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Abstract The spread of activity in neural populations is a well-known phenomenon.
To understand the propagation speed and the stability of stationary fronts in neural
populations, the present work considers a neural field model that involves intracor-
tical and cortico-cortical synaptic interactions. This includes distributions of axonal
transmission speeds and nonlocal feedback delays as well as general classes of synap-
tic interactions. The work proves the spectral stability of standing and traveling fronts
subject to general transmission speeds for large classes of spatial interactions and
derives conditions for the front instabilities subjected to nonlocal feedback delays.
Moreover, it turns out that the uniqueness of the stationary traveling fronts guar-
antees its exponential stability for vanishing feedback delay. Numerical simulations
complement the analytical findings.

Keywords Traveling front · Spectral stability · Integro-differential equation ·
Distributed delay

1 Introduction

The spatio-temporal dynamics of extended neuronal networks has attracted much
attention in recent years [3, 9, 48, 49]. They are powerful models to reproduce en-
cephalographic data [40], to explain phenomena observed in medicine [39] such as
general anaesthesia [26, 29, 34, 44] and describe experimental spatio-temporal prop-
agation of electric activity in neural tissues [23, 38, 41].
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The spatially-extended neural network under study implies axonal connections
with finite transmission speeds, which essentially leads to transmission delays. This
delay depends strongly on the axonal branching architecture [2] and the degree of
myelination of axonal branches [42]. For instance, unmyelinated axons exhibit a
small transmission speed in the range of 0.1–1.0 m/s and occur mainly in short-range
intracortical connections. In long-range axonal fibers such as cortico-cortical connec-
tions, the axons are myelinated leading to a faster transmission speed in the range of
1 m/s–100 m/s. Consequently, the resulting transmission delay between two spatial
locations depend on the axonal paths and varies between 0.5 ms and 100 ms. Since
these delay times are in the same range as time constants of synaptic responses of tens
of milliseconds, effects of finite transmission delays on the spatio-temporal evolution
of activity occur [6, 30, 46]. Although one may estimate such mean transmission de-
lay times along axonal fibers, physiological studies point out that the transmission
speed depends on the specific path the action potential takes, and hence varies in a
single axonal branching structure from one neuron to another [42]. In addition, the
detailed branching structure of neural tissue changes on a time scale of few months
[45] or even few days [21], and hence changes the transmission speed. Consequently,
it is not reasonable to study the effect of a single transmission speed, but rather a
distribution of speeds. The present work considers such a distribution of transmission
speeds and extends previous studies assuming a single speed only [13, 30, 37, 38,
46].

The model under study considers two types of axonal pathways. In intra-cortical
connections, the lengths of axonal paths may vary due to the absence of fiber bundles
of fixed length yielding a transmission delay proportional to the distance between
two spatial locations. In contrast, cortico-cortical feedback connections may exhibit
fiber bundles with fixed length yielding a constant feedback delay. By virtue of the
distribution of transmission speeds, these two pathways are modeled by a distribution
of transmission speeds and distributed feedback delays.

Most recent studies of extended neural networks considered either transmission
speeds in intraarea connections or delay in feedback connections, although experi-
mental findings indicate the presence of both connections [8], a distribution of trans-
mission speeds [20] and feedback delays [8]. Only few previous studies consider
both a single transmission delay in intraarea connections and the feedback delay [24,
28, 36, 51]. The present work extends these studies by a detailed spectral stability
analysis.

It is well known that transmission delays and feedback delays may destabilize
stationary activity yielding oscillatory phenomena [4, 7, 30]. To better understand
the spatio-temporal dynamics of neural populations, it is essential to comprehend
the role of delays and their effects on the activity propagation. The present work
undertakes the analysis of stationary front for the general case of large classes of
delay distributions and spatial interactions and, therefore, aims to reveal answers for
this problem.
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2 Methods

This section introduces the model equation and gives the major previous results,
which represent the basis of the novel results given in Sect. 3. To not expand the
section too much, the discussion of the already published findings is kept short and
concise.

