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Abstract Gap junctions, also referred to as electrical synapses, are expressed along
the entire central nervous system and are important in mediating various brain
rhythms in both normal and pathological states. These connections can form between
the dendritic trees of individual cells. Many dendrites express membrane channels
that confer on them a form of sub-threshold resonant dynamics. To obtain insight into
the modulatory role of gap junctions in tuning networks of resonant dendritic trees,
we generalise the “sum-over-trips” formalism for calculating the response function
of a single branching dendrite to a gap junctionally coupled network. Each cell in the
network is modelled by a soma connected to an arbitrary structure of dendrites with
resonant membrane. The network is treated as a single extended tree structure with
dendro-dendritic gap junction coupling. We present the generalised “sum-over-trips”
rules for constructing the network response function in terms of a set of coefficients
defined at special branching, somatic and gap-junctional nodes. Applying this frame-
work to a two-cell network, we construct compact closed form solutions for the net-
work response function in the Laplace (frequency) domain and study how a preferred
frequency in each soma depends on the location and strength of the gap junction.
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1 Introduction

It has been known since the end of the nineteenth century and mainly from the work
of Ramoén y Cajal [1] that neuronal cells have a distinctive structure, which is dif-
ferent to that of any other cell type. The most extended parts of many neurons are
dendrites. Their complex branching formations receive and integrate thousands of in-
puts from other cells in a network, via both chemical and electrical synapses. The
voltage-dependent properties of dendrites can be uncovered with the use of sharp mi-
cropipette electrodes and it has long been recognised that modelling is essential for
the interpretation of intracellular recordings. In the late 1950s, the theoretical work of
Wilfrid Rall on cable theory provided a significant insight into the role of dendrites
in processing synaptic inputs (see the book of Segev et al. [2] for a historical per-
spective on Rall’s work). Recent experimental and theoretical studies at a single cell
level reinforce the fact that dendritic morphology and membrane properties play an
important role in dendritic integration and firing patterns [3-5]. Coupling neuronal
cells in a network adds an extra level of complexity to the generation of dynamic
patterns. Electrical synapses, also known as gap junctions, are known to be impor-
tant in mediating various brain rhythms in both normal [6, 7] and pathological [8—10]
states. They are mechanical and electrically conductive links between adjacent nerve
cells that are formed at fine gaps between the pre- and post-synaptic cells and per-
mit direct electrical connections between them. Each gap junction contains numerous
connexon hemi-channels, which cross the membranes of both cells. With a lumen di-
ameter of about 1.2 to 2.0 nm, the pore of a gap junction channel is wide enough to
allow ions and even medium-sized signalling molecules to flow from one cell to the
next thereby connecting the two cells’ cytoplasm. Being first discovered at the giant
motor synapses of the crayfish in the late 1950s, gap junctions are now known to be
expressed in the majority of cell types in the brain [11]. Without the need for recep-
tors to recognise chemical messengers, gap junctions are much faster than chemical
synapses at relaying signals.

Earlier theoretical studies demonstrate that although neuronal gap junctions are
able to synchronise network dynamics, they can also contribute toward the genera-
tion of many other dynamic patterns including anti-phase, phase-locked and bistable
rhythms [12]. However, such studies often ignore dendritic morphology and focus
only on somato-somatic gap junctions. In the case of dendro-dendritic coupling, sim-
ulations of multi-compartmental models reveal that network dynamics can be tuned
by the location of the gap junction on the dendritic tree [13, 14]. Here, we develop
a more mathematical approach using the continuum cable description of a dendritic
tree (either passive or resonant) that can compactly represent the response of an en-
tire dendro-dendritic gap junction coupled neural network to injected current using a
response function. This response function, often referred as a Green’s function, de-
scribes the voltage dynamics along a network structure in response to a delta-Dirac
pulse applied at a given discrete location. Our work is based on the method for con-
structing the Green’s function of a single branched passive dendritic tree as origi-
nally proposed by Abbott et al. [15, 16] and generalised by Coombes et al. [17] to
treat resonant membrane (whereby subthreshold oscillatory behaviour is amplified
for inputs at preferential frequencies determined by ionic currents such as ;). This
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Fig. 1 a A network of two cells connected by a gap junction (GJ). b An ‘LRC’ circuit modelling the
resonant cell membrane

“sum-over-trips” method is built on the path integral formulation and calculates the
Green’s function on an arbitrary dendritic geometry as a convergent infinite series
solution.

In Sect. 2, we introduce the network model for gap junction coupled neurons.
Each neuron in the network comprises of a soma and a dendritic tree. Cellular mem-
brane dynamics are modelled by an ‘LRC’ (resonant) circuit. In Sect. 3, we focus on
an example of two unbranched dendritic cells, with no distinguished somatic node,
with identical and heterogeneous sets of parameters and give the closed form solu-
tion for network response with a single gap junction. The complete “sum-over-trips”
rules for the more general case of an arbitrary network geometry are also presented.
In Sect. 4, we apply the formalism to a more realistic case of two coupled neurons,
each with a soma and a branching structure. We introduce a method of ‘words’ to
construct compact solutions for the Green’s function of this network and study how
a preferred frequency in each soma depends on the location and strength of the gap
junction. Finally, in Sect. 5, we consider possible extensions of the work in this pa-
per.

2 The Model

We consider a network of cells connected by gap junctions. The neural morphology
of individual cells includes a branching dendritic structure and a lumped soma (see
an illustrative example for two cells in Fig. 1a). We assume that the dendrites are
not purely passive (i.e. modelled by the ‘RC’ circuit), but are resonant (i.e. modelled
by the ‘LRC’ circuit shown in Fig. 1b). Many neurons exhibit resonances whereby
subthreshold oscillatory behaviour is amplified for inputs at preferential frequencies,
for example as seen in neurons of rat sensorimotor cortex [18]. In this case, it is
known that the non-linear ionic current I, is responsible, and in general it is believed
that the presence of I, in dendrites can have a major impact on the integration of
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subthreshold synaptic activity [19]. From a mathematical perspective, Mauro et al.
[20] have shown that a linearisation of channel kinetics (for currents such as Ij),
about rest, may adequately describe the observed resonant dynamics. The resulting
linear system has a membrane impedance that displays resonant-like behaviour due
to the additional presence of inductances (which are determined by the choice of
channel model). This circuit is described by the specific membrane capacitance C,
the resistance across a unit area of passive membrane R and an inductance L in series
with a resistance r. The transmembrane voltage V;(x, t) on an individual branch i of
each cell is then governed by the following set of equations:

AR VA 1)
ar ~ lax2 o oo¢ M
3l

L,-E:—rili—i—Vi, 0<x<L;,t>0. 2

The constants D; and t; can be found in terms of the electrical parameters of the
cell membrane as D; = a;/(4R,,;C;) and 1; = C;R;, where qg; is a diameter and
Ry,; is the specific cytoplasmic resistivity of branch i. The term /iy ; (x, t) models an
external current applied to this branch. The dendritic structure of each cell is attached
to an equipotential soma of the diameter ag modelled by the ‘LRC’ circuit with the
parameters Cs, Rs, Lg and rs. Moreover, individual branches of different cells can be
connected by gap junctions with a coupling parameter Rgj.

