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Abstract We investigate the dynamic mechanisms underlying intermittent state tran-
sitions in a recently proposed neural mass model of epilepsy. A low dimensional
model is constructed, which preserves two key features of the neural mass model,
namely (i) coupling between oscillators and (ii) heterogeneous proximity of these
oscillators to a bifurcation between distinct limit cycles. We demonstrate that state
transitions due to intermittency occur in the abstract model. This suggests that there
is a general bifurcation mechanism responsible for this behaviour and that this is in-
dependent of the precise form of the evolution equations. Such abstractions of neural
mass models allow a deeper insight into underlying dynamic and physiological mech-
anisms, and also allow the more efficient exploration of large scale brain dynamics in
disease.

1 Introduction

Epilepsy is a prevalent neurological disorder characterised by the repeated occur-
rence of pathological brain states known as seizures. Seizures are often accompanied
by marked changes in electroencephalogram (EEG) dynamics. A pertinent example
is the case of absence epilepsy in which short epochs of high amplitude, slow spike-
wave rhythms spontaneously arise from a low amplitude background EEG (see, e.g.
[1]). Although the reasons for these dynamic state changes are unknown, mathe-
matical modelling can be used to help our understanding of the epileptic brain by
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highlighting possible underlying mechanisms. In addition, potential differences be-
tween the epileptic and non-epileptic brain can be revealed and seizure abatement or
prevention strategies can be explored (see, e.g. [2]).

Physiologically inspired macroscopic brain models (for example neural mass and
neural field models) have often been employed to investigate the causes of epilepsy
and seizures [3–8]. In characterising the epileptic brain using these models, one can
consider ways in which seizures can sporadically reoccur. In general, three methods
have been proposed, namely bifurcations, bistability, and intermittency, with each of
these potential dynamic mechanisms receiving both experimental and modelling sup-
port [4, 5, 7, 9–11]. In particular, intermittency has been postulated to underlie the
generation of absence seizures in experimental animal models [10, 12]. A mechanis-
tic neural mass model was recently shown to display intermittent dynamic transitions
reminiscent of absence seizures [7, 13]. In the model of [7], intermittency arose due
to interactions between heterogeneous populations of neurons. However, it remains
unclear exactly which properties of this model imbue it with these important dynam-
ics, and whether these properties are specific to the neural mass formalism. A greater
understanding of these dynamics will highlight which features of interconnected re-
gions of the brain are potentially responsible for seizure transitions.

Here, we approach this problem by extracting what we believe to be the funda-
mental dynamic features of the neural mass model, i.e. those features which, in-
dependent of the precise form of the equations, lead to the intermittent behaviour.
We then construct a simple, low dimensional system preserving these features and
demonstrate that this reduced system displays dynamics similar to those of the neural
mass model. This makes a deeper understanding of the mechanisms of intermittent
transitions possible, whilst it also shows that the proposed mechanism is dynami-
cally robust. Furthermore, we exploit the reduced dimensionality of our new model
to explore the effects of coupling in larger, heterogeneous systems. We propose this
model abstraction strategy as a complement to the more detailed neural mass and
neural network models for exploring the dynamic mechanisms of epilepsy.

2 Methods

2.1 Model

Our starting point is the work of [7], in which a model composed of connected neural
masses was formulated as a representation of interacting populations of neurons in the
cortex (e.g. interacting cortical columns). It was shown that this model displayed in-
termittency, autonomously switching between low amplitude, comparatively fast (i.e.
“alpha band”) oscillations and high amplitude, slow spike-wave oscillations. These
dynamics are reminiscent of electrographic recordings from patients with absence
epilepsy. In the model, we identify the high amplitude oscillation (ghost of the limit
cycle, i.e. “laminar” phase) with seizure EEG and the background EEG state is rep-
resented by the global re-injection of the model (i.e. the “turbulent” phase). Both
intrinsic parameter values of the neural masses (the nodes of the network) and the
connectivity between nodes were important for the observed intermittent dynamics
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Fig. 1 Model bifurcations. Bifurcations over μ in the single compartment, 2 variable model. Top: limit
cycle amplitude. Bottom: angular velocity

in the model, thus pathological rhythm generation was placed into the context of
interacting, heterogeneous regions of tissue.