2.1 The Model Equation

The model under study describes the activity in neural populations on a mesoscopic
spatial and temporal scale with typical spatial range of 500 µm and temporal time con-
stants of 5–10 ms. The corresponding spatial domain is coarse-grained and exhibits
spatial patches. This structure reflects the macrocolumnar structure observed in pri-
mary sensory areas [19]. Such a neural field model allows the successful reproduction
of electroencephalographic activity on the head [35] and the successful description of
spiral waves in neural tissue [23]. More precisely, the neural field model describes a
rate-coding neural population involving synaptic interactions whose spatio-temporal
evolution obeys the following nonlinear scalar integro-differential equation:

∂u

∂t
+ u = α

∫ ∞

0
ξ(c)

[∫
R

K(x − y)S

(
u

(
y, t − 1

c
|x − y|

)
− θ

)
dy

]
dc

+ β

∫ ∞

0
η(τ)

[∫
R

W(x − y)S
(
u(y, t − τ) − θ

)
dy

]
dτ, t > 0, (1)

u(x, t) = uo(x), −∞ < t ≤ 0,

where u = u(x, t) represents the mean membrane potential of a spatial patch at po-
sition x and time t [4] and uo is the initial activity. This model neglects units since
they can be considered by appropriate scaling of time and space [27]. The prefac-
tors α ≥ 0 and β ≥ 0 are nonnegative constants and reflect the synaptic weights of
intraarea connections and feedback connections, respectively, and α + β > 0. The
function ξ ≥ 0 represents the probability density distribution of axonal transmission
speeds. Similarly, the function η ≥ 0 represents the probability density function for
feedback delays. We would like to point out that Eq. (1) describes the evolution of a
minimal scalar model which, however, considers a large number of features. In spite
of its reduced form, i.e., scalar and activity evolves in a one-dimensional space, and
it promises to give insights into the effect of various delay types.

To learn more about the wave speed, at some point in the work, we will investigate
the dependence of the wave speed of the traveling wave front on the transmission
speeds and delays. To this end, the authors assume the axonal transmission speed
distribution and the feedback delay distribution to a sum of two terms

ξ(c) = 1

2

[
δ(c − c1) + δ(c − c2)

]
, η(τ ) = 1

2

[
δ(τ − τ1) + δ(τ − τ2)

]
, (2)

i.e., the presence of two axonal transmission speeds and two feedback delays. This
choice reflects the presence of short intracortical connections showing a small trans-
mission speed [31] and small constant feedback delay and long-range cortico-cortical
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connections, which exhibit large axonal transmission speeds and large feedback de-
lays.

In addition, S = H(u − θ) denotes the transfer function of the model and is cho-
sen to the Heaviside step function: H(u − θ) = 0 for all u < θ , H(0) = 1

2 , and
H(u − θ) = 1 for all u > θ . This assumption is valid for identical neurons in the
population [27]. Although this is a strong approximation, it gives first insights into
the possible dynamics of homogeneous neural populations. The parameter θ is con-
stant and represents the mean firing threshold of the neurons.

The spatial kernel functionsK andW are real-valued and reflect two different non-
local axonal connectivities between neurons and synapses: K represents intracortical
axonal interaction in the neural population, which exhibits finite transmission speeds,
whereas W denotes the axonal connectivity along fibers that leave the neural popu-
lation and reenter it with a constant delay. These functions may be seen as weighted
sums of probability density functions of axonal connections of subnetworks where
the weights represent the synaptic strengths in each subnetwork [27]. We require that
ξ = 0 at least in a small open interval (0, c0), where c0 > 0 is a positive constant. This
assumption is reasonable since the resulting traveling wave front propagates with a
wave speed μ0, 0 < μ0 < c0 that is equal to or smaller than the transmission speed
c0 due to physical reasoning. It is assumed that

0 < 2θ < α + β, αK(0) + βW(0) > 0,∫ ∞

0
ξ(c)dc = 1,

∫ ∞

0
η(τ)dτ = 1,

∫ ∞

0

1

c
ξ(c)dc < ∞,

∫ ∞

0
eτ η(τ )dτ < ∞,

∣∣K(x)
∣∣ + ∣∣W(x)

∣∣ ≤ C exp
(−ρ|x|) on R,∫

R

K(x)dx = 1,
∫

R

W(x)dx = 1,

∫ 0

−∞
K(x)dx = 1

2
,

∫ 0

−∞
W(x)dx = 1

2
,

∫ 0

−∞
|x|K(x)dx ≥ 0,

∫ 0

−∞
|x|W(x)dx ≥ 0,

∫ ∞

0

[
αK(x) + βW(x)

]
exp

(
x

c0

)
dx >

α + β

2
− θ

(3)

for two positive constants C > 0 and ρ > 0.
To investigate various superpositions of subnetworks, the paper considers the fol-

lowing three general classes of synaptic interactions:

(A) This class consists of all nonnegative kernel functions, reflecting global excita-
tion in the neuronal population, i.e., K ≥ 0 on R.