Equations (1)—(2) for each dendritic segment must be accompanied with addi-
tional equations describing the dynamics of voltage at two ends of a segment. If the
proximal (x = 0) or distal (x = £;) end of a branch is a branching node point the con-
tinuity of the potential across a node and Kirchoff’s law of conservation of current
are imposed. For example, boundary conditions for a node indicated in Fig. 1a take
the form:

Vi(Lj. 1) = Vn(0,1) = Vi(0,1), 3)
1 aV; 1 aV, 1 oVi

== =k @)
Ta,j 0x x=L; Tan 0X |,—o Tak 90X |,

where r, j =4Rq,j/ (ra?) is the axial resistance on branch j. If a branch terminates
at x = £; we either have a no-flux (a closed-end) boundary condition

aV;
0x

=0, Q)
x=L;

or a zero value (an open-end) boundary condition
Vi(Li, 1) =0. (6)

A lumped soma can be treated as a special node point with the somatic membrane
voltage V;(¢) and the following set of equations, which imposes special boundary
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conditions on the proximal ends of branches connected to the soma:

Vs() = V;(0,1), @)
dVs Vs 1 aV;
C— = —— — — I, 8
S dr R +;ra,j 0x |,—o s ®)
L dfs _ I+ V. 9)
Sdl = —Fslg S5

where the sum in Eq. (8) is over all branches connected to the soma. If the branches
of two cells are coupled by a gap junction, the location of this coupling can be treated
as a special node point on an extended branching structure. This gap-junctional (GJ)
node requires the following set of boundary conditions (given here with an assump-
tion that it is placed at x = 0):

V- (0,1) = V,,+ (0, 1), V,-(0,1) = V,+(0,1), (10)
and
1 aV,, - AV,+
( « . ) = g1 (Vor 0, = Vo (O.1), (1)
Ta,m x|y 9x =0
1 [oV,- aV,
_( » n ) = gai(Vue (0.0 = V,-0,0)),  (12)
Ta,n 9x |y—o 3x |y=0

where ggy = 1/Rgjy is the conductance of the gap junction and m™~ and m™ (n~ and
n™) are two segments of branch m (branch n) connected at the gap junction (see
Fig. 1a). The expressions in (10) reflect continuity of the potential across individual
branches m and n, and Eqgs. (11)—(12) enforce conservation of current.

A whole network model can be viewed as an extended tree structure with each
individual node belonging to one of the following categories: a terminal, a regular
branching node, a somatic node or the GJ node. The voltage dynamics along the net-
work structure are described by linear equations and, therefore, the model’s behaviour
can be studied by constructing the network response function known as the Green’s
function, G;;(x, y, t). This function describes the voltage response at the location x
on branch i in response to a delta-Dirac pulse applied to the location y on branch
j at time ¢ = 0 (branches i and j can belong either to the same cell or to the two
different cells). Knowing the Green’s function for the whole structure, it is easy to
compute the voltage dynamics along the whole network for any form of an external
input Iip; j(x, t) applied to branch j as

Ly
vi(x,n:Z/O dyGix(x, y, ) Vi (y, 0)
k

t ﬁj
+/O ds/O AyGij (xs vt — )T, 1 (v, 5), (13)
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Fig. 2 A network of two
identical cells, each consists of
an infinite dendritic cable, l

m

coupled by a gap junction m*
¢y = z O
Rgy
( z T 0
n~ x=0 nt

where Vi (x, 0) describes the initial conditions on branch k and the sum is over all
branches of the tree. Multiple external stimuli can be tackled by simply adding new
terms with additional inputs fij j (x, ) to Eq. (13).

3 The Green’s Function on a Network

Earlier work of Coombes et al. [17] demonstrated that the Green’s function for a sin-
gle cell with resonant membrane can be constructed by generalising the “sum-over-
trips” framework of Abbott et al. [15, 16] for passive dendrites. Here, we demonstrate
how this framework can be extended to a network level starting with the simple case
of two identical cells.

3.1 Two Simplified Identical Cells

We consider the case of two identical cells coupled by a gap junction. Each cell
consists of a single resonant dendrite of infinite length (see Fig. 2). A gap junc-
tion controlled by the parameter Rgj and located at x = 0 divides two dendrites into
four semi-infinite segments: m ™, m¥t, n~, and nt. We assume that an external input
Linjm—(x,1) = 8(x — )8(z) is applied to segment m ™. The Green’s function on each
segment must satisfy the set of Egs. (1)—(2) with the boundary conditions at the gap
junction given by Eqs. (10)—(12). Introducing the Laplace transform with spectral
parameter o

2[f(t)]=f(w)=/0 e f(t)dr,

and assuming zero initial data, we can solve this model in the frequency domain:

~ 1 [e v@lx=yl e~V @)lx+yl
Gm—(x’y,w)=E[W—PGJ(w)W} (14)
. | v @]
Gm+(x,y,60)=E|:(1—PGJ(CU))W], (15)
~ —~ 1 e~V @)x+yl
Gn(xs)’sa))=Gn+(xs)’sa))=5|:PGJ(w)Wi|v (16)
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Fig. 3 All trips (including the —PGJy

shortest trip for G m— (X, y, @) ¢
shown by a dashed arrow) and P
the corresponding coefficients Gy T T D
Agip (@) at the GJ for two - ]
identical cells b
PG
C_=z z 0
=0
where
2wy= L[y ! (17)
w)=—|-+o+——"7-—-|,
v D|t C(r+owl)
and
pci(@) = (@) =y(@)/ra. (18)