Here, we explore the hypothesis that the intermittent dynamics of the neural mass
model are due to general dynamic properties, namely (i) the intrinsic dynamic reper-
toire (bifurcations) of isolated nodes and (ii) the interaction between nodes when they
are coupled, and when nodes are heterogeneous.We therefore proceed by engineering
a simple deterministic system of ordinary differential equations, which incorporates
the features we believe to be important for the observed neural mass model intermit-
tency. We first consider the dynamics of individual nodes, which in the neural mass
model were close to a bifurcation between qualitatively different oscillations, with
a region of bistability between the two. We therefore begin by constructing a sim-
ple two-dimensional non-linear system with these features (see details below). We
then introduce global coupling between these nodes and examine the dynamics of the
coupled system to test for the emergence of intermittency.

Our simplified model of the neural mass is constructed so that the amplitude of
oscillations (r) is controlled by a bifurcation parameter, μ. Choosing a cubic form for
the dependence of R = r2 on μ and then rotating the system using an angle variable,
θ , gives rise to the bifurcation structure required, as shown in Fig. 1. The slowing of
oscillations with increasing amplitude is obtained by making θ̇ a decreasing function
of R. In polar coordinates, the model for a single compartment is thus:

ṙ = r
(
μ − ar2 + br4 − cr6

)

θ̇ = ω − dr2
(1)
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To couple N different compartments (specified by subscript i), we use simple
additive coupling, so that in Cartesian coordinates the equations are:

ẋi = yi

(
ω − dr2i

) + xi

(
μ − ar2i + br4i − cr6i

) + βAx

ẏi = −xi

(
ω − dr2i

) + yi

(
μ − ar2i + br4i − cr6i

) (2)

i = 1, . . . ,N , where

r2i = x2
i + y2

i

The term Ax provides the additive coupling, where A is the adjacency matrix for
a generic network and x = (x1, . . . , xN). As in [7], self-coupling has been included
in the intrinsic node equations and, therefore, does not appear explicitly in A (i.e.
Aii = 0 ∀i).

For convenience, we fix the parameters a = 2, b = 3/2, and c = 1/3. These deter-
mine the position of the region of bistability between different oscillation types of the
uncoupled system. To see this (and to make sense of future diagrams), we give a brief
description of the dynamics of (1). Since ṙ is independent of θ , stationary points and
periodic orbits lie on contours of ṙ = 0, i.e. r = 0, the fixed point, which is stable if
μ < 0 and unstable if μ > 0, and the solutions of

0 = μ − ar2 + br4 − cr6

which will correspond to a degenerate circle of fixed points if r2 = ω/d is a solution
(a special case we ignore), and a periodic orbit otherwise. It is easier to analyze
solutions by setting r2 = R and looking for positive solutions to

μ = aR − bR2 + cR3

This explains why we have chosen the parameters above: let F(R) = aR − bR2 +
cR3, then

F ′(R) = a − 2bR + 3cR2

and so turning points of this curve (seen as a curve of solutions in the (μ,R)-plane)
occur at F ′(R) = 0 or, for the parameters a = 2, b = 3/2, and c = 1/3,

0 = 2− 3R + R2 = (R − 2)(R − 1)

In other words, turning points, which correspond to saddle-node bifurcations of
periodic orbits occur at R = 2 and R = 1 (r = √

2, r = 1). This structure is shown in
Fig. 1. If R = 2, then μ = 2

3 , and if R = 1, then μ = 5
6 . A Hopf bifurcation at μ = 0

creates a stable low amplitude limit cycle. As μ increases through μ = 2
3 , a second

(large amplitude) limit cycle is created together with a large amplitude unstable peri-
odic orbit in a saddle-node bifurcation. Following this bifurcation, there is a region of
bistability until μ = 5

6 when the stable small amplitude limit cycle is destroyed in the
second saddle-node bifurcation. It is this region of bistability that we aim to use in the
coupled compartment models to generate intermittency by choosing heterogeneous
parameters a little below μ = 2

3 , so that although each individual compartment lies
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in a region with a unique stable small amplitude limit cycle, their coupling can cause
temporary (but repeated) excitation into the high amplitude state. This is essentially
the mechanism proposed in [7].

2.2 Connectivity

In this study, we explore three different connectivity schemes. In order to demonstrate
the equivalence of our model dynamics with those of [7], we initially study an all-
to-all coupled system of three compartments (see [13]). For simulations of spatially
extended systems, we work in two dimensions with periodic boundaries and sym-
metric nearest neighbour or distance dependent connectivity. Connectivity weights
are scaled by a connectivity parameter, β . For systems with distance dependent con-
nectivity, an exponential fall off of connectivity strength is used as follows:

aij = e−α‖ri−rj ‖

maxij (e
−α‖ri−rj ‖)

(3)

where aij is the entry of A connecting nodes i and j and ri and rj are the 2-d coordi-
nates of the location of compartments i and j , respectively. The denominator scales
the connectivity such that the maximum value of A is 1, and this is subsequently
scaled in Eq. (2) by β .