(B) This class consists of all Mexican hat kernel functions, reflecting lateral inhibi-
tion and local excitation in the neuronal population, where each kernel function
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satisfies the conditionsK ≥ 0 on (−M,M) andK ≤ 0 on (−∞,−M)∪(M,∞),
for a positive constant M > 0. This neural interaction is a successful model for
interactions in visual receptive fields, e.g., to explain orientation tuning [5, 47].

(C) This class consists of all upside down Mexican hat kernel functions, reflecting
lateral excitation and local inhibition, where each kernel function satisfies the
conditions K ≤ 0 on (−M,M) and K ≥ 0 on (−∞,−M) ∪ (M,∞), for a pos-
itive constant M > 0. This interaction is motivated by the physiological finding
[32] that networks of inhibitory neurons act locally only and excitatory neurons
rarely exhibit local connections, but rather long-range interactions.

The synaptic feedback couplingW satisfies the same assumptions asK and it belongs
to one of the three classes. Certainly, K and W are not necessarily in the same class.
Moreover, K and W are not necessarily symmetric functions.

2.2 The Standing Wave Front

In the presence of a single firing threshold θ as in Eq. (1), a traveling wave front
connects two constant states, i.e., one above and one below the threshold θ . Let β = 0
and choose u(x, t) = u(t) in Eq. (1), then

u′(t) + u(t) = αH
(
u(t) − θ

)
, (4)

with two exponentially stable stationary states Ustationary−0 = 0 and Ustationary−1 = α.
They are stable irrespective of the spatial interactions and the delay distributions.

Suppose that α + β = 2θ and αK(0) + βW(0) > 0. Now let us consider a sta-
tionary standing wave front with profile U = U(x). Without loss of generality, sup-
pose that the front crosses the threshold θ at the point x = x0, that is, U < θ on
(−∞, x0), U(x0) = θ , U ′(x0) > 0 and U > θ on (x0,∞). Moreover, suppose that
limx→−∞ U(x) = 0, limx→∞ U(x) = α+β and limx→±∞ U ′(x) = 0. Plugging such
a solution back into the equation, noting that the solution is independent of time, we
get

U(x) =
∫

R

[
αK(x − y) + βW(x − y)

]
H

(
U(y) − θ

)
dy

=
∫ ∞

x0

[
αK(x − y) + βW(x − y)

]
dy

=
∫ x−x0

−∞
[
αK(z) + βW(z)

]
dz, (5)

U ′(x) = αK(x − x0) + βW(x − x0), (6)

U ′(x0) = αK(0) + βW(0) > 0. (7)

Amari had studied solutions similar to (5) for general stationary states in his cele-
brated work [3]. Section 3.1 will elaborate in some detail the spectral stability of the
stationary standing wave front given by (5).

It has been shown in many previous studies [4, 27] that certain spatial interactions
may destabilize spatially constant stationary states subject to the nonlinear gain func-
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tion S = H(u − θ). In the present model, the functional derivative of the nonlinear
gain function is given by δS[u(x, t)]/δu(x, t) = δ(u(x, t) − θ). In other words, spa-
tial interactions at a certain spatial location x with activity u(x, t) contribute to the
stability of a stationary state only if the location is close to the threshold θ .

2.3 The Traveling Wave Front and Its Stability

After the study of the existence of a standing wave front, this subsection focuses on
the existence of a travelling wave front. Let α ≥ 0, β ≥ 0, θ > 0 be constants such that
0 < 2θ < α + β . As shown in the previous section, there are two constant solutions
U1 = 0 and U2 = α + β to Eq. (1).