2(z(@)Rgy + 1)’

Solutions (14)—(16) are obtained using the “sum-gyer-trips” method where G (x,y,w)
on each segment can be found as Ztrips Avip (@) Goo (Lyip, @), and

- oY (@)lx|
Goo(x,w) = -—+— (19)

2Dy (w)
is the Laplace transform of the Green’s function G, (x, t) for an infinite resonant
cable. Lyip is the length of a path that starts at point x on one of the segments and
ends at point y on segment . The trip coefficients Ay;p(w) which ensure that the
boundary conditions at the gap junction hold are chosen according to the following
rules (see Fig. 3):

o Ayip(w) = —pgy(w) if the trip reflects along on the gap junction back onto the
same dendrite.

o Ayip(w) =1 — pgy(w) if the trip passes through the gap junction along the same
dendrite.

o Ayip(w) = pgy(w) if the trip passes through the gap junction from one cell to
another cell.

Performing the numerical inverse Laplace transform (&Y of Egs. (14)—(16), we
obtain the Green’s function in the time domain for each segment. These Green’s func-
tions are plotted in Figs. 4a—c. For any arbitrary form of external input Ziy; ,,— (x, 1) =
8(x — y)I (1), the voltage response on each segment can be found by taking a con-
volution of the corresponding Green’s function with this stimulus. Using the Laplace
representation of the Green’s function on each segment given by Eqs. (14)—(16) this
can be computed as

Vi, 1) = £ [Gi(x, y, ) T(@)],  ke{m™ m* n~ nt}, (20)

where T(a)) = L£[1(¢)]. In Figs. 4d—f, we plot the voltage profiles on each segment in
response to a rectangular pulse 7 (t) = no® (t)® (tg — t) of strength 1 and duration
TR, where @ (¢) is the Heaviside step function.
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Fig. 4 a—c The Green’s functions G,,— (x, y,1), G, +(x,y,1), and G+ (x, y,t) for a model in Fig. 2
when x = 10 um and y = 100 um. Parameters: a = 2 um, D = 50000 pmz/ms, T=2ms, C=1 pF/cmz,
Ry =100 Qcm, r = 100 Qcm?, L =5 Hem?, Rgy = 100 M. d—f Voltage profiles on each segment in
response to a rectangular pulse of strength 79 = 2 nA and duration g = 5 ms applied to segment m ™.
Note that different y-axis limits are used in ¢ and f

A response of the network model is characterised by the Green’s function and
can be studied by introducing a power function Py (x, y, ®) defined as Py (x, y, w) =
|6k (x, y, w)|*. Resonant dynamics of the model for a given pair of locations (x, y)
are directly linked with a value §2¢ at which the function P (x, y, w) has its max-
imum. In Figs. 5a—, we plot the voltage profiles on each segment in response to
a chirp stimulus Ichirp(f) = Achirp sin(wchirptz). These figures clearly demonstrate
resonant behaviour of the system maximising the voltage responses for particu-
lar frequencies. In Fig. 5d, we plot the normalised power functions P,ﬁv x,y,w) =
Pr(x, y, w)/max,[Pi(x, y, )] at the same locations. These power functions have
their maximum at the value £2p = 0.4271, the same for each segment and, therefore,
the resonances (indicated by arrows) in Figs. Sa—c occur at the same time. We can
also notice that the function Prll\; (x, y, w) decays to zero more rapidly than the func-
tions Pnlf_ (x,y,w) and 732’4, (x,y,w). This explains the rapid reduction of voltage
amplitude straight after the resonance in Fig. Sc.

Typical values of a unitary gap junction conductance are 10-550 pS [11] giving
gcy = 10-5500 pS (or Rgy = 180-10° M) for 1-10 gap junction channels per elec-
trical connection, although these estimates may be conservative and conductances
from a larger range could be considered, as for example ggy = 10-240000 pS cor-
responding to Rgy = 4-10° MS in [14]. To demonstrate how the resistance of the
gap junction affects the response function in a model of two identical cells, we plot
Fig. 6 for Rgy = 100 M2 (black curves, the case shown in Figs. 4a—c), Rgy = 1 MQ
(red curves) and Rgy = 1000 M2 (green curves). Low gap-junctional resistance sig-
nificantly increases the amplitude of the Green’s function for Cell n and reduces the
amplitude of the Green’s function for Cell m. Increasing the resistance reduces the
response in Cell n and slightly increases the response in Cell m. In this model of two
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Fig. 5 a-c Voltage profiles on each segment at x = 10 pm in response to a stimulus Ichirp (1) applied at
y =100 pm on segment m ™. Cells’ parameters as in Fig. 4, ocpirp = 0.003, Acpirp = 1 nA. d Normalised
power functions PmN, (x,y,w) (black curve), PYIZJr (x,y, w) (red curve), P,I,Vi (x,y, w) (green curve)
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Fig. 6 a—c The Green’s functions G,,— (x,y,1), G,,+(x,y,t), and G,+(x, y, ) for a model in Fig. 2
when x = 10 um and y = 100 ym. Parameters: a = 2 um, D = 50000 umzlms, T=2ms,C=1 pF/cmz,
R, =100 Qcm, r = 100 Qcmz, L= 5Hcm2, Rgy = 100 M2 (black curves, as in Figs. 4a—c),
Rgy = 1 MQ (red curves), Rgy = 1000 M2 (green curves). Note that different y-axis limits are used
inc

identical cells, the change of the resistance of the gap junction does not affect the
resonant frequency £2¢, which is the same for each segment.

Although solutions (14)—(16) are found for the case of the resonant membrane, an
‘LRC’ circuit can be naturally turned into a ‘RC’ circuit by using the limit r — oo
which gives y2(w) = (1/1 + w)/D. In the case of purely passive membrane, it is
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Fig. 7 a—c The Green’s functions G,,— (x,y,1), G, +(x,y,1), and G+ (x, y,t) for a model in Fig. 2
with passive membrane when x = 10 um and y = 100 um. Parameters: @ = 2 um, D = 50000 pmzlms,
T=2ms, C=1pFlem?, R, =100 Qcm, Rgy = 100 MQ. d-f Voltage profiles on each segment in
response to a rectangular pulse of strength 179 = 2 nA and duration Tz = 5 ms applied to segment m ™.
Note that different y-axis limits are used in ¢ and f

possible to make extra progress and find analytical forms of the solutions in the time
domain (see Appendix A). In Figs. 7a—c, we plot the Green’s functions for the model
in Fig. 2 with passive (instead of resonant) membrane. Voltage responses on each
segment in response to a rectangular pulse are shown in Figs. 7d—f.

