions B and C) and increases as the parameters are decreased away from
this curve. As previously discussed, the amplitude of the oscillations is greater when
the parameters are close to the SNIC bifurcation line, since the unstable spiral and
“ghost” saddle point are far apart here. The frequency in much of region C is in
the β band, but region D contains some areas of higher frequency oscillation (up to
about 50 Hz, which falls within the low part of what is termed the γ band). These
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frequencies can only be considered as some approximation of rhythms that would be
found in the real STN-GPe network.

We will now use the results of our analysis of the isolated channel model to in-
vestigate how the dynamics of the system change as coupling between channels is
introduced.

4 Analysis of the Coupled Channels Model

The coupled channels model is a 2N dimensional system (with N > 1), which means
that analysis is much more difficult than for the isolated channel model. We will begin
by discussing the parameter values that were selected before presenting some general
results that show that the coupled channels model has an oscillatory regime that is
very robust and exists for a wide range of parameters. Finally, Sect. 4.3 will briefly
describe the detailed structure of the attractors that the system has.

4.1 Parameter Choice

When studying the coupled channels model, we used the same values for the fixed
parameters as were used in the isolated channel model (see Table 1). As before, the
connection strengths were divided into a healthy set and a Parkinsonian set. However,
since there is no known mechanism whereby STN neurons can excite other STN neu-
rons, we chose to fix wss = 0. Although the analysis of the isolated channel model
found wss > 0 to be a necessary condition for oscillations, we hypothesised that the
coupled channels model might be able to oscillate with wss = 0, since the path from
an STN subpopulation to its neighbouring STN subpopulation and back again will
have the effect of indirect delayed self-excitation. The coupled channels model has
an additional parameter that can be varied (α), which controls the strength of inhibi-
tion between neighbouring GPe sub-populations as a proportion of the self-inhibition
within GPe sub-populations (wgg). Since we are basing our model on the idea that
sensorimotor channels remain largely segregated throughout the STN/GPe network
[3, 33, 34], we argue that α < 1 is the physiological range for this parameter. We
studied the system under variation of α and I , using the results of our analysis of the
isolated channel model to guide the selection of a reasonable range of values for I .

4.2 Oscillations Require Strong Coupling, Particularly Under Healthy Conditions

We began by manually carrying out many numerical simulations of different coupled
systems, varying the number of channels, connection topology, α and I , and whether
the healthy or Parkinsonian fixed connection strengths were used. Each simulation
was started from random initial conditions. During this experimental work, we found
that for relatively low lateral coupling (e.g. when α < 0.5) the systems always con-
verged to a single fixed-point attractor. None of our experiments with low α found
oscillatory regimes or multi-stability. We found that it is possible (for some values
of I ) for the fixed-point attractor to undergo a supercritical Andronov–Hopf bifurca-
tion as the parameter α is increased toward 1. This bifurcation causes a stable limit
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Fig. 9 Effect of parameters on oscillation frequency and amplitude in coupled channels. The frequency
(left) and amplitude (right) of the strongest FFT bin encountered during numerical simulation from ran-
dom initial conditions across a range of parameter values. The top row shows the system under healthy
conditions and the bottom row shows Parkinsonian conditions. The system here has 5 channels arranged
in a line topology

cycle of small amplitude to appear. This limit cycle is a global attractor. The range
of values of I for which this bifurcation exists depends upon whether the healthy or
Parkinsonian connection strengths are used: It is much wider in the Parkinsonian case
than in the healthy case.

To make this investigation more rigorous, we ran similar large-scale simulations
to the one which was used to generate Fig. 8, for a range of different connection
topologies and channel counts. Figure 9 shows one such result for 5 channels coupled
in a line topology, under both healthy and Parkinsonian conditions. It can be seen
that this appears to confirm our finding that oscillations require reasonably strong
lateral coupling and are much more prevalent under Parkinsonian conditions. This
fact appears to be generally true regardless of the connection topology used or number
of channels (up to 100 channels were used).

To further confirm these results, we used numerical continuation software to plot
the curve of the A-H bifurcation in parameter space. Figure 10 shows the results of
these computations for both the healthy and Parkinsonian cases, using five channels
arranged on a line. In the case of five channels on a circle, the bifurcation is more
complex because a symmetry means that two pairs of complex conjugate eigenvalues
simultaneously cross the imaginary axis (Hopf–Hopf bifurcation with equal pairs of
eigenvalues).

