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Abstract On exposure to opiates, preparations from rat brain stems have been ob-
served to continue to produce regular expiratory signals, but to fail to produce some
inspiratory signals. The numbers of expirations between two successive inspirations
form an apparently random sequence. Here, we propose an explanation based on
the qualitative theory of dynamical systems. A relatively simple scenario for the dy-
namics of interaction between the generators of expiratory and inspiratory signals
produces pseudo-random behaviour of the type observed.

1 Introduction

Feldman et al. (e.g. the review [1]) observed that neonatal rat brain stems in vitro
exposed to opiates continue to produce regular expiratory signals but fail to produce
some inspiratory signals. The times between two successive inspirations form an ap-
parently random sequence of multiples of the average expiratory period (see Fig. 1).
The same has been seen in vivo [3].

Here, we investigate the possibility of an explanation based on the qualitative the-
ory of dynamical systems: A relatively simple scenario for the dynamics of interac-
tion between the generators of expiratory and inspiratory signals produces pseudo-
random behaviour of the type observed.

Alternative explanations have been proposed in [4, 5]. The first proposes a model
with two physiologically plausible lumped oscillators; on exposure to opiates, they
propose that the coupling becomes stochastic in time (one has to read the supporting
information to [4] to find this), but we can generate the observed behaviour with
deterministic chaos, which we consider more satisfactory than invoking stochastic
coupling. The second simulates a large network of neurons (81 for expiration, 81 for
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Fig. 1 Sequential plot and histograms of inspiratory period for an en bloc in vitro preparation of rat brain
stem before and after treatment with an opiate agonist, showing quantal slowing down of inspiration (re-
produced with permission from [2]). The horizontal axis on the sequential plot is “cycle number” (meaning
number of inspirations since a start time), the vertical axis is time between successive inspirations in sec-
onds. The horizontal axis for the histograms is inspiration period and the histograms are plotted for ten
different experiments. When the potassium concentration was increased in two experiments (the last two
histograms, in red), the slowing of the inspiratory period was no longer quantised

inspiration), with random coupling, which may well be more realistic than just two,
but their parameters are such that most oscillators in the same group fire together;
indeed they call their model a “dual oscillator”, and it seems to us more simple to gain
conceptual understanding by considering just two oscillators and to see whether there
are dynamically plausible perturbations which could produce the observed effects.

1.1 Normal Situation

Following [1], we assume that the several hundred neurons involved in generating
breathing rhythm can be reduced to a system of two coupled oscillators. We assume
the instantaneous state can be described by a pair (θ,φ) of phases (angles on a circle).
When θ passes through a certain value θ0, a signal for expiration is generated; when
φ passes through a certain value φ0, a signal for inspiration is generated. Compare
“limit cycle” models, e.g. [6].

Evidence for two coupled but anatomically distinct rhythm generators is given in
[2, 3] (see also the recent review [7]).

Under normal operation, the dynamics has an attracting 2-torus, containing an
attracting periodic orbit of type (1,1) (one revolution in each of θ and φ per period),
which crosses θ = θ0 and φ = φ0 once per period, giving alternating inspiration and
expiration.

The flow on the 2-torus could be a “Poincaré flow” or a “Cherry flow”. A Poincaré
flow is one with a “global cross-section”, a closed surface of codimension 1 (thus a
circle in this case) transverse to the flow such that every trajectory cuts it in forward
and backward time, as in Fig. 2(a) where we will choose {θ = 0} as global cross
section. In particular, it has no equilibria. A Cherry flow has at least two equilibria
and (up to choice of direction of time) has a transverse circle for which the orbits
of all points return except those which converge to a saddle; an example is shown in
Fig. 2(b) (where the transverse circle can be taken to be θ = 0 again).

We consider both cases. The Poincaré case is the relevant one if the expiratory
oscillator is sufficiently strong that it is affected little by the inspiratory oscillator; the
observed quantisation of inspiratory period may be taken to support this. On the other
hand, there must in normal operation be some mutual inhibition to prevent attempted
simultaneous inspiration and expiration. It could be achieved by Poincaré flow if the
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Fig. 2 Examples of flows on
a two-torus: a a Poincaré flow,
b a Cherry flow

attracting periodic orbit avoids the intersection (θ0, φ0) of the two threshold circles
as in Fig. 2(a), but a stronger way would be a Cherry flow with (θ0, φ0) near the
repelling equilibrium, as in Fig. 2(b).