3.2 Two Simplified Non-identical Cells

Here, we consider a model in Fig. 2 with the assumption that the cells are non-
identical. Then using the Laplace transform and solving the model (with zero initial
data) in the frequency domain, we obtain

—~ 1 [e Vm(@)x=yl e Ym(@)|x+yl|
e kT el C e ] S
~ 1 e*)’m(“))|x+}’|

Gt (x,y, ) = a[(l —PGJ,n(w))m]a (22)
- - 1 e~ [V (@)x+ym(@)y|
Gu-(x,y,0) = Gy+(x,y,0) = C—m[PGJ,m(w)W} (23)

where the parameters y,, (w) and y, () are defined in terms of cells’ individual prop-
erties as

1 1
2
=—|—40o+ —1, 24
ym(w) Dml:fm ¢ Cm(rm+wLm)] o
(@) 1[1++ 1 } (25)
0)=—|—+to+—-—|
Vn D}’l Tn Cn (rn + CI)Ln)

@ Springer



Journal of Mathematical Neuroscience (2013) 3:15 Page 11 of 27

Fig. 8 All trips (including the —PGJn

shortest trip for G m— (X, ¥, ®) 4—_’

shown by a dashed arrow) and

...... m
the corresponding coefficients - =< Cel
Auip(@) at the GJ for two Gy =« r_ Q)
non-identical cells 1= pacin
PGIm
¢_= z ()
=0 celn

Solutions (21)—(23) show that the trip coefficients A, (w) depend on either pgy, i (@)
or pgy.n(w) (see Fig. 8), which have the forms

Zm(w)
m = 5 m =Vm a,m» 26
Pa1m (@) Zm (@) + z2p (@) + 2RGyzm (@) 2 (@) an (@) = Ym(@)/Yam, (26)
PGin(@) = (@) (@) = Ya(@)/ram. 27)

Zm (@) + 2y (w) + 2RGyzm (0) 24 () '

In Figs. 9a—c, we demonstrate how individual variations in cell parameters affect
the voltage response in the system. For each set of the parameters, we plot the Green’s
functions G,,- (x, y,t), G+ (x, y,t), and G,=(x, y, t) obtained by taking the numer-
ical inverse Laplace transform of (21)—(23). Black curves show the profiles for two
identical cells. Dashed red curves are the Green’s functions for a case when L, is
changed from 5 Hcm? to 25 Hcem?. This change affects the response in Cell 7, but
not in Cell m. Blue curves are plotted for a case when L,, is changed from 5 H cm?
to 1 Hem?. It has noticeable effect on both cells. Finally, green curves are plotted
for the case a,, = 1 um instead of the original diameter a,, = 2 pm showing changes
in profiles in both cells. As the stimulus in these examples is applied to Cell m, any
variations in the parameters of this cell have an immediate effect on the responses in
Cell n. In contrast, Cell m seems to be mostly robust to variations in parameters in
Cell n. Resonant properties of the cells’ responses can be studied by plotting the nor-
malised power functions P,ﬁv (x, y, w) for each of the parameter sets (see Figs. 9d—f).
The heterogeneity of the cells’ parameters leads to appearances of different values of
20 (the maximum of the power function) for each cell. We can also notice that the
power functions for Cell n are more localised around their peaks (Fig. 9f) in compar-
ison to the power functions for Cell m (Figs. 9d, e) as it has been earlier observed in
the case of two identical cells.

3.3 An Arbitrary Network Geometry

Here, we consider a network of spatially-extended cells of arbitrary geometries. This
network can be treated as a single extended tree structure which consists of individual
branches (indexed by a finite non-repeating sequence {1,2,...,i,...,k,..., j,...})
and three types of nodes: a regular branching node, a somatic node and a GJ
node (see Fig. 10). The Green’s function G;;(x, y,t) for the whole structure can
be found by obtaining G, j(x,y,) in the Laplace domain and then performing
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Fig.9 The Green’s functions G, - (x, y,1), G+ (x, y,1), and G+ (x, y, t) (a—) and normalised power
functions 'P’fl], (x,y, ), 'P:;Cr (x,y,w), and 7’,11\; (x,y, ) (d-f) for a model in Fig. 2 when x = 10 um
and y = 100 um. Black curves: two identical cells with the parameters as in Fig. 4. Dashed red curves:

as in an identical case except L, =25 H cm?. Blue curves: as in an identical case except Ly =1 Hem?.
Green curves: as in an identical case except a;; = 1 um

Fig. 10 A network of two cells Somatic node
as an extended tree structure
with different types of nodes
n e )
N Somatic node
7/ m

Terminal

GJ node

Branching node

s—l[éi j(x,y,w)]. We consider a general case when each branch of the network
can have different biophysical parameters and is characterised by the function y; (w)
defined as

P 28
Dy [ “ Ck(rk+a)Lk)i| 28)

where k labels an arbitrary branch of the network. Using the “sum-over-trips” for-
malism G;;(x, y, w) can be constructed as an infinite series expansion

171
Vi (@) = —[— -

> Auip(@) Hoo(Luip (i j. X, 3, ), (29)

trips

Goter =50
J17]

where ﬁoo (x) = e_|x|/2 and Lyip(i, j, X, y, ) is the length of a path along the net-
work structure that starts at the point y; (w)x on branch i and ends at the point y; (w)y
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on branch j. Note that the length of each branch of the network needs to be scaled
by yx(w) before Lyip is calculated for (29). It is also worth mentioning here that if
all branches of a network have the same biophysical parameters, i.e. yx (@) = y (@),
the function Heo (Luip(@))/(Dy (@) = G oo(Luip, w) defined by (19). The trip coef-
ficients Agip () in (29) are chosen according to the following set of rules:

o Initiate Agjp(w) = 1.
Branching node

e For any branching node at which the trip passes from branch i to a different
branch k, Ayip(w) is multiplied by a factor 2 py(w).
e For any branching node at which the trip approaches a node and reflects off this
node back along the same branch k, Ayjp(w) is multiplied by a factor 2 py (w) — 1.
Here, the frequency dependent parameter py(w) is defined as

(@) = ZHA (@) = 2@ (30)

2 Zn (@)’ Fak

where the sum is over all branches connected to the node.
Terminal

o For every terminal which always reflects any trip, Ayp is multiplied by +1 for the
closed-end boundary condition or by —1 for the open-end boundary condition.