3 Results

3.1 Type 1 Intermittency in 3 Coupled Compartments

It has been suggested that the sporadic nature of epileptic episodes in absence seizures
is due to dynamic intermittency [10, 12]. Our recent work demonstrated that inter-
mittency in heterogeneous neural mass models can arise due to a type 1 route, i.e.
a proximal tangent bifurcation of a limit cycle [13, 14]. These dynamics arose in
a system composed of 3 all-to-all coupled compartments. We therefore investigate
whether these dynamics can be recreated in our abstract model, solely based on the
generic dynamic features extracted, as described in Sect. 2.

In Fig. 2, we demonstrate that intermittency does emerge from our abstract model
formulation. Figure 2 shows a long time series with parameter heterogeneity fixed to
μ1 = 0.2, μ2 = 0.3, and μ3 = 0.6 and all-to-all connectivity scaled by β = 3/2. Each
compartment makes intermittent deviations from the low amplitude oscillatory state
into a high amplitude, slow oscillation. A close up of these model dynamics can be
seen in Fig. 3.

For fixed μi we explored the effect of changing coupling strength, β , which is
shown in the bifurcation diagram of Fig. 4. For high β , the system evolves with
synchronous, stable limit cycle oscillations. As coupling strength is decreased these
oscillations give way to an intermittent regime, with the system exploring both the
high and low amplitude oscillations of the single compartment model. We note that
the way in which these model dynamics vary in relation to coupling strength is very
similar to the full neural mass model (see [13]). In order to explore the dynamic
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Fig. 2 Intermittency in the abstract model. Intermittent switching between low amplitude and high ampli-
tude oscillations in variable x3 of the model (Eq. (2)) with μ1 = 0.2, μ2 = 0.3 and μ3 = 0.6 and β = 3/2

Fig. 3 Intermittent dynamics. Left: close up of a state transition in the x-variable of each of 3 compart-
ments of the model demonstrated in Fig. 1. Right: phase portrait showing the trajectory of compartment 3
in x–y space

mechanisms leading to this intermittent window, a long simulation was performed
close to the onset of intermittency. Analysis of this system revealed a U-shaped dis-
tribution of high amplitude state durations as well as a proximate tangent bifurcation
of the phase locked limit cycle (Fig. 5). Thus, our abstract model also follows a type
1 route into intermittency (Chap. 5, pp. 68–69 in [15]), [13].
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Fig. 4 Effect of coupling strength. Scan of the dynamics of the 3 compartment model over changes in the
coupling strength, β . The distinct maxima of x3 are shown, with black and red dots denoting forward and
backward scans, respectively. All other parameters are as in Fig. 2

Fig. 5 Type 1 intermittency.
The main figure shows a first
return map of variable y1 of the
system close to the transition
into intermittency (β = 1.897)
and demonstrates the presence
of a tangent bifurcation. The
inset shows the distribution of
lengths of the high amplitude
states

3.2 Dynamics of Larger Systems

An advantage of the reduced dimensionality of our new model is the added computa-
tional efficiency for simulating large systems. Thus, the role of connectivity and het-
erogeneity in intermittent state changes can be explored more easily. In this study, we
explore the dynamics of a 9 × 9 sheet of compartments under different connectivity
schemes. We begin with nearest neighbour coupling, which is a simplistic approxi-
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Fig. 6 Schematic of a system with nearest neighbour coupling. Layout of the 9 × 9 system of coupled
compartments. Left: colour coded image of the distribution of μ. The central 9 squares have μ = 0.6,
whereas the rest of the system has μ drawn from a normal distribution with mean 0.3 and variance 0.05.
Numbers indicate compartment labels for reference. Right: demonstration of connectivity for the central
compartment. Black indicates the presence of connections

mation to the predominance of connectivity between proximal tissue in, for example
human cortex.

The model can be used to investigate the interplay between network connectivity
and the susceptibility of nodes to abnormal states (which is referred to as “epilep-
togenicity”) [8]. Specifically, higher values of the parameter μ can be thought of as
being more epileptogenic, since in a single compartment this would render a node
closer to the higher amplitude rhythm. As a demonstration of this line of enquiry, a
square region of compartments with μ = 0.6 is placed at the centre of a nearest neigh-
bour coupled system. This central square is surrounded by “normal” compartments,
which are further from the bifurcation and have μ drawn from a normal distribution
with mean 0.3 and variance 0.05. Figure 6 shows the distribution of μ in the system
and a visualisation of the connectivity matrix, A.