4.3 Detailed Attractor Structure Depends on Channel Count and Topology

Qualitative investigation of the coupled channels system revealed that the attractors
of each system are structured in a way that depends on the coupling topography (i.e.
circle or line) and whether the number of channels was odd or even. This section will
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Fig. 10 Coupled channel
bifurcation diagram.
Continuation of the supercritical
A-H in the (I,α) parameter
plane under both healthy and
Parkinsonian conditions. The
shaded areas correspond to
oscillatory activity. The system
here has five channels arranged
on a line

briefly illustrate the different attractor structures that our model can have in order to
demonstrate the range of possibilities.

We first consider the effect of gradually raising the value of α up from zero
while keeping I constant. When α = 0, we know from analysis of the isolated chan-
nel model that all of the STN sub-populations will converge to some fixed activ-
ity level (determined by I ) and all the GPe sub-populations will converge to some
other fixed level (i.e. there is a single fixed point where x1 = x2 = · · · = xN and
y1 = y2 = · · · = yN ). Increasing α changes the co-ordinates of this single steady-
state in phase space in a way that depends on whether the system is coupled as a
line or a circle. In the case of channels arranged on a circle, there continues to be
a single activity level for all STN sub-populations and another level for GPe sub-
populations, but increasing α decreases the GPe level and increases the STN one.
When the channels are arranged on the line, their steady-state activity levels become
paired symmetrically (i.e. (xi, yi) = (xN−(i−1), yN−(i−1))). When N is odd, the cen-
tre channel has its own unique activity level. Increasing α causes the activity levels
associated with the different channel pairs to spread out in phase space. Figure 11
shows the steady-state activity for a number of topologies (circle, line with N even,
line with N odd).

The system begins to oscillate when α passes some critical value αcrit. The precise
value of αcrit depends on I , N and the coupling topography/strengths, but in every
case the stable attractor becomes unstable and a new stable oscillatory attractor ap-
pears. The amplitude of the associated oscillations is small near the bifurcation and
increases as α moves further away from its critical value. The oscillatory activity can
take four different forms depending on the coupling topography and whether N is
odd or even. In the case of the line topography, each of the pairs of channels begin
oscillating together either anti-phase (N even) or in-phase (N odd). With the circle
topography, the channels all oscillate identically, but in either 2 anti-phase groups (N
even) or in a “splay state” with a constant phase-shift between channels such that
they span the oscillation period (N odd). Additionally, for the circle with N odd, it
appears that additional bifurcations can occur as α is increased further that result in
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Fig. 11 Steady state activity of coupled channels model. Steady-state activity of the healthy coupled
channels model with α = 0.5 and I = 2.5 under three different configurations. The activity of the STN
sub-populations is shown in shades of red and the activity of the GPe sub-populations is shown in shades
of blue. Left: circular topology with four channels (same activity level across all channels); middle: line
topology with four channels (pairs of channels with same activity); right: line topology with five channels
(pairs of channels with same activity plus middle channel)

additional stable oscillatory attractors besides the splay state. Figure 12 shows the
four main patterns of oscillatory activity.

In order to confirm that the general behaviour of the system was independent of
N and coupling topography, we generated diagrams similar to Fig. 9 for values of
N from 3 to 30, under both coupling schemes. Qualititative inspection showed that
all the diagrams were similar, as expected. For a more objective measure, we com-
puted, from each diagram: the fraction of nodes in the (I,α) parameter grid that gave
oscillatory activity, the minimum coupling strength (α) that gave oscillations, and
the average frequency of oscillation. These calculations confirmed that oscillations
are present for a much greater range of parameter values under Parkinsonian condi-
tions (Fig. 13), and similarly that the minimum value of α required for oscillations
was always much higher in the healthy case than in the Parkinsonian one (0.8 vs.
0.65, not shown). As expected, these measures tended to a constant level (which did
not vary with coupling topography) as N was increased, showing that the general
behaviour (oscillatory versus steady-state) was independent of channel count and to-
pography. The calculations also found that the average oscillation frequency did not
vary much with N or coupling topology, but that this average frequency was con-
sistently much lower under healthy conditions than Parkinsonian ones (55 Hz vs.
130 Hz, not shown).