Somatic node

e For the somatic node at which the trip passes through the soma from branch i to
a different branch k, Ay;ip(w) is multiplied by a factor 2 p; x (w).

e For the somatic node at which the trip approaches the soma and reflects off
the soma back along the same branch k, Ayjp(w) is multiplied by a factor
2psi(@) — 1.

Here, the frequency dependent parameter ps i (w) is defined as

(@) (@) = Csw o+ ———
Y @ + i@ T T R Tt L

Ps.k(w) = 31)

where the sum is over all branches connected to the soma.
GJ node

e For the GJ node at which the trip passes through the gap junction from branch n
to branch m, Ayip(w) is multiplied by a factor pgy, (). For the GJ node at which
the trip passes through the gap junction from branch m to branch n, Agip(w) is
multiplied by a factor pgj ,(@).

e For the GJ node at which the trip approaches the gap junction, passes it and
then continues along the same branch m, Ayip(w) is multiplied by a factor
1 — pGyn(w). For the GJ node at which the trip approaches the gap junction,
passes it and then continues along the same branch n, Ayjp(w) is multiplied by a
factor 1 — pgj m(®@).
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Fig. 11 A two-cell model Cell 1 Cell 2

Yo —

Las FNNNNM Las

e For the GJ node at which the trip approaches the gap junction and reflects off
the gap junction back along the same branch m, Ayjp(w) is multiplied by a factor
—pai,n(w). For the GJ node at which the trip approaches the gap junction and
reflects off the gap junction back along the same branch n, Ay;p(w) is multiplied
by a factor — pgy m (w).

Here, parameters pgj ., (@) and pgy () are defined by Egs. (26) and (27).

We refer the reader to Coombes et al. [17] for a proof of rules for branching and
somatic nodes. In Appendix B, we prove that the rules for generating the trip coeffi-
cients at the GJ node satisfy the gap-junctional boundary conditions.

4 Application: Two-Cell Network

Here, we demonstrate how the “sum-over-trips” formalism can be applied to a two-
cell network for obtaining insight into network response. As an example, we consider
a model of two identical cells, each of which consists of a soma and N attached semi-
infinite dendrites as shown in Fig. 11. The cells are coupled by a dendro-dendritic
gap junction located at some distance Ly away from their cell bodies. We assume
that this network receives an input at the location yg. To study the dynamics of this
network, we use the “sum-over-trips” framework and construct the Green’s functions
G 1(x, y0, w) and éz(x, yo, ®) for Cell 1 and Cell 2, respectively.

4.1 Method of Words for Compact Solutions

Here, we introduce a method which allows us to construct compact solution forms for
the Green’s functions of this two-cell network. We describe this method in detail by
constructing the Green’s function 52 (x0, Yo, w) for Cell 2 when xg is placed between
the soma and the gap-junction as shown in Fig. 12. Introducing points from 1 to 4 on
this network, we associate letters with different directions as follows:

e From xoy — 1 or from 2 — 1: letter A.
e From xoy — 2 or from 1 — 2: letter B.
e From 3 — 4: letter W.
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Fig. 12 A two-cell model with Cell 1 Cell 2
associated letters Yo —
z4
3 "\N\AN\V/"\ 2
Y T l w BT F[!olA
4

1

e From4 — 3: letter Y.
e From 3 — yy: letter Z.

Then the shortest trip which is a trip from xg — 2 — 3 — y¢ is associated with the
(ordered) word BZ consisting of one syllable. This and any trip associated with a
word that starts with the letter B, i.e. from xo — 2, and ends with the letter Z, i.e.
from 3 — yp, will belong to class 1. Any trip associated with a word which starts
from x9 — 1 — 2 and ends with 3 — yg, will belong to class 2. The shortest trip
in this class is associated with the word ABZ, consisting of two syllables, AB and
BZ. We introduce the following table that associates individual coefficients in the
“sum-over-trips” framework with the syllables:

A B \%% Y Z
A 0 2ps(w) — 1 0 0 0
B | —pgi(w) 0 PGy (w) 0 pGI(w)
w 0 0 0 2ps(w) — 1 0
Y | poi(w) 0 —pacr(w) 0 1 — pgy(w)
Z 0 0 0 0 0

As the cells are identical in this network, the parameter pgy(w) is defined by (18) and

Y(@)/ra

, (32)
Ny(w)/rq + vs(w)

ps(w) =

where N is a number of dendrites attached to each soma and ys(w) is given in (31).
Then, using the table, it is easy to conclude that for example, the word BZ is as-
sociated with the coefficient pgj(w) and the word ABZ, consisting of the sylla-
bles AB and BZ, is associated with the coefficient (2ps(w) — 1) pgy(w). We also
notice from the table that different coefficients are associated with the syllables
BZ and YZ and, therefore, we need to introduce two additional classes. Class 3
will include the trips with the main skeleton xg - 2 - 3 - 4 — 3 — yp and
the associated word BWYZ. Class 4 will include the trips with the main skeleton
x0—~>1—2—3—4— 3 — ygand the associated word ABWYZ. Combining the
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skeleton structures (the shortest words) of the four classes, we have

BZ + ABZ + BWYZ + ABWYZ= (1+A)BZ +(1+ABWYZ. (33)

class 1 and class 2 class 3 and class 4

Any new word in each class can be formed by adding a combination of syllables
AB and WY into the structure (33). Introducing such additions of n combinations of
syllables consisting of k syllables AB and (n — k) syllables WY by [--- -] (both
syllables AB and WY can take any position in this sequence of n syllables), class 3
and class 4 can be generalised as

(1+A)B[--- ---]WYZ. (34)

class 3 and class 4

Similarly, we can generalise class 1 and class 2. However, to ensure that the words
belong to class 1 and class 2, the syllable AB must be at the end of each word in
combinations. This can be written as