2.3.1 The Front Shape

Suppose that u(x, t) = U(x + μt) is a traveling wave front of Eq. (1), where μ > 0
represents the wave speed and z = x + μt represents a moving coordinate. Due
to translation invariance, suppose that the traveling wave front satisfies the condi-
tions U < θ on (−∞,0), U(0) = θ , U ′(0) > 0 and U > θ on (0,∞). Suppose
that the front satisfies the boundary conditions limz→−∞ U(z) = 0, limz→∞ U(z) =
α + β and limz→±∞ U ′(z) = 0. For physical reasons, suppose that the wave speed
satisfies the conditions 0 < μ < c0, where c0 = sup{c > 0 : ξ = 0 on (0, c) and
ξ ≥ 0 on (c,∞)} is the smallest occurring transmission speed. Then the traveling
wave front U = U(z) and the wave speed μ satisfy the equation

μU ′ + U = α

∫ ∞

0
ξ(c)

[∫
R

K(z − y)H

(
U

(
y − μ

c
|z − y|

)
− θ

)
dy

]
dc

+ β

∫ ∞

0
η(τ)

[∫
R

W(z − y)H
(
U(y − μτ) − θ

)
dy

]
dτ.

After a series of change of variables (such as ω = y − μ
c
|z − y| and x = c

c+s(z−ω)μ
×

(z − ω), etc.), this above equation becomes

μU ′ + U = α

∫ ∞

0
ξ(c)

[∫ cz/(c+s(z)μ)

−∞
K(x)dx

]
dc

+ β

∫ ∞

0
η(τ)

[∫ z−μτ

−∞
W(x)dx

]
dτ,

where s = s(x) is the sign function, which is defined by s(x) = −1 for all x < 0,
s(0) = 0 and s(x) = 1 for all x > 0. By using the integrating factor idea and integra-
tion by parts, we find the representation of the front

U(z) = α

∫ ∞

0
ξ(c)

[∫ cz/(c+s(z)μ)

−∞
K(x)dx

]
dc

− α

∫ ∞

0
ξ(c)

[∫ z

−∞
exp

(
x − z

μ

)
c

c + s(x)μ
K

(
cx

c + s(x)μ

)
dx

]
dc
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+ β

∫ ∞

0
η(τ)

[∫ z−μτ

−∞
W(x)dx

]
dτ

− β

∫ ∞

0
η(τ)eτ

[∫ z−μτ

−∞
exp

(
x − z

μ

)
W(x)dx

]
dτ. (8)

The derivative of U = U(z) is given by

U ′(z) = α

μ

∫ ∞

0
ξ(c)

[∫ z

−∞
exp

(
x − z

μ

)
c

c + s(x)μ
K

(
cx

c + s(x)μ

)
dx

]
dc

+ β

μ

∫ ∞

0
η(τ)eτ

[∫ z−μτ

−∞
exp

(
x − z

μ

)
W(x)dx

]
dτ. (9)

These expressions are useful in a later part of the work.

2.3.2 The Wave Speed of the Traveling Wave Front

To compute the wave speed, setting z = 0 and U(0) = θ in (8) and making some
simple change of variables yields

θ = α + β

2
− α

∫ ∞

0
ξ(c)

[∫ 0

−∞
exp

(
c − μ

cμ
x

)
K(x)dx

]
dc

− β

∫ ∞

0
η(τ)

[∫ 0

−μτ

W(x)dx

]
dτ

− β

∫ ∞

0
η(τ)eτ

[∫ −μτ

−∞
exp

(
x

μ

)
W(x)dx

]
dτ.

This equation may be rewritten as

φ(μ) ≡ φ1(μ) + φ2(μ) = α + β

2
− θ, (10)

where φ1 = φ1(μ) and φ2 = φ2(μ) are called speed index functions, defined on
(0, c0), by

φ1(μ) = α

∫ ∞

0
ξ(c)

[∫ 0

−∞
exp

(
c − μ

cμ
x

)
K(x)dx

]
dc, (11)

φ2(μ) = β

∫ ∞

0
η(τ)

[∫ 0

−μτ

W(x)dx

]
dτ

+ β

∫ ∞

0
η(τ)eτ

[∫ −μτ

−∞
exp

(
x

μ

)
W(x)dx

]
dτ. (12)
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Define the sub speed index functions φ21 = φ21(μ) and φ22 = φ22(μ) on μ ∈ (0, c0)
by

φ21(μ) = β

∫ ∞

0
η(τ)

[∫ 0

−μτ

W(x)dx

]
dτ, (13)

φ22(μ) = β

∫ ∞

0
η(τ)eτ

[∫ −μτ

−∞
exp

(
x

μ

)
W(x)dx

]
dτ. (14)