5 Discussion

5.1 The STN and GPe May Generate Oscillations when Lateral Coupling Is Strong

The analysis of the coupled channels model above demonstrates that the range of
parameters that cause oscillations in a system of N STN/GPe subpopulation pairs,
laterally coupled at the GPe level, is relatively independent of the coupling topology
used and the value of N (as long as N > 3). In all cases, the sub-populations all
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Fig. 12 Oscillatory activity of coupled channels model. Oscillatory activity of the coupled channels model
with α = 0.95, I = 2.5 and healthy connection strengths, under four different configurations. The activity
of the STN sub-populations is shown in shades of red and the activity of the GPe sub-populations is
shown in shades of blue. Top left: line topology with ten channels (five anti-phase pairs); top right: line
topology with eleven channels (five in-phase pairs plus middle channel); bottom left: circle topology with
ten channels (two anti-phase groups); bottom right: circle topology with eleven channels (splay state)

tend to a constant level of activity when the strength of lateral inhibition is weak
compared to inhibition within GPe sub-populations. When lateral inhibition is made
almost as strong as the inhibition within GPe sub-populations then the network as a
whole can begin to generate oscillations when the level of cortical input received by
each channel is within a certain range; this range is much wider when the remaining
connection strengths are set at values representing the Parkinsonian basal ganglia.

There is some experimental evidence that suggests that this result could represent
what happens in the real basal ganglia. LFPs recorded simultaneously from multiple
sites within the rat globus pallidus (homologous to the human GPe) display a degree
of coherence that varies with global brain state: Under anaesthetised slow wave ac-
tivity (SWA) conditions, the LFP signals have little coherence, but when the brain
state becomes “globally activated” the signals become much more coherent with one
another suggesting an increased level of lateral coupling [51]. In terms of our model,
this would correspond to the value of α varying with brain state—low during SWA
and higher during global activation. Interestingly, a similar study using rats that were
chronically dopamine depleted via 6-hydroxydopamine (6-OHDA) lesion found that
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Fig. 13 Area of oscillatory region in parameter space. The area of the oscillatory region in diagrams
similar to those in Fig. 9, for different values of N and coupling topographies. In every case, the area is
much larger under Parkinsonian conditions than healthy ones and is not significantly affected by N or the
coupling topography, for values of N greater than approximately 14

the characteristic β LFP peak in the STN was present only in the globally activated
brain state, not during SWA [52]. Our model suggests that this oscillatory activity
may be generated locally by the STN/GPe circuit as a result of the increased lateral
coupling between GPe sub-populations that is seen during global activation.

The frequency of oscillations generated by our model is generally much higher
than the 15–30 Hz β band—although it is interesting to note that the parameter val-
ues that resulted in the largest amplitude of oscillation were those that gave the lower
frequency oscillations, including the β band (Fig. 9). Although we found that shifting
the fixed connection strengths toward their healthy values reduced this average fre-
quency (whilst shrinking the oscillatory region of parameter space), we did not find a
simple relationship between the frequency of oscillation and any one individual con-
nection strength. It is possible that more complex coupling topologies (for example,
linking each GPe subpopulation with more of its neighbours, with a strength that de-
creased with distance) could have the effect of reducing oscillation frequency. Our
definition of the frequency of oscillation was also very simple: we considered only
the frequency of the highest peak that was found across the power spectra of all of
the sub-populations’ activity. A more thorough study should examine the entire spec-
trum in each case and check for a peak at β , and could consider a measure that would
more accurately correspond to a simulated LFP recording (such as the summation of
activity across all channels). Finally, it is possible that the time constants that were
used (particularly for the GPe sub-populations) were significantly different to the typ-
ical cell membrane time constants of the populations we are modelling. Experiments
have reported a wide range of possible values for membrane properties of GPe neu-
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rons [53]. At present, our model only demonstrates that some oscillatory activity is
possible in the Parkinsonian STN-GPe when the level of lateral coupling in the GPe
is sufficiently strong.

5.2 Individual Channels Are Capable of Complex Dynamics

Our analysis of the isolated channel model demonstrates that, when the Parkinsonian
connection strengths are used, a simple model of a coupled pair of STN and GPe sub-
populations can generate dynamic behaviour that is either steady-state (regions A and
B), oscillatory (region C), or bi-stable between a steady and oscillating state (region
D). The oscillatory and bi-stable regimes rely on a non-zero degree of STN self-
excitation. This section will describe one possible model of basal ganglia movement
processing that these dynamics could represent. Here, we do not mention regions E
and F as they are extremely small and are therefore unlikely to correlate with observed
features of basal ganglia (dys)function.