To study a flow, it can often be useful to take a “surface of section” Σ , a closed
codimension-one surface (so circle in our case) transverse to the flow, and consider
the return map f to it, given by following the flow to the first return (if any) with Σ .
For a Poincaré flow, the return map is continuous and increasing and has “degree
one”, meaning that on traversing Σ once, the image traverses Σ once in the same
direction. A sketch of the return map for the flow of Fig. 2(a) to the section θ = 0
(modulo 2π ) is shown in Fig. 3(a).

For the Cherry flow of Fig. 2(b), an appropriate surface of section is again the set
θ = 0. The return map then has the form of an increasing function with a jump at
the image of the intersection of the stable manifold of the saddle with Σ as shown in
Fig. 3(b) and (c). We choose to put the origin of Σ at the intersection with the stable
manifold of the saddle so the jump corresponds to φ′(2π) < φ′(0)+2π . Since Σ is a
circle, the point φ = 2π represents the same point as φ = 0, and we obtain the whole
circle by taking the interval [0,2π). Although the return map is discontinuous, we
consider the jump to be upward so as to make the resulting map have degree one.

The slopes of the return map for a Cherry flow at the ends of the discontinuity
depend on the “exponent” α = μ/λ of the saddle, where the eigenvalues are labelled
λ > 0 and −μ < 0. If α > 1, the slopes are zero; if α < 1, the slopes are infinite. More
precisely, near the discontinuity (which we have agreed to put at 0), f (x) ∼ A± ±
C±|x|α for x small positive and negative, respectively, some constants A− < A+,
C± > 0 (we ignore the special case α = 1, which typically involves a logarithmic
correction). These are illustrated in Fig. 3(b) and (c).

Fig. 3 Sketch return maps for the flows of Fig. 2: a Poincaré flow, b Cherry flow with attracting saddle,
c Cherry flow with repelling saddle
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Fig. 4 Insertion of a fold into
the dynamics

1.2 Effect of Opiate Exposure

The effect of exposure to opiates is described in the experimental literature as sup-
pressing the activity of the inspiratory oscillator, thus slowing it down in some way.

If there remains an attracting two-torus, then the winding ratio could cease to be
locked to 1 : 1, but all trajectories would still have a common winding ratio. In partic-
ular, there would not be trajectories carrying out pseudo-random sequences of rota-
tions. The sequence of numbers of expirations between successive inspirations would
be a “rotation sequence”. This has a recursive definition. Firstly, there is an integer
n1 such that the numbers of expirations between successive inspirations are all either
n1 or n1 + 1. Secondly, either the n1 or the n1 + 1 occur in singletons. Thirdly, the
sequence of numbers of the other between these singletons forms a rotation sequence
again. For example, EIEEIEIEEIEIEI is part of a rotation sequence, whereas
EIEEIEEIEIEIEI is not. Rotation sequences are very special sequences and the
results of Fig. 1 speak strongly against such sequences since it shows variation from
2 to 5 expirations between successive inspirations, contradicting the n1/n1 + 1 rule.

Thus, we propose that the principal effect of opiate exposure is to make the at-
tractor fold on itself as θ increases from generation of one expiratory signal to the
next, as sketched in Fig. 4. As a result, increasing the initial value of φ at a given
value of θ does not necessarily lead to increase of the value of φ after θ has increased
by 2π . The resulting attractor may well be fractal in a transverse direction, but we
assume that there is a strong stable foliation (e.g. [8]) whose leaves can be labelled
by θ and φ. This assumption is probably false in detail, but we believe it will give the
right idea (cf. much modelling of continuous-time systems by non-invertible maps,
e.g. [9]).

Such folded attractors with strong stable foliation can easily produce deterministic
chaos of the form of pseudo-random sequences of rotations, as we shall now describe.

2 Analysis of the Scenario

The result of our proposal for the effect of opiate exposure is that θ continues to in-
crease regularly in time, but φ may behave in a more complicated manner. Its evolu-
tion is most simply studied by considering the return map to the surface of section Σ .
This map f is the composition of an increasing degree-one map, either continuous or
having an upward jump discontinuity (as in Fig. 3), followed by a continuous degree-
one circle map having one decreasing interval (resulting from the perturbation with a
fold) that we denote (a, b).