There holds φ2(μ) = φ21(μ)+φ22(μ). We will see that there exists a unique positive
solution (that is, the wave speed μ0) to the equation φ(μ) = α+β

2 − θ .
Interestingly, the speed index functions φ1 and φ2 allow us to express the slope of

the front at the threshold θ by utilizing (9) and (10)

U ′(0) = 1

μ0

[
φ1(μ0) + φ22(μ0)

] = 1

μ0

[
α + β

2
− θ − φ21(μ0)

]
. (15)

These expressions will be useful in later discussions of the spectral stability of the
traveling wave front.

Moreover, for single transmission speed and single feedback delay (i.e., ξ(c) =
δ(c − c0) and η(τ) = δ(τ − τ0), where c0 > 0 and τ0 > 0 are positive constants) and
identical spatial kernel functions K(x) = W(x), we have

lim
c0→∞φ1(μ0) = lim

τ0→0
φ2(μ0). (16)

Thus, there is no distinction between intracortical and feedback interactions. This is
obvious from Eq. (1) where the two integrals may be written as a single one.

2.3.3 The Spectral Stability of the Traveling Wave Front

Real neural structures exhibit a certain level of background noise, which may disturb
the propagation of activity. Hence, it is important to study the stability of the station-
ary traveling wave front with respect to small perturbations. This kind of analysis has
already been performed before for similar equations in [4, 14, 16, 43].

Previous studies on integral and/or partial differential equations involving infi-
nite delays have found criteria for the existence, uniqueness, and stability of travel-
ing wave solutions [1, 18]. Following the successful extrapolation approach for infi-
nite delays in integral and/or partial differential equations based on finite delays [12,
18] and recalling the close relationship of partial differential equations and integro-
differential equations of the type discussed here [25], we assume in the following that
mathematical analysis based on finite delays are applicable. An additional discussion
of this approximation may appear necessary, but is neglected since it would exceed
the major aim of the present work. Motivated by a previous study of Coombes and
Owen [10], we study the spectral stability of the traveling wave front of (1) by con-
structing Evans functions which are well known from the literature of integral and/or
partial differential equations [43].

To study the spectral stability of the front, we must rewrite the equation under
consideration in moving coordinate and linearize the new equation with respect to
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the traveling wave front to obtain a linear equation. Then we seek solutions of the
form exp(λt)ψ(z) to separate time and the moving coordinate z and to obtain an
eigenvalue problem with the complex eigenvalue λ and the eigenfunction ψ ; see also
the Appendix. Solving the eigenvalue problem yields the definition of the Evans func-
tion. It turns out that a complex number λ0 is an eigenvalue of the eigenvalue prob-
lem if and only if λ0 is a zero of the Evans function. Note that λ0 = 0 is always an
eigenvalue, reflecting the translation invariance of the travelling wave front. Previ-
ous studies have shown that the equation E (λ) = 0 determines the isolated spectrum
{λn : n = 1,2,3, . . .}. As before, the stationary front is unstable if there exists some
eigenvalue λ0 with positive real part Reλ0 > 0 or if the neutral eigenvalue λ0 = 0 is
not simple.

The spectrum of the linear differential operator L(λ) consists of two parts: the
essential spectrum and the isolated spectrum (point spectrum comprising the eigen-
values). Please see the Appendix for the definitions of the linear differential operators
L(λ) and L0. Are there any other spectrum in Ω = {λ ∈ C : Reλ > −1} other than
the essential spectrum and the isolated spectrum to the linear differential operator
L(λ)? By assumption, the kernel functions K and W converge to zero exponentially
fast as x → ±∞. Therefore, the operator [L(λ) − L0](L0)

−1 is a compact operator
in C0(R). The residual spectrum does not exist in our model.

The essential spectrum is easy to calculate by following the original ideas of John
Evans [14]. The complex number λ ∈ C belongs to the essential spectrum if and only
if λ is a complex number such that the solutions of the differential equation

μψ ′ + (λ + 1)ψ = 0, (17)

is bounded on R. The solution of this equation is given by ψ(z) = C exp(−λ+1
μ

z).
This solution is bounded on R if and only if λ = −1 + ir , for some real number r .
Since the subsequent sections show that linear deviations from stationary traveling
wave front obey differential equations of the type (17), we find that the essential spec-
trum contains those values of λ with Reλ = −1< 0 only, i.e., the essential spectrum
does not threaten the stability of the traveling wave front.