We consider a system that consists of multiple isolated channels which all have
parameters such that they are in region D (see Fig. 7). Each channel can be switched
between oscillation and steady-state activity by a short transient external perturbation
of the activity in either STN or GPe. To take a channel from steady-state to oscillatory
activity, this perturbation must be sufficient to move the system outside the basin of
attraction of the fixed point (this is the region enclosed by the unstable limit cycle).
Transferring the system to the steady-state is more difficult. The perturbation must
arrive at the correct time in the oscillatory cycle in order to move the current position
in phase space toward the unstable cycle. The correct time depends on whether the
short external perturbation affects the STN or GPe, and whether it has an excitatory
or inhibitory effect. For example, an inhibitory perturbation applied to a GPe subpop-
ulation must occur during the high activity phase of oscillation as this will move the
trajectory down in phase space and, if the perturbation is of the correct amplitude,
bring the trajectory inside of the unstable limit cycle where it will be attracted in to
the stable spiral.

LFP recordings reveal a drop in synchronous β oscillations in the basal ganglia
prior to and during movement [54] and, according to our interpretation, this corre-
sponds to one or more channels transferring from a limit cycle to a stable fixed-point’s
basin of attraction. This transfer requires precisely timed perturbation. One possible
source for this perturbation is the inhibitory input that the GPe receives from the
striatal medium spiny neurons (MSNs). This projection is organised in a segmented
manner, which suggests that each of our channels receives striatal input from a differ-
ent set of MSNs [55]. Recordings in monkeys have found that a sub-set of these neu-
rons, the phasically active neurons (PANs), are normally silent but show short bursts
of activity just prior to movement [35]. Simultaneous LFP and unit activity record-
ings from the striatum of healthy behaving monkeys reveals that there is a transient
β rhythm in the striatal LFP and, furthermore, that the firing of PANs occurs at a
particular point in the cycle of this oscillation [22]. If the striatal and pallidal β LFP
oscillations are synchronised to some degree (this is currently unknown), then it is
possible that the PAN bursts arrive during the correct part of the STN-GPe oscillation
cycle to push a channel into the stable state. After a movement has been completed,
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the channel can easily be switched back to its β oscillatory mode by an excitatory
or inhibitory perturbation of its STN or GPe sub-population. Each channel that is in
region D therefore acts as a switch or filter. Assuming each channel corresponds to
a movement or body region, synchronised oscillatory activity in the circuit prevents
movement either by reducing information transfer or acting as a global “anti-kinetic”
signal. When movement is required, precisely timed striatal input effectively switches
the oscillations off temporarily.

If, due to some modulation of cortical input or STN self-excitation (I,wss), the
system moves close toward region C then the basin of attraction for the stable fixed
point becomes smaller. When this happens, the external perturbation required to es-
cape the oscillatory region must be of larger amplitude and timed more precisely.
Finally, when the parameters pass into region C, the fixed point loses stability and no
external perturbation of trajectories would be able to stop the system oscillating. We
claim that these changes may correspond to the daily fluctuations in the severity of the
hypo-kinetic motor symptoms of Parkinson’s disease, with region C corresponding
to the akinetic state where movement cannot be initiated at all.

An alternative biological interpretation of the bifurcation diagram does not involve
external perturbations, but instead relies on the fact that when the system is close to
one of the bifurcation curves its behaviour depends very sensitively on the parame-
ters. For example, close to the SNIC and fold cycle curves small changes in cortical
input can switch the system between oscillatory and steady-state behaviour. Under
Parkinsonian conditions where there is a large oscillatory region, a greater value of I

may be needed to escape this region.
The physiological plausibility of this mechanism for activating and deactivating

different movement channels is limited by the fact that the bi-stable region only exists
when the Parkinsonian strengths are used and STN self-excitation is non-zero. How-
ever, our results have shown that introducing a degree of coupling between channels
unlocks much more interesting dynamics within each channel, even in the healthy
case. Further preliminary work (not shown here) suggests that introducing hetero-
geneity to the level of cortical input that each channel receives makes the possible
dynamics richer still. It is possible that under these more realistic conditions, there
are regions of parameter space where channels can exhibit similar bi-stable behaviour
to what is described here.