Let us call the resulting class of maps C. In the Poincaré case, they are bimodal
continuous, degree-one circle maps. In the Cherry case, let us denote by I the in-
terval between the two branches of unstable manifold on θ = 2π . Then there are
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Fig. 5 Two-parameter plane
showing qualitative form of
circle map for perturbed Cherry
flow as the ends of the
decreasing interval (a, b) move
relative to the image I of the
discontinuity. For this figure
only, we put the origin at the left
end of the interval I . Note that
(a, b) is restricted to the range
0< a < 2π , a < b < a + 2π

various qualitative forms that maps f ∈ C can take, according to the disposition of
the decreasing interval (a, b) with respect to the interval I , as indicated in Fig. 5. The
regions are labelled by the sequence of signs of slope of f between 0 and 2π .

The slopes of f at 0 and 2π are determined by the exponent of the saddle. If
α > 1, the slopes are 0; if α < 1, they are infinite, except possibly in the special case
that one end of I is a or b, when the outcome depends on how 1/α compares with
the exponent of the fold (which is generically 2).

A key feature of an orbit of a degree-one circle map is its “rotation number”. This
is the average rate (if it exists) at which the iterates f n(θ), n ∈ Z+, rotate around the
circle. In our context, it gives the average ratio of numbers of inspirations to expi-
rations. For a continuous monotone degree-one map of the circle, Poincaré proved
that the limit exists and every orbit has the same rotation number. If monotonicity is
broken, however, there is the possibility of more than one rotation number and even
of orbits for which the average does not exist. More importantly, in this situation,
there is the possibility of orbits with pseudo-random sequences of rotations per itera-
tion. We will formalise this behaviour later in this section under the term “rotational
chaos”.

For continuous bimodal circle maps, there are some nice results, such as that the
set of possible rotation numbers is either a single point or a closed interval, and that
existence of two periodic orbits with different rotation numbers implies existence of
an invariant subset with pseudo-random sequences of rotations between those of the
two periodic orbits [9]. Another result is based on the concept of a badly ordered
invariant set. An invariant set for a degree one circle map is called badly ordered if
it contains three points in clockwise order whose images are not in clockwise order.
Any finite badly ordered invariant set implies similar rotational chaos [10]. We will
give an example of a bimodal map for which there is rotational chaos with rotation
interval [ 15 , 1

2 ].
Turning now to the case of discontinuous maps, maps of the form of region +

were studied by [11–14]. As long as the jump discontinuity is upward, there is a
unique rotation number, but for many of those with downward jump, the set of rota-
tion numbers was shown to be an interval rather than a single point, points for which
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Fig. 6 a A bimodal map
possessing rotational chaos
between rotation numbers 1

2
and 1; b associated transition
graph

the rotation number does not exist were found and rotational chaos was found. We
will give an example of a map in region + with rotational chaos, but the rotational
chaos is attracting only when the saddle is repelling; otherwise, the rotational chaos
is repelling and most trajectories go to a periodic orbit.

More promising is the region −+. Here, we make examples with attracting rota-
tional chaos even in the case of an attracting saddle.

We will give the examples first and then some general treatment.

2.1 Continuous Bimodal Examples

Consider continuous degree-one circle maps with a single decreasing interval.
Suppose the return map of Fig. 3(a) is deformed by the fold into Fig. 6(a). It still

has a fixed point of rotation number 1 at φ = 0 and another inside the interval A but
now has also a period-2 orbit of rotation number 1

2 (its points are at the AB and BC
boundaries). The fixed point and period-2 points partition the circle into three arcs A,
B , C.

Definition Say a 1D map f maps an interval A over an interval B if f is continuous
on A and there is a subinterval A′ of A such that f (A′) = B (cf. [15]).

This definition implies that the image of A covers B and possibly more, but is
more precise, allowing application of the intermediate value theorem to deduce that
if f maps A over B , B over C, etc., then there is a point x ∈ A such that f (x) ∈ B ,
f 2(x) ∈ C, etc.

The arcs A, B , C are mapped over each other as indicated in the transition graph
of Fig. 6(b). Here, we have introduced notation + to show when trajectories pass 2π ,
thus making one revolution; it can be taken as indicating inspiration. The beauty of
the notion of “mapping over” is that every path in the graph is taken by some trajec-
tory. In particular, pseudo-random paths in the graph give trajectories generating any
sequence of inspiration or not between successive expirations. We call it “rotational
chaos”.