It remains to investigate whether the isolated spectrum (the eigenvalues) threatens
the stability, i.e., whether there are eigenvalues λ0 with positive real part Reλ0 > 0,
threatening the stability of the stationary front.

Define the Evans function E = E (λ) for the traveling wave front of Eq. (1) by

E (λ) = [
E1(λ) + E2(λ)

] − 1, (18)

where E1 = E1(λ) and E2 = E2(λ) are also called Evans functions, defined by

E1(λ) = 1− α

μ0U ′(0)

∫ ∞

0
ξ(c)

×
[∫ 0

−∞
exp

(
(λ + 1)

c − μ0

cμ0
x

)
× exp

(
λ

c
x

)
K(x)dx

]
dc, (19)

E2(λ) = 1− β

μ0U ′(0)

∫ ∞

0
η(τ)eτ

[∫ −μ0τ

−∞
exp

(
λ + 1

μ0
x

)
W(x)dx

]
dτ, (20)
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in the open domain Ω = {λ ∈ C : Reλ > −1}. Here, the Evans function E = E (λ) is
also called the stability index function and represents a sum of two single stability in-
dex functions E1 = E1(λ) and E2 = E2(λ), reflecting the contribution of transmission
delay and constant delay, respectively.

Properties of the Evans functions: A complex number λ0 is an eigenvalue of the
eigenvalue problem L(λ)ψ = λψ (details to be given in the Appendix) if and only if
λ0 is a zero of the Evans function. Moreover,

lim|λ|→∞ E1(λ) = 1, lim|λ|→∞ E2(λ) = 1, lim|λ|→∞ E (λ) = 1.

2.4 The Numerical Simulations

To complement the analytical study, subsequent sections show numerical integrations
of the model equation (1). To this end, if not stated otherwise, the spatial kernel
functions are chosen to

K(x) = 1

2(s − r)

[
s exp

(−|x|) − rρ exp
(−ρ|x|)], W(x) = 1

2σ
e−|x|/σ ,

with the real parameters s > r , ρ > 1, σ > 0. Equation (1) is integrated numerically
in time by an Euler-forward method with time step 
t = 0.02, the spatial integral
has been computed on a circular spatial grid of length L = 60 and 600 intervals by
the Monte Carlo-type VEGAS-algorithm [22] with 5000 random draws. If not stated
differently, the initial values of the neural activity have been chosen to the analytical
stationary front U(x − cT ) perturbed by random values γ (x, t) taken from a uniform
distribution γ (x,T ) ∈ [−0.025,0.025] in the initial interval −12≤ T ≤ 0.

3 Results

This section presents the new findings on the effect of distributed delays in both
standing wave front and traveling wave front. They extend previous results mentioned
in the previous section.

3.1 The Standing Wave Front

Derivation of an eigenvalue problem. Recall that the standing wave front U = U(x)

is a time independent solution of the nonlinear scalar integro-differential equation

∂u

∂t
+ u = α

∫ ∞

0
ξ(c)

[∫
R

K(x − y)H

(
u

(
y, t − 1

c
|x − y|

)
− θ

)
dy

]
dc

+ β

∫ ∞

0
η(τ)

[∫
R

W(x − y)H
(
u(y, t − τ) − θ

)
dy

]
dτ.

To study the spectral stability of the stationary standing wave front, we linearize this
equation about the front U = U(x) and we find that v(x, t) = u(x, t) − U(x) obeys
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the differential equation (neglecting higher order terms)

∂v

∂t
(x, t) + v(x, t)

= α

∫ ∞

0
ξ(c)

[∫
R

K(x − y)s′(U(y) − θ
)
v

(
y, t − 1

c
|x − y|

)
dy

]
dc

+ β

∫ ∞

0
η(τ)

[∫
R

W(x − y)s′(U(y) − θ
)
v(y, t − τ)dy

]
dτ,

where s′(U(y)−θ) = δ(y−x0)
U ′(x0) , because H(U(x)−θ) = H(x −x0). Making a change

of variable and using (7), we find the equation

∂v

∂t
(x, t) + v(x, t)

= αK(x − x0)