Our analysis of the isolated channel model could help to identify parameter val-
ues that give interesting dynamics (such as oscillations and bi-stability) in the cou-
pled model. A possible approach is to use numerical continuation to smoothly move
the system from its oscillating (or bi-stable) isolated channel state (with non-zero
wss ) to a similar state with GPe coupling and wss = 0. To do this, we could take
wss = (1 − α)w′

ss , where w′
ss is an STN self-excitation strength that was found to

give oscillations or bi-stability in the isolated model. In this modified model, α = 0
would correspond to isolated channels with STN self-excitation and α = 1 would
correspond to coupled channels without STN self-excitation. If our hypothesis that
lateral inhibition between neighbouring GPe sub-populations has a similar effect to
STN self-excitation is correct, it should be possible to examine what happens to the
different dynamic regimes as one mechanism replaces the other.
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5.3 Comparison with Other Models

The results of our analysis of a single isolated channel agrees, to a large extent, with
the results of the study of Holgado et al. [32], which considered the entire STN and
GPe each as single populations and from which our parameters were taken. As in
[32], stable β oscillations occur only when the parameter values corresponding to
the Parkinsonian state are used. The model presented here is simpler than that of
[32] as it does not attempt to model the synaptic transmission delay between sub-
populations. This simplicity made bifurcation analysis possible, which revealed a
region of interesting behaviour that is bi-stable between oscillatory and steady-state
activity. Such behaviour was not seen in the model presented in [32], presumably as
it only occurs when the degree of STN self-excitation is non-zero and this was not
the case in the model of Holgado et al.

Another previous modelling study, by Gillies et al. [29], considered a population-
level model of the STN-GPe circuit that is also very similar to our isolated channel
model. They described three different states for the system: a single fixed point, an
oscillatory state that showed low frequency short periods of high activity, and a state
that was bi-stable between two stable fixed points. All of these states are also present
in the model presented in this paper. The single fixed-point state corresponds to the
system when healthy values of the fixed parameters are used or when the Parkinso-
nian values are used and the system is in region A. The oscillatory state corresponds
to region C of the Parkinsonian parameter space. Finally, the parameter values that
give bi-stability between two fixed points are found in region F. Gillies et al. hypoth-
esised that this could represent the physiological mode of operation of the STN-GPe
circuit, but our model suggests that this is unlikely as region F represents an ex-
tremely small part of the parameter space. This means that the fixed-point bi-stable
state is very fragile and small changes in cortical input would move the system out of
it. Furthermore, within region F the two stable fixed points are very close together in
phase space and so the bi-stability would only switch between two very similar levels
of activity. Instead, our model suggests that the physiological state is in fact bi-stable
between a fixed point and a limit cycle.

Berns and Sejnowski developed a population-level model of action selection in the
basal ganglia that embodies the idea of multiple sensorimotor pathways [56]. Each
channel in this model contains sub-populations for the cortex, striatum, GPi/e, and
thalamus; however, the STN is modelled as a single global sub-population that is
the only link between channels. The authors consider how Parkinsonian conditions
affect the ability of the model to select actions, but they do not investigate its ability to
generate oscillatory behaviour in this case. This model does not contain the projection
from STN back to GPe, and so cannot be used to study the possible pacemaker role
of this circuit. A very similar model by Gurney et al. [57, 58] also considers the
effect of dopamine depletion in terms of the failure of action selection and again does
not examine the possibility of oscillations emerging. A more refined version of this
model that used the same functional connectivity but with computational current-
based modelling of the individual neurons within each sensorimotor channel exhibits
several features that are found in experimental recordings under both healthy and
Parkinsonian conditions [59], including oscillations (although in this case only the
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γ band is considered). Since the mathematical complexity of this model is much
greater than population-based models, mathematical analysis (such as considering
the dynamical capabilities of individual channels) becomes intractable.

In our model, the strength of GPe self-inhibition (wgg) is increased under Parkin-
sonian conditions. In contrast, some models (notably that of Terman et al. [28]) find
that a reduction in pallidal self-inhibition may facilitate increased rhythmic activity in
the STN-GPe network. There is some evidence to suggest that this decrease of wgg in
the Parkinsonian case is more appropriate, based on the effects of increased striatal-
pallidal activity on GABA release in the GPe [60, 61]. It would be interesting to see
how our results would differ with decreased wgg under Parkinsonian conditions.

5.4 Further Work

The models described in the previous section raise the interesting question of whether
or not our model is capable of performing action selection. When analysing the dy-
namics of an individual channel in Sect. 3.3, we found a hypothetical mechanism by
which channels could be switched on and off and this could form part of a system for
action selection. As a result of its symmetry our coupled channels model could only
produce dynamics that were common across all channels, which is clearly not useful
for action selection, and so the first step will be to break this symmetry. One way to do
this is to provide a heterogeneous level of cortical input to each STN subpopulation.