The downside of examples such as this is that the set exhibiting rotational chaos
might not be attracting; most trajectories might do something less interesting, like
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Fig. 7 a A bimodal example
with the orbits of the critical
points landing on an unstable
period-2 orbit; b associated
transition graph

converging to the attracting fixed point in the interior of arc A, which corresponds to
alternating inspiration and expiration.

To make examples where typical trajectories exhibit rotational chaos, one way is
to suppose the map has negative Schwarzian derivative (a relatively mild condition
which can be written as (1/(log |f ′|)′)′ > − 1

2 ) and to oblige the orbits of the criti-
cal points (turning points) of the map to land on unstable periodic orbits. The point
is that, for a map with negative Schwarzian derivative, every attracting periodic orbit
attracts the orbit of at least one critical point, so if the orbits of the critical points go to
unstable periodic orbits there can be no attracting periodic orbits. Furthermore, with
respect to the finite partition created by the orbits of the critical points, the dynamics
are equivalent to a type of stochastic process called Gibbsian. Assuming the transi-
tion graph has a single communicating component (a communicating component of a
directed graph is a maximal subset of the vertices such that for all pairs A, B it is pos-
sible to go from A to B and back to A), the process has unique invariant probability
distribution, given by an L1 density ρ on the circle satisfying the Perron–Frobenius
equation

ρ(x) =
∑

y∈f −1(x)

ρ(y)

|f ′(y)|

and the normalisation condition
∫

ρ(x)dx = 1. The theory is highly technical so we
restrict ourselves to giving one recent reference [16]. If the transition graph allows
more than one rotation number, then this probability distribution exhibits rotational
chaos. Thus, we modify Fig. 6 to Fig. 7. Note that the associated transition graph has
rotational chaos with all rotation numbers between 1

2 and 1.
The same idea motivates the example of Fig. 8, which has rotational chaos between

rotation numbers 1
5 and 1

2 , to match the results of Fig. 1.
The condition that the critical points be pre-periodic is strong, but similar chaotic

properties with an absolutely continuous probability distribution can be derived if the
orbits of the critical points do not come back too close too soon in a suitable sense.
The theory of this is even more technical, beginning with the Collet and Eckmann
condition (see [17] for a survey), but the condition holds for a set of parameters of
nearly full measure near the cases with pre-periodic critical points.
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Fig. 8 a A bimodal example
with rotation interval [ 15 , 1

2 ];
b transition graph

Fig. 9 a Example of return map
of type +; b associated
transition graph

2.2 Discontinuous Type + Examples

Now we turn to discontinuous circle maps.
In region + of Fig. 5, the decreasing interval lies inside I and if the fold is strong

enough it can make the discontinuity of f at 0 jump downward instead of upward.
In the case of repelling saddle, a possible result is indicated in Fig. 9(a). Here, the
circle is partitioned into two intervals A, B as shown. The interval A maps onto B

and the interval B maps onto the union of A+ and B+. The resulting transition graph
is shown in Fig. 9(b). Every path in this graph is taken by some orbit. In particular,
the period-1 cycle B → B+ has rotation number 1, the 2-cycle A → B → A+ has
rotation number 1/2, and pseudo-random paths in the graph can be taken to generate
any sequence of inspiration or not between successive expirations.

The example is very particular in that f (2π) = 4π and f 2(0) = 2π (just as we
made the orbits of critical points of bimodal maps land on unstable periodic orbits).
If these conditions are not met exactly, the dynamics can be more complicated to
describe but may often imply similar pseudo-random behaviour. A complete theory
of the dynamics has been given if the slope of f is everywhere greater than 1 (or under
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Fig. 10 a Variant of Fig. 9 with
attracting instead of repelling
saddle; b associated transition
graph

a weaker topologically expanding condition) [11–14], but we will content ourselves
with presentation of examples.

If we modify the example to correspond to an attracting rather than repelling sad-
dle, we obtain Fig. 10, for which the same rotational chaos exists with the smaller
interval B, but a transition from A to a third interval C is also possible and C is
absorbing. Typical orbits in A ∪ B perform a chaotic transient of pseudo-random be-
haviour, but eventually exit to C and thereafter exhibit 1 : 1 behaviour, which is less
relevant.