As in the smaller system, A was scaled by β in order to explore changes in connec-
tivity strength. We found that β can be tuned such that compartments of the system
undergo intermittent deviations into the high amplitude oscillatory state. An exam-
ple of the dynamics of the central compartments is given in Fig. 7. It can be seen
that different combinations of these compartments undergo periods of high ampli-
tude oscillations. Compartments 1 and 9, at the periphery of the central square are
less easily perturbed into the high amplitude state than the other compartments. In
particular, compartment 9 is coupled to two compartments with very low values of μ

(white squares in Fig. 6) and deviates less often into high amplitude rhythms. Thus,
it is demonstrated in this system that both the epileptogenicity of nodes and their
connected networks is important for state transitions.
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Fig. 7 Dynamics of a system with nearest neighbour coupling. Time series of the dynamics of the 9 central
compartments of the system described in Fig. 6. Compartment numbering is given in Fig. 6. β = 2.75

In addition to nearest neighbour coupling, a system with distance dependent con-
nectivity was also explored (see Sect. 2), which more closely approximates short
range interactions in the brain. In this system, a graded epileptogenic region was also
incorporated by allowing μ to decay exponentially from its value of 0.6 in the central
compartment to 0.3 at the periphery. The connectivity matrix (βA) and the distribu-
tion of μ for this system can be seen in Fig. 8.

This system also displayed intermittent high amplitude bursts, as can be seen in
Fig. 9. In this case, several bursts were more coherent across the central compart-
ments, even though in this system μ varied between compartments with distance
from the centre.

4 Discussion

In this paper, we have shown that a network of coupled two-dimensional equations
(compartments) can display intermittent behaviour with transitions between low am-
plitude and high amplitude oscillations. The equations were chosen so that in the
absence of coupling the parameters of each compartment were close to a saddle-node
bifurcation of periodic orbits creating the large amplitude oscillations, but the dif-
ferent compartments had different parameter values (heterogeneity). This behaviour
has also been observed in a more detailed, higher dimensional model of interacting
neural masses used as a model of absence epilepsy, so our results suggest that there is
an underlying bifurcation mechanism leading to this type of dynamics. This, in turn,
shows that the intermittency of the detailed model is robust—it does not depend on
the precise terms and parameters of the model. This is important since the model is,
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Fig. 8 Schematic of a system with distance dependent coupling. Layout of the 9 × 9 system of coupled
compartments with distance dependent coupling and exponential decay in μ. Left: colour coded image of
the distribution of μ. The central compartment has μ = 0.6, and the value of μ decays exponentially to 0.3
at the periphery of the system. Numbers indicate compartment labels for reference. Right: colour coded
connectivity values for the central compartment

Fig. 9 Dynamics of a system with distance dependent coupling. Time series of the dynamics of the 9
central compartments of the system described in Fig. 8. Compartment numbering is also provided in Fig. 8.
β = 5

by its nature, an approximation. Thus, we have provided strong evidence that these
dynamics are due to coupling between heterogeneous systems that posses a region of
bistability flanked by saddle-node bifurcations of qualitatively different limit cycles.
Furthermore, we confirmed that the bifurcation into the intermittent regime in our
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reduced model follows the type 1 route [14], which is equivalent to the dynamics of
the neural mass model [13]. In addition, we demonstrated the potential of the reduced
model to simulate large networks, and hence explore the interplay between network
connectivity and spatial distribution of heterogeneities in epileptogenic networks [7,
8, 16–19].

Large scale dynamic models are important for understanding both function and
dysfunction in the brain [19–22]. However, as models become larger and more com-
plex, they become difficult to systematically explore, and extraction of underlying
principles governing their dynamic repertoire is not trivial. Epilepsy is a pertinent ex-
ample, where we are challenged to relate multi-scale mechanisms and spatially dis-
tributed abnormalities (epileptogenic zones [23] and networks [24]) to the production
of pathological phenotypes, which include abnormal electrographic dynamics. Here,
we have demonstrated that principles underlying such dynamics can be uncovered
by pursuing sequential levels of abstraction. In [7], we formulated a large dimen-
sional neural mass model with the emergent phenomenon of intermittency resem-
bling epileptic electrographic activity. Subsequently in [13], a reduced dimensional
neural mass model (i.e. composed of fewer compartments) was shown to preserve
this feature and allowed for the categorisation of the route into intermittency at some
parameter values as type 1 [14]. In the current study, we have added a further level of
abstraction, retaining only certain dynamic features of the original model.