(1+A)B[- -]Z (35)

class 1 and class 2

where
[~ ...]’=[1+[... ~~]AB]. (36)
Using combinatorics, we can write

n

[ el =Y (’]Z) (AB)*(WY)"*

k=0
n =l n
— n k n—k n
= (0) (WY) +1§:1 (k) (AB)*(WY)" ™ + (n) (AB)", (37)
which leads to

[-r - ]= (g) (2ps(a)) — 1)"(_pGJ(CU))”—1

n—1
n k k—1
+ ;; (k> (2ps(@) — 1)" (= pas(@))

x pGi(@)(2ps(w) — 1)”_]((—PGJ(CU))n_k_l

+ (Z) (2ps(@) — 1)" (= par(@))" ™

= (g) (2ps(@) —1)" (=par(@))" ™"
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n—1
- (Z) 2ps(@) — 1) (—par(@)"”"
k=1

n —1
+ (n) (2ps(@) = 1)" (=par(@)" ™. (38)
Considering the possible trips in class 3 given by

B[--- ---]WYZ 39)

and substituting the expression for [--- - -] found in (38), we find

pai(w) (g) (2ps(@) = 1) (= por(@))" " (= pes (@) (2ps(@) — 1)(1 = pas(@))

n—1

- (Cra@) ), (IIZ) (2ps(@) = 1)" (=pas@)""

k=1
x (=par(@))(2ps(@) — 1) (1 — pay(w))

+ (—pai(@)) (Z) 2ps(@) — 1) (~par(@)"™
x par(@)(2ps(@) —1)(1 = pai(®))
=[2"(2ps(@) = 1)" (= pci(@))" ] pas(@) (2ps(@) = 1) (1 = pai(@)).  (40)
Similarly, the possible trips in class 4 given by
AB[--- ---]WYZ (41)
generate the trip coefficients
(2ps(@) = 1)[2" (2ps(@) = 1)" (= pas(@))" ] por(@) (2ps(@) = 1) (1 = pei(@)). (42)

Expressions (40) and (42) for coefficients in the trips belonging to class 3 and class 4
can now be used in the “sum-over-trips” expansion (29) to obtain

> [~2pci(@) (2ps(@) — 1)]" par(@) (2ps(@) — 1) (1 — pai(@))
n=0
x [Goo(y0 —x0 +2(n + D Lgy, w)
+ (2ps(@) = 1)Goo(y0 + X0 + 201 + D Lgy, »)], 43)

where Goo(x, @) = Hoo(y (0)x)/(Dy (w)) defined by (19). Similarly, we can show
that the possible trips in class 1 and class 2 given by

(1+A)B[l+[-- ---]AB]Z (44)
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generate the terms

P61(@)G oo (Yo — X0, @) + p6y(@) (2ps(@) — 1) G oo (3o + X0, @)

+ Y _[-2pa1(@) (2ps(@) — 1)]" par(@) (= per(@)) (2ps(@) — 1)

n=0
X [aoo(y() —x0+2(n+ 1)Lgy, a))
+ (2ps(@) —1)Goo(yo + x0 +2(n + 1) Ly, )] (45)

Combining together (43) and (45), we obtain

G2(x0. Y0, ) = pa(@)Goo (Y0 — X0, @) + pG3 (@) (2ps(@) — 1) Goo(yo + x0, )
+ Y [~2pa1(@) (2ps(@) — 1)]" i (@) (2ps() — 1)
n=0
x { (= P61(@))[Goo(y0 — x0 +2(n + 1)Ly, o)
+ (2ps(@) = 1)Goo(y0 +x0 +2(n + 1) Loy, )]
+ (1= p61(@))[Gos (yo — x0 + 2(n + 1) Ly, )
+ (2ps(@) — 1)Goo(yo +x0 +2(n + D Lgy, ») ]} (46)

Terms in {- - - } in (46) represent multiple trips in each of four classes and since there
is a match in the length of trips among different classes, Eq. (46) can be simplified as

G2(x0. Y0, ®) = p61(@)[ Goo (Yo — X0, ®) + (2ps(@) — 1)G oo (yo + X0, ®)]
+ Zz —pai (@) (2ps(@) — 1)) (2par(@) — 1)

X [Goo (yo —x0+2(n+ 1DLgy, a))
+ (2ps(@) — 1)Goo(y0 + x0 +2(n + D Loy, w)]. 47)

Using this method of ‘words’, we can construct compact solution forms for the
Green’s function for each of these two cells for any combinations of input, y, and
output, x, locations. For example, placing xp in Cell 1 between its soma and the
gap-junction we obtain

G1(x0, ¥0, @) = (1 = p63(@))[G oo (3o — X0, ) + (2ps(@) — 1)Goo(y0 + X0, )]

+ 32" (= pes(@) (2ps(@) — 1)) (1 = 2pas(@)

n=0

x [Goo(y0 — x0 +2(n + 1) Ly, w)
+ (2ps(@) — 1)Goo(y0 + x0 +2(n + 1) Lgy, )] (48)
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Fig. 13 Values of 2y at the soma of each cell as a function of LGy when yy = Lgy + 10 um and
Rgy = 100 M (red circles), Rgy = 1000 M2 (black crosses). Passive somas with parameters: diame-
ter ag =25 pm, Cs =1 pF/cmz, Rg = 2000 cm?. Resonant dendrites (N =4) with parameters given in
Fig. 4

4.2 Network Dynamics

To study the role of a gap-junction in this two-cell network model, we focus on the
Green’s functions at the somas of these two cells in response to a stimulus at the loca-
tion yg. Using Eqs. (47) and (48), we obtain the following somatic response functions:

G1(0, yo, @) = 2ps(@) (1 — p63(@)) G oo (y0, @)

+ 2" (—par(@) (2ps(@) — 1)) (1 = 2pay(@))
n=0

X 2ps(@)G oo (Yo + 2(n + 1) Lay, ), (49)

and
G2(0, yo, @) = 2ps(@) p1(@) G o (0, ®)

+ 32" (— par(@) (2ps(@) — 1)) (2pas(@) — 1)
n=0

X 2ps(@)G oo (yo + 2(n + 1) Lay, ). (50)

Resonant properties of each cell are analysed by studying a preferred frequency £2¢
for each cell. This is defined as the frequency at which the corresponding power
function, P} (w) = |G1(0, yo, ®)|? for Cell 1 and P> (w) = |G2 (0, yo, w)|? for Cell 2,
reaches its maximum. This means that £2¢ for each soma is simply a solution of one
of the corresponding equations, 9P (w)/dw =0 and P2 (w)/dw = 0.