2.3 Discontinuous Type −+ Examples

In region −+, we can make examples like Fig. 11(a). With the given partition, we
obtain the graph of allowed transitions in Fig. 11(b). There is 1 : 1 behaviour for the
cycle A →+ B →+ A and 1 : 2 behaviour for the cycles B → D →+ B and C →
D →+ C. There is pseudo-random rotational behaviour, with missing inspirations
whenever B → D or C → D.

One may worry that because of the regions with slope near zero there might be
periodic attractors and the rotational chaos might be repelling and, therefore, only
transiently visible. But for this example one can make coordinate changes near each
of the points of zero slope to make the slope greater than 1 in absolute value, at the
expense only of introducing infinite slope at the pre-images of the critical points as
in Fig. 12.

Although drawn for the case of attracting saddle, the example works equally well
with repelling saddle.

We can make a variant with the additional possibility of missing two successive
inspirations, as indicated in Fig. 13. The construction can be extended to skip any
number of inspirations.

To make an example which produces behaviour like that of Fig. 1, we take re-
pelling saddle and a map of type −+ as in Fig. 14. It exhibits rotation numbers from
1/5 to 1/2, hence number of expirations between successive inspirations from 2 to 5.
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Fig. 11 a Example of return
map of type −+, b associated
transition graph

Fig. 12 The map of Fig. 11
expressed in a new coordinate ξ

chosen to make the slope
everywhere greater than 1

Note that B maps over C, but there is no route back to B from the rest. All orbits
eventually leave B , so we could consider the map on its complement.

2.4 Rotational Chaos

To make precise statements about the behaviour exhibited by the examples, we intro-
duce a definition.

Definition A circle map exhibits rotational chaos if it has an invariant subset with a
semi-conjugacy to a topological Markov chain whose “translation co-cycle” is non-
trivial.

We have to explain the various terms in this definition.
A topological Markov chain (TMC) is a discrete-time dynamical system based on

a finite directed graph with edge set Γ , whose state space is the set PΓ of doubly
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Fig. 13 a Modification of Fig. 11, b associated transition graph

Fig. 14 Example of type −+
with rotation interval [ 15 , 1

2 ]:
a map, b associated transition
graph

infinite paths γ : Z → Γ endowed with the product topology, and whose map is the
shift σ : PΓ → PΓ , σ(γ )n = γn+1. It is irreducible if for every two nodes x, y in the
graph there is a path from x to y.

A map f : F → F is semi-conjugate to g : G → G if there is a continuous surjec-
tion h : F → G such that hf = gh.

A co-cycle for a map f : F → F is a continuous function k : F ×N → R such that
k(x,n + m) = k(x,n) + k(f nx,m) for all x ∈ F , n,m ∈ N. It is enough to specify
k(x,1) for all x, but traditional to define it as above because the interest is in how
k(x,n) grows with n.

We endow any TMC arising from a degree-1 circle map f with a translation
co-cycle, defined by making a choice S of lifts to R of the subsets representing the
vertices of Γ , and a choice f̃ of lift of f (map f̃ : R → R such that πf̃ = f π , where
π : R → R/2πZ is π(x) = x(mod 2πZ)) and letting k(x,1) be the integer such that
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for x represented by γ , then f (x) ∈ S + k(γ,1). If k depends on only γ0 we say it is
elementary.

A co-cycle k for f is non-trivial if there are no c ∈ R and continuous function b

such that k(x,1) = c + b(f x) − b(x).
A simple cycle for a TMC is a closed path in the graph, which visits no vertex

more than once.

Theorem An elementary co-cycle on an irreducible TMC is non-trivial iff there are
two simple cycles with differing average.

Proof If there are two cycles (simple or not) with differing averages s, t , let N be the
least common multiple of their periods. Then k(x,N) = Ns for one and Nt for the
other, whereas if the cocycle were trivial it would be Nc for both.

In the other direction, if all simple cycles have the same average, call it c, then the
same holds for any periodic cycle because it can be broken into segments between
repeated vertices which can be rearranged to make a sum of simple cycles, and the
value of the co-cycle is simply the sum because it is elementary. Choose a reference
vertex, let b = 0 there and let b = ∑n

i=1 k(γi,1) − nc at the end of each path from
the reference vertex. This defines b uniquely because if two paths end at the same
vertex then close them back to the reference vertex by a common path to see that b

was uniquely defined. Then k(γ,1) = c + b(σγ ) − b(γ ), so the co-cycle is trivial. �

Corollary If a degree-one circle map f has a set of intervals Aj which are mapped
over each other according to an irreducible graph Γ and the graph contains two
simple cycles with differing average translation then f shows rotational chaos.