It may also be possible to use this model to investigate the basis for the remarkable
improvement in symptoms that can be achieved through high-frequency electrical
stimulation of the STN [62]. One potential way to incorporate the effects of deep-
brain stimulation (DBS) into the model is to add an external periodic input to the
equation for activity in one or more STN sub-populations. When investigating the
isolated channel model, we observed that with parameters set such that it is in a
region with stable β oscillations, there exists a range of frequencies for the external
input that cause the oscillations to become chaotic, flattening the power spectrum.
This range of frequencies appears similar to the range of clinically effective DBS
frequencies. This interesting result requires further investigation.

This paper is based on the assumption that excessive β activity plays a causative
role in the hypo-kinetic symptoms of Parkinson’s disease, but some evidence sug-
gests that it is merely a correlative epiphenomenon. When the progression of Parkin-
son’s disease is simulated in monkeys by the selective lesioning of dopaminergic SNc
neurons over the course of many days, oscillatory activity is not observed in the fir-
ing rate of individual GPi neurons until long after motor symptoms have appeared
[63]. It is not clear, however, whether or not LFP signals (where the β peak is usu-
ally seen) in the GPi are related to unit activity in that nucleus [9]. Other studies
with rats have compared the effects of chronic SNc lesioning with acute dopamine
blockade and found that only the chronic condition results in a peak in β power in
STN LFP [52] and motor cortex ECoG [64], even though both chronic and acute
dopamine depletion/blockade induce akinesia. Such evidence does not necessarily
rule out the possibility of β oscillations having an anti-kinetic effect, however, since
acute dopamine blockade may disrupt motor pathways in a way which is different to
the mechanism by which β oscillations act to prevent movement. Even if excessive
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β activity is simply a side-effect of chronic loss of dopaminergic input to the basal
ganglia that does not directly cause Parkinsonian motor symptoms it may still serve
as a marker for this neuronal damage that is useful experimentally [13]. Furthermore,
it has been proposed that elevated β LFP power could be used as a trigger for a
new generation of “on-demand” devices for DBS [65, 66]. Whether the relationship
between abnormal β synchronisation and the hypokinetic symptoms of Parkinson’s
disease is causative or merely correlative, it is clearly a significant characteristic of
the Parkinsonian basal ganglia that should be properly understood. Further modelling
work will help to achieve this understanding.
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Appendix

Video 1: http://www.youtube.com/watch?v=sT0_Ognnsns
This video shows the activity in a single pair of coupled STN-GPe subpop-
ulations under Parkinsonian conditions. Each particle is a 2-dimensional
vector representing a point in state space and the particles are initialized
to have random positions. As the simulation runs, each particle’s position
evolves according to the equations of the system in either forward time
(red particles) or backward time (blue particles). Each frame a random
sub-set of particles are reset to a new random position. The level of STN
self-excitation (wss ) is gradually increased, showing a range of dynamical
regimes: globally single stable fixed point, bistability between fixed point
and stable oscillations, globally stable oscillations, and back to a globally
stable fixed point.

http://www.youtube.com/watch?v=sT0_Ognnsns
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Video 2: http://www.youtube.com/watch?v=C-h-BBb9D9M
The first part of this video shows the activity of five parallel channels under
Parkinsonian conditions, each of which is made up of a coupled STN-GPe
subpopulation pair. As in Video 1, many sets of initial conditions are cho-
sen uniformly from across the 10-dimensional phase space and each set
of initial conditions is integrated in parallel using the computer’s graphi-
cal processing unit (GPU), with random resetting. For each set of initial
conditions being integrated, the level of STN and GPe activity is projected
onto a different part of the screen (and in a different colour) for each chan-
nel. A white line is used to link the particles corresponding to the first set
of initial conditions (which are never randomly reset). As the strength of
coupling between the channels (α) is increased, oscillatory activity appears
that is anti-phase between neighbouring channels.
The second part of this video is similar to the first part except that 799
channels are shown. Only one set of initial conditions is used here and
there is no resetting. The vertical position of each dot indicates the level
of GPe activity in each channel. As before, oscillations appear as lateral
coupling is increased and the shape of the oscillatory attractor appears to
be very non-regular.
In both parts of the video the level of cortical input is fixed across all chan-
nels at 5.0.
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