In Fig. 13, we plot how this preferred frequency 2 varies as a function of the
distance of the gap-junction away from each soma. These plots are obtained for the
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Cell 2
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L Lcy

Fig. 14 Values of 2y at the soma of each cell as a function of LGy when yy = Lgy + 10 um and
Rgy = 100 MR (red circles), Rgy = 1000 M2 (black crosses). Resonant somas with parameters: diam-
eter ag = 25 ym, Cs =1 uF/cmz, Rs = 2000 Qcmz, rg =1 Qch, Ly =0.1 Hcm?. Passive dendrites
(N =4) with parameters given in Fig. 4

Cell 2

0.6

0 50 100 150 200 250 800 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Lcy Lay

Fig. 15 Values of 2y at the soma of each cell as a function of LGy when yg = Lgy + 10 um and
Rgy = 100 M2 (red circles), Rgy = 1000 M2 (black crosses). Resonant somas with parameters: diame-
ter ag =25 um, Cs =1 pF/cmz, Ry =2000 cmz, rg =1 Qcmz, Ly =0.1 Hcm?. Resonant dendrites
(N =4) with parameters given in Fig. 4

case of a passive soma and resonant dendrites. In Fig. 14 we demonstrate how £2g is
affected if a resonant soma and passive dendrites are considered. Finally, in Fig. 15,
we plot £29(Lgy) when each soma and dendritic branch is modelled with resonant
membrane. All these three figures clearly demonstrate that the somatic response in
each cell strongly depends on the location of the gap-junction and it is tuned to be
maximised for different frequencies. This can be shown by applying a chirp stimulus
at the location yy and plotting the somatic voltage for each cell (see Fig. 16). Reso-
nances in each cell occur at different times as predicted by Fig. 15. All these figures
are constructed for truncated series solutions (49), (50) when the index n increases up
to 20, although it is possible to show that the solutions rapidly converge for a much
smaller n such as n = 10.
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Fig. 16 Voltage profiles in the somas of cells in response to a stimulus Ichirp(¢) applied at the location
y0 = Lgy + 10 um. Cells’ parameters as in Fig. 15, Rgy = 100 M2, @chirp = 0.003, Achirp = 1 nA. Black
curves: Lgy = 50 um, green curves: Lgy = 500 um

5 Discussion

In this paper, we have generalised the “sum-over-trips” formalism for single dendritic
trees to cover networks of gap-junction coupled resonant neurons. With the use of
ideas from combinatorics, we have also introduced a so-called method of ‘words’
that allows for a compact representation of the Green’s function network response
formulas. This has allowed us to determine that the position of a dendro-dendritic
gap junction can be used to tune the preferred frequency at the cell body. Moreover
we have been able to generate mathematical formula for this dependence without
recourse to direct numerical simulations of the physical model. One clear prediction is
that the preferred frequency increases with distance of the gap junction from the soma
in a model with passive soma and resonant dendrites. In contrast for a system with a
resonant soma and passive or resonant dendrite, the preferred frequency decreases as
the gap junction is placed further away from the cell body.

There are a number of natural extensions of the work in this paper. One is an
application to more realistic network geometries or more than just two neurons, as
may be found in retinal networks. Here, it would also be interesting to exploit any
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network symmetries (either arising from the identical nature of the cells, their shapes,
or the topology of their coupling) to allow for the compact representation of network
response (and further utilising the method of ‘words’). Another is to incorporate a
model of an active soma whilst preserving some measure of analytical tractability.
Schwemmer and Lewis [21] have recently achieved this for a single unbranched cable
model by coupling it to an integrate-and-fire soma model. The merger of our approach
with theirs may pave the way for understanding spiking networks of gap junction
coupled dendritic trees. Moreover, by using the techniques developed by them in
[22] (using weakly coupled oscillator theory) we may further shed light on the role
of dendro-dendritic coupling in contributing to the robustness of phase-locking in
oscillatory networks.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions
YT, SC and DM contributed equally. All authors read and approved the final manuscript.

Acknowledgements YT would like to acknowledge the support provided by the BBSRC (BB/H011900)
and the RCUK. DM would like to acknowledge the Complexity Science Doctoral Training Centre at the
University of Warwick along with the funding provided by the EPSRC (EP/E501311).

Appendix A: Two Simplified Identical Cells with Passive Membrane

Equations (14)—(16) with Y2 (@)= 1/t +w)/D provide the solutions of a model in
Fig. 2 with passive membrane. We introduce the function

- 1 e~ 7 (@lx]
P = ) ¥4 2Dy @)’ b
and its inverse Laplace transform
F(x,t,q)= E_l[f(x, w, q)]
= lelx‘qe(qu_l/f)l erfc <q\/5 + L)(N)(t). (52)
2 24Dt
Then the Green’s function on each segment can be found in closed form as
G-, y.1) = £7' (G- (x. y, )]
= l[Gm(x—y,r)— r—”F(x+y,t,ra/R):|, (53)
C 2Rgy

Gut+(x,y,t)= 2_1[@m+(x, v, a))]
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1 7,
= E_Goo(x—i—y,t)—WaGJF(x—Fy,t,ra/R)}, (54)

Gx(x,y,1)= £—1[6ni (x,y, a))]

11 r,
=—|—F ,t, R) |, 55
| 2Re x+y.t,raf )i| (55)

where G« (x, t) is the Green’s function of the passive infinite dendritic cable,

Goolx t)=£—l[e_mm]= L ctlre=@0gay (56)
’ 2Dy@) |~ JinDi

If an external stimulus fiyj ,,— (x, 1) = §(x — )1 (¢) has a form of a rectangular pulse
with 1(t) = no® (¢t)® (g — t), the voltage response on each segment can also be
found in closed form:

Vi (x,1) = [B(x — y,1) — B(x — y,1 — )

—(P(x+y.0) = P(x+y.t—1p))]/C. (57)
Vm+(x,t)=[B(x—i—y,t)—B(x—l—y,t—tR)
—(P(x+y.0)—P(x+y.t—1g))]/C. (58)
Vi (x,1) = [P(x 4+ y.1) = P(x +y.t —1p)]/C, (59)
where
__ o —|xl/v/Dt |x] _ )
B(x,1) 47\/D_/r[e erfc(—Z\/D_t Vi)t
_ l/VDr f< Al )]H
e erfc 2\/D_t+ t/t ) |O), (60)
P(x,1) = 2’17)0;‘;] [aF(x,t,ra/Ray) + bF(x,1, /&) + cF(x,1, —/©)], (61)
and
1 1
=Dr T GRar e
1 ' 1 62)

b= , = .
2/e(/e —ra/Ray) ¢ 2/e(/€ +ra/Ray)

These solutions generalise earlier results of Harris and Timofeeva [23] applicable
to a neural network, but with gap-junctional coupling at tip-to-tip contacts of two
branches.