Remarks One might have thought that having two periodic orbits with different ro-
tation numbers would suffice for rotational chaos (as is true in the continuous case),
but Fig. 15 gives a counterexample in the discontinuous case. In the continuous case,
any badly ordered finite set suffices for rotational chaos [10], but Fig. 16 shows that
in the discontinuous case this does not even imply non-trivial rotation set.

2.5 Quantisation of the Time Between Inspirations

We have proposed a scenario that naturally leads to pseudo-random sequences of
numbers of expirations between successive inspirations, but it remains to explain
why the time between inspirations is quantised.

Our scenario consists of two coupled oscillators whose dynamics generates an
attractor of the form of a torus with a fold. The attractor may be fractal but we suppose
that we can still define phases θ and φ on it, representing the phase of the expiratory
and inspiratory oscillator, respectively.

The quantisation of the time between inspirations is most simply justified if the
flow is a “skew-product”, meaning that the θ dynamics is unaffected by the φ dynam-
ics, with θ̇ > 0 for all θ . Then the time from one expiration to the next is independent
of what φ does, and the time between successive inspirations is closely determined
by the number of times the trajectory winds in the θ direction for one revolution in φ.
The skew-product case would give a Poincaré flow under normal operation.



Journal of Mathematical Neuroscience (2013) 3:18 Page 13 of 17

Fig. 15 An example with
periodic orbits of two different
rotation numbers but no
rotational chaos, because the left
interval is invariant with rotation
number 0, what does not stay in
the right interval falls into the
left, and what does stay in the
right has rotation number 1

Fig. 16 An example with a
badly ordered period-2 orbit but
no rotational chaos, because the
interval [0,2π ] is invariant

The quantisation of the inspiration period is less easy to justify in the Cherry case.
Indeed, if some of the pseudo-random trajectories pass close to the saddle, then they
will be slowed down there and there is no reason for the time between inspirations to
be close to a multiple of the average expiration period. Close to quantised behaviour
might result, however, if the orbits come close to the saddle only rarely.

For a saddle with eigenvalues −μ < 0 < λ and transverse sections Σ , Σ ′ to its
stable and unstable manifolds, the time τ taken from Σ to Σ ′ is determined asymp-
totically by

y1 ∼ yeλτ

for the orbit starting at y on Σ (y1 a constant); see Fig. 17. So y ∼ y1e
−λτ . So a

probability density ρy for y gives one ρτ for τ with

ρτ = ρy

∣∣∣∣
dy

dτ

∣∣∣∣ ∼ ρyλy1e
−λτ .

If

ρy ≤ Ky−β with β < 1 (1)

then

ρτ � λKe−λ(1−β)τ ,
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Fig. 17 Orbit near a saddle
point

which gives exponentially small probability of taking a long time to pass the saddle.
So the question is whether (1) might be satisfied. There are results which give in-

variant probability with bounded density (thus β = 0) for a one-dimensional map, but
they generally require the map to be expanding and a bound on its second derivative,
e.g. [18]. The former would appear to rule out attracting saddle and critical points, and
the latter to rule out repelling saddle. Nevertheless, after suitable coordinate change
or inducing on an appropriate subset, it can sometimes be possible to turn a map into
one to which such results can be applied [19]. A classical example is for the map
f (x) = 2 − x2 on [−2,2] which has a critical point at x = 0, the coordinate change
x = −2cos θ , θ ∈ [0,π] turns it into the tent map with slope = ±2. Suppose z = g(y)

is a coordinate for which an invariant measure has bounded density ρz ≤ M . Then

ρy(y) = ρz

(
g(y)

)
g′(y).

Thus, ρy(y) ≤ Ky−β if g′(y) ≤ K
M

y−β , which is a mild condition on g.
On the other hand, an advantage of our scenario is that it does not automatically

quantise the time between inspirations. Increasing the potassium concentration de-
stroys the quantisation, as remarked in Fig. 1, so one wants a model that retains this
possibility, as our does.

3 Conclusion

We have given a possible dynamical systems explanation of the chaotic quantal slow-
ing down of inspiration observed under the effects of opiates in rats.