In terms of brain dynamics, the theoretical prediction of this work is that oscil-
lations in different parts of epileptic brain networks have different degrees of “ex-
citability” due to their proximity to a bifurcation into a different oscillatory dynamic
regime. When these regions communicate, e.g. via synaptic connectivity, an intermit-
tent dynamic regime can occur, with spontaneous episodes of qualitatively different
dynamics. We have therefore demonstrated a high level theoretical link between brain
oscillations [25], differential excitability in brain networks (e.g. [26]) and abnormal
rhythm generation, which are crucial concepts for epilepsy. An important next step
will be to study models such as the one presented here in order to explore more
precisely the relationship between network topology and distributed heterogeneities,
which will provide a better understanding of epileptogenic networks and allow to
predict the nature of inter-connected normal and abnormal regions of tissue in the
epileptic brain [8, 16, 19]. An advantage of the current framework is that such ques-
tions can be explored with improved computational efficiency as compared to neural
mass models.

To confirm the use of our model in this direction, we demonstrated the preserva-
tion of intermittency in systems incorporating spatially structured connectivity. In-
terestingly, in these systems, we did not immediately uncover a dynamic regime in
which the majority of nodes displayed concomitant and coordinated switching into
abnormal dynamics, as would be expected for absence epilepsy [1]. Our experience
simulating spatially structured neural mass models, together with considerations of
the anatomy of the brain, suggests that such a regime could require the addition of
long range connections. The exploration of this hypothesis will further uncover the
link between the topology of large scale brain networks and the propagation of epilep-
tiform activity and will be an interesting avenue for future study.

An alternative dynamic regime proposed to underly switching between seizure and
non-seizure states in absence seizures is noise-driven bistability [4, 27–30]. Similarly
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to our current work, this dynamic regime has been investigated both in mechanistic
neural mass models [4] and in reduced forms preserving bistability between a stable
steady state and a stable limit cycle [29, 30]. In the current study, we employ simi-
lar equations, though the resulting bifurcation structure is different as we focus upon
transitions between qualitatively different oscillations (following [7]), rather than be-
tween a fixed point and a limit cycle. Furthermore, [30] and [29] explored the effect
of qualitative changes in network structure on the resulting dynamics. In addition to
this work in bistable systems, future such explorations in our low dimensional frame-
work for intermittency can provide insight into the role of network connectivity on
seizure occurrence. In addition, recent work has explored the possibility that critical
transitions are responsible for seizure termination in focal onset seizures with sec-
ondary generalisation. [11] showed that certain features of these transitions, such as
slowing and flickering [31] can be seen in recordings from patients with these seizure
types, and slowing of absence seizure rhythms toward seizure termination does occur.
In our intermittent system, the dynamics of seizure termination are governed by the
nature of the vector field where the system leaves the previously stable limit cycle.
Whether such hallmarks can be seen in intermittent models is yet to be determined.
Although in the current study we focused on robustness of the mechanisms of inter-
mittent transitions, in future studies, it will be interesting to explore other details of
the waveforms of seizure EEG.

A similar model approximation approach was taken recently by [32], who sought
to uncover the dynamic principles underlying multi-stability and scale invariant fluc-
tuations in the human alpha rhythm. Similarly to the current study, their starting point
was a biophysically inspired neural mass model which offered a novel explanation for
the observed data [33]. Studying a normal form for the dynamics of interest, the re-
quirements were shown to be a sub-critical Hopf bifurcation and the incorporation
of multiplicative noise. Other abstract modelling studies have demonstrated minimal
neural mass models underlying the generation of different epileptic electroencephalo-
graphic waveforms [34], as well as the complex role of networks underlying focal
and generalised epileptic seizures [17]. The approach of modelling at several levels
of abstraction will be a key strategy in advancing our understanding of the brain.

In summary, we have uncovered a dynamic mechanism responsible for sponta-
neous state transitions in a neural mass model of epilepsy. Future explorations of this
model and further developments and applications of the general methods employed
herein will help to advance our understanding of large scale brain dynamics in health
and disease. Since our model is framework independent, it might also be used to
explore rhythm generation in other systems, for example oscillating biochemical net-
works [35].
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