Appendix B: Proof of the “Sum-over-Trips” Rules at the Gap Junction

As the Green’s function is constructed in the Laplace domain, the rules at the gap-
junction need to satisfy the following boundary conditions (after a length of each
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Fig. 17 The GJ node with
possible trips in its proximity
Tﬂ\x
n- nt
7/ GJ node

4

branch, say labelled by k, of the tree is re-scaled as X = yx(w)x, x € [0, L]):

G- 0,Y,0) =G,+;(0,Y, ), (63)
G,-;(0,Y,®) = G,+;(0,Y,w), (64)
and

ym(a))<8ij G i+ )

Faum X ly—o X |x—o

=261(Gm-j(0,Y, ®) — G, (0, w)), (65)

yn(w)<3Gn—j G+ >

Ta.n X |x—o X |x—o

=261(Gy0,Y,0) = G, (0, Y, w)). (66)

We prove here that the rules for generating the trip coefficients are consistent with
these boundary conditions.

Let X denote the distance away from the GJ node along the segment m™ (see
Fig. 17). The location of the stimulus ¥ = y;(w)y, the segment number j and the
variable w are all considered to be arbitrary. Suppose that we sum all the trips
starting from the GJ node itself and ending at point ¥ on branch j. We denote
the result of summing over all trips that initially leave the GJ node along segment
m~ by Q,,-;(0,Y,w), along segment m™ by Qu+;(0,Y, w), along segment n~ by
Q,-;(0,Y, ®) and along segment n*t by Q,+;(0,Y, ).

Trips that start out from X and move away from the GJ node are identical to trips
that start out from the GJ node itself along segment m . The only difference is that
the trips in the first case are shorter by the length X. We denote the sum of such
shortened trips by mej(—X , Y, ). The argument — X means that a distance X has
to be subtracted from the length of each trip summed to compute Q (and not that the
trips start at the point —X).

Trips that start out from X by moving toward the GJ node and then reflecting
back along segment m™ are also identical to trips that start out from the GJ node
along segment m~ except that these are longer by the length X. In addition, be-
cause of the reflection from the GJ node these trips pick up a factor —pgj ,(w)
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according to the “sum-over-trips” rules. Therefore, the contribution to the solution
G- (X, Y, w) from those trips is —pGyn(@) Q- (X, Y, w). Trips that start out
from X by moving toward the GJ node and then continue moving along branch
m, i.e. on segment m™, pick up a factor 1 — pgy.»(w) and the sum of such trips is
given by (1 — pgj n(w)) 9, + (X, Y, ). Finally, trips that start from X, move toward
the GJ node and then leave the GJ node by moving out along segment n~ or n™
pick up a factor pgy,»(w) and contribute to the solution G- ; (X, Y, w) by the terms
PGIn(0) Q- (X, Y, ®) or pGyn(w)Qp+;(X, Y, w).

The full solution G ,- ; (X, ¥, w) includes the contributions from all different types
of trips we have been discussing. Thus,

Gmfj(Xv Y, (,()) - W[mej(_xv Yv 6()) + (_pGJ,n(w))mej(Xa Yv (,())
+ (1 = P61 (@) Qe+ (X, Y, ®) + pGyn(@) Q- (X, Y, w)
+ e (@) Qu+ (X, Y, )]. (67)

The functions Q in this formula consist of infinite sums over trips, but we do not need
to know what they are to show that the solution Gmfj (X, Y, w) satisfies the GJ node
boundary conditions. At the GJ node, we have

Gm_j(ov Yv Cl)) = [(1 - pGJ,n(w))Qm—](O’ Y’ (,())

Djyj(w)
+ (1= p1n (@) Qp+ (0, Y, w)
+ PG1n(@)(Qy-;(0,Y, 0) + Q,+;(0, Y, »))]. (68)

Considering the solution G,,+;(0, Y, w) instead gives us the same expression as in
(68) and, therefore, G,,- (X, Y, w) obeys the boundary condition (63). Similarly, we
can show that

G- (0,Y, ) = G+ (0, Y, )

I
= W[(l — PG1m (@) Q- (0, Y, )

+ (1 - pGJ,m(w))Qn+](Oa Yv (,())
+ pGJ,m(w)(Qm_j(Ov Ya w) + Qm+](oa Y7 (1)))], (69)

which satisfies the boundary condition (64).
To prove the boundary condition (65) we use Eq. (67) to find that

8Gmfj N 1 8Qm7j(—X, Y, a))
X Ix—o B Djyj(w) |: 90X X=0
ey 2K @)
’ X X=0
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an+j(X, Y, a))
X

9Q,-j(X.Y, )

aX X=0

)] . (70)
X=0

Using the following properties for the term Q; (X, Y, w), k € {m~,m™,n",n*},

+ (1 = pGin(®))

X=0

+ pGin (@) (

L0 (XY )
9X

904 (X, Y, )

ST = (XL Yw), (71
aQ (_X’ Ys C())
"’T = Q(X, Y, w), (72)

Eq. (70) can be simplified as

G- i
W] = (1+ pcyn(@)) Q- (0,Y,®) — (1 = pGyn(@)) Qp+(0, ¥, w)
X=0
— P61 (@)(Q,-(0,Y, ®) + Q,+(0, Y, w)). (73)
Similarly,
G+
Tﬁ = (1 + pGJ,n(w)) Qm* (07 Y» 0)) - (1 - PGJ,n (a)))Qm7 (09 Ya (U)
X=0

— P61 (@)(Qn-(0,Y, ) + Q,+ (0, Y, »)). (74)

Substituting (73) and (74) together with (68) and (69) in Eq. (65) gives us the right
equality. Similarly, we can prove the boundary condition (66).
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