In summary, we propose that the effect of opiates is to introduce a fold into the
dynamics of two coupled oscillators. This can produce pseudo-random sequences of
numbers of expirations between successive inspirations. We also showed it is plau-
sible that the times between successive inspirations remain close to multiples of an
average inter-expiration period.

It will be interesting to test this proposal physiologically. In particular, could one
construct the return map from experimental results such as those used to make Fig. 1?
If the phases are not directly observable, one could perhaps reconstruct something
equivalent from the times between inspiration or expiration. We elaborate on this last
idea in Appendix A, though it is a project which would deserve a paper in itself.

A simple data analysis technique that could reveal something of the “grammar” of
the expiration/inspiration sequences is described in Appendix B.
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Appendix A

If ϕ is a C1 flow on a manifold M of dimension d and Σ ⊂ M is a codimension-1 C1

submanifold transverse to the flow, then the return-time function τ : Σ1 → R+ is a C1

function on the subset Σ1 of Σ which returns. Denote the return map f : Σ1 → Σ ;
it is also C1. Then, given n ≥ 1, define the map Φ : Σn → R

n+ on the subset Σn

of Σ which returns at least n times, by Φ(x) = (τ (x), τ (f (x)), . . . , τ (f n−1(x))).
For generic ϕ, Σ , the map Φ is a C1 embedding of Σn into R

n+ if n ≥ 2d − 1, by
analogy with Takens’ embedding theorem [20]. Thus, given the sequences of return
times for some trajectories on an attractor Λ of ϕ, one can reconstruct Λ ∩ Σ up
to C1 diffeomorphism. Furthermore, one can reconstruct the return map f from the
shift on the sequences: (τ1, . . . , τn) determines a point on Λ ∩ Σ and (τ2, . . . , τn+1)

determines its image.
One could attempt to apply this to the breathing data by taking Σ to correspond

to expiration, assume d = 3 suffices, and hence n = 5, assume that every orbit on the
attractor returns to Σ infinitely often, and apply the method to the sequence of times
between successive expirations, to deduce up to diffeomorphism what Λ∩Σ and the
return map to it look like. In practice, however, this is unlikely to reveal much, as the
time between successive expirations is close to constant.

One might propose instead to take Σ to correspond to inspiration, for which the
return time is quite variable, but the submanifold corresponding to inspiration is un-
likely to be transverse to the flow, as the phenomenon is that some approaches to
inspiration fail to cross and have to wait for a later attempt.

If both the expiration and inspiration submanifolds (call them E and I ) were trans-
verse to the flow, one could contemplate an extension of the above idea to take the
sequence of times between both inspiration and expiration events, adding symbols I

or E to indicate which, e.g. . . .Et1I t2Et3Et4I . . . . Although this representation is
discontinuous at E ∩ I , we are expecting Λ to avoid E ∩ I (simultaneous expiration
and inspiration). If Λ does come close to E ∩ I , we could make multiple charts for
E and I by eliminating events that follow in too short a time, but would then have to
deal with the overlap of charts, which although feasible is messy. In any case, for the
present application I is unlikely to be transverse to the flow so this would produce a
discontinuous representation of E ∩ I , so we leave the discussion here.
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Appendix B

The idea is to map the observed sequences into a square as follows: Choose λ a
little less than 1/2. Given a sequence a0a1 . . . at . . . aN of E and I , for each t , map
atat+1 . . . to

ft = (1− λ)
∑

s≥t,as=I

λs−t ∈ [0,1]

and . . . at−2at−1 to

pt = (1− λ)
∑

s≤t−1,as=I

λt−1−s ∈ [0,1].

We call ft the future and pt the past. Then plot the points (pt , ft ) in the unit square,
as t goes from m to N − m for some m such that (1 − λ)λm is not visible. If all
sequences occur, then they will fill out a 2D middle (1 − 2λ) Cantor set. If only a
rotation sequence occurs, then ft is a decreasing function of pt (if it is periodic then
only finitely many points appear). For examples like Fig. 9, the sequences fill out a
sub Cantor set, revealing the associated transition graph.

Such plots have been used to study the “pruning front” conjecture [21].
For an example of use of a related technique to reveal a grammar in sequences of

positive integers, see [22].

References

1. Feldman JL, Del Negro CA: Looking for inspiration: new perspectives on respiratory rhythm.
Nat Rev, Neurosci 2006, 7:232-242.

2. Mellen NM, Janczewski WA, Bochiaro CM, Feldman JL: Opioid-induced quantal slowing reveals
dual networks for respiratory rhythm generation. Neuron 2003, 37:821-826.

3. Janczewski WA, Feldman JL: Distinct rhythm generators for inspiration and expiration in the
juvenile rat. J Physiol 2006, 570:407-420.

4. Wittmeier S, Song G, Duffin J, Poon C-S: Pacemakers handshake synchronization mechanism of
mammalian respiratory rhythmogenesis. Proc Natl Acad Sci USA 2008, 105:18000-18005.

5. Lal A, Oku Y, Hülmann S, Okada Y, Miwakeichi F, Kawai S, Tamura Y, Ishiguro M: Dual oscillator
model of the respiratory neuronal network generating quantal slowing of respiratory rhythm.
J Comput Neurosci 2011, 30:225-240.

6. Glass L: Is the respiratory rhythm generated by a limit cycle oscillator? In Concepts and Formal-
izations in the Control of Breathing. Edited by Benchetrit G, Baconnier P, Demongeot J. Manchester:
Manchester University Press; 1987:247-264.

7. Feldman JL, Del Negro CA, Gray PA: Understanding the rhythm of breathing: so near, yet so far.
Annu Rev Physiol 2013, 75:423-452.

8. Bonatti C, Diaz LJ, Viana M: Dynamics Beyond Uniform Hyperbolicity. Berlin: Springer; 2005.
9. MacKay RS, Tresser C: Transition to topological chaos for circle maps. Physica D 1986, 19:206-

237. Erratum: Physica D 1988, 29:427.
10. MacKay RS, Tresser C: Badly ordered orbits of circle maps. Math Proc Camb Philos Soc 1984,

96:447-451.
11. Keener JP: Chaotic behavior in piecewise continuous difference equations. Trans Am Math Soc

1980, 261:589-604.
12. Tresser C: Nouveaux types de transitions vers une entropie topologique positive. C R Math Acad

Sci Paris, Sér I 1983, 296:729-732.



Journal of Mathematical Neuroscience (2013) 3:18 Page 17 of 17

13. Gambaudo J-M, Tresser C: Dynamique régulière ou chaotique: applications du cercle ou de
l’intervalle ayant une discontinuité. C R Math Acad Sci Paris 1985, 300:311.

14. Hubbard JH, Sparrow CT: The classification of topologically expanding Lorenz maps. Commun
Pure Appl Math 1990, 43:431-443.

15. Alseda L, Llibre J, Misiurewicz M: Combinatorial Dynamics and Entropy in Dimension One. Singa-
pore: World Scientific; 2000.

16. van Strien, S, Vargas E: Real bounds, ergodicity and negative Schwarzian for multimodal maps.
J Am Math Soc 2004, 17:749-782.

17. Swiatek G: Collet–Eckmann condition in one-dimensional dynamics. In Smooth Ergodic Theory
and Its Applications. Edited by Katok A, de la Llave R, Pesin Y, Weiss H. Providence: Am Math Soc;
2001:489-498. [Proc Symp Pure Math, vol 69.]

18. Lasota A, Yorke J: On the existence of invariant measure for piecewise monotonic transforma-
tions. Trans Am Math Soc 1973, 186:481-488.

19. Bowen R: Invariant measures for Markov maps of the interval. Commun Math Phys 1979, 69:1-
17.

20. Takens F:Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence. Edited
by Rand DA, Young L-S. Berlin: Springer; 1981:366-381. [Lecture Notes in Math, vol 898.]

21. Cvitanovic P, Gunaratne G, Procaccia I: Topological and metric properties of Hénon-type strange
attractors. Phys Rev A 1988, 38:1503-1520.

22. Greene JM, MacKay RS, Stark J: Boundary circles for area-preserving maps. Physica D 1986,
21:267-295.


	Analysis of a Scenario for Chaotic Quantal Slowing Down of Inspiration
	Abstract
	Introduction
	Normal Situation
	Effect of Opiate Exposure

	Analysis of the Scenario
	Continuous Bimodal Examples
	Discontinuous Type + Examples
	Discontinuous Type -+ Examples
	Rotational Chaos
	Quantisation of the Time Between Inspirations

	Conclusion
	Competing Interests
	Authors' Contributions
	Acknowledgements
	Appendix A
	Appendix B
	References