αK(0) + βW(0)

∫ ∞

0
ξ(c)v

(
x0, t − 1

c
|x − x0|

)
dc

+ βW(x − x0)

αK(0) + βW(0)

∫ ∞

0
η(τ)v(x0, t − τ)dτ, (21)

where αK(0) + βW(0) > 0. We understand that the contribution of the spatial
interactions to the activity is maximum if |K(x − x0)|/[αK(0) + βW(0)] and
|W(x −x0)|/[αK(0)+βW(0)] are large. For kernel functions with a maximum value
at the origin, the largest contribution is expected at x ≈ x0, i.e., close to the thresh-
old θ . Hence, one expects a large change of the activity close to the threshold θ .
This is different from other spatial interactions, such as gamma-distributed kernel
functions [27], where the strongest contribution occurs away from the threshold.

A standing wave front is translation invariant. We may let x0 = 0. Suppose that
v(x, t) = ψ(x) exp(λt) is a solution of the above equation, where λ is a complex
constant and ψ = ψ(z) is a bounded continuous function defined on R. After cancel-
ing out exp(λt), we obtain the eigenvalue problem

(λ + 1)ψ(x) =
[

αK(x)

αK(0) + βW(0)

∫ ∞

0
ξ(c) exp

(
−λ

c
|x|

)
dc

+ βW(x)

αK(0) + βW(0)

∫ ∞

0
η(τ) exp(−λτ)dτ

]
ψ(0).

The spectral stability of the stationary front (5) is determined by the eigenvalues
of this eigenvalue problem. Letting x = 0 in this equation and canceling out ψ(0)
because it is not equal to zero, we get

λ + 1 = αK(0)

αK(0) + βW(0)
+ βW(0)

αK(0) + βW(0)

∫ ∞

0
η(τ) exp(−λτ)dτ. (22)

At first, we observe that the spectral stability of the standing wave front just de-
pends on the spatial self-interactions K(0)/[αK(0) + βW(0)] and W(0)/[αK(0) +
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Fig. 1 Propagating stationary wave front of Eq. (1) for delayed feedback with spatial feedback connec-
tions taken from kernel class (C) without intra-area connections. a Single delay with η(τ) = δ(τ − τ),
τ0 = 2.0, b distributed delays η(τ) = δ(τ − τ1)/2 + δ(τ − τ2)/2 with τ1 = 1.3, τ2 = 2.6, i.e. E = 1.95.
In addition α = 0, β = 1.0, θ = 0.5, W(x) = (exp(−|x|) − 4.0exp(−10.0|x|))/1.2. Initial conditions are
chosen to u(x,T ) = 0.0, 0 ≤ x < L/2, u(x,T ) = 1.0, L/2 ≤ x < L, −τmax ≤ T ≤ 0 with the maximum
delay τmax and spatial domain length L = 60. The panels show a spatial and temporal extract of the full
simulation result for visualization reasons

βW(0)], i.e., lateral interactions do not determine the stability of the stationary stand-
ing wave front. Moreover, finite transmission speeds do not affect the stability, but
feedback delays may do. This result originates from the different nature of the de-
lays: the transmission delay does not affect the dynamics at the threshold θ since it
vanishes at zero distance from the threshold θ whereas the feedback delay is inde-
pendent of the distance and affects the dynamics at all spatial locations.

Spectral analysis. Obviously, the neutral eigenvalue λ = 0 is a trivial solution of
this equation. To study the spectral stability of the standing wave front with respect
to feedback delays, let us define the auxiliary function on the interval (−1,∞):

f (λ) ≡ λ + 1− αK(0)

αK(0) + βW(0)
− βW(0)

αK(0) + βW(0)

∫ ∞

0
η(τ) exp(−λτ)dτ.

For all kernel functions K and W , for all probability density functions ξ and η, f is
an increasing of λ. There exists a unique solution λ0 = 0 to the equation f (λ) = 0.
Moreover, λ0 = 0 is a simple solution (that is, λ0 = 0 is a simple eigenvalue). There-
fore, the standing wave front is spectrally stable. Let us consider a very special case:
absent intraarea connections (i.e., α = 0) and focus on nonlocal feedback connections
with a single feedback delay τ0 (i.e. η(τ) = δ(τ − τ0), where τ0 > 0 is a positive con-
stant). Then λ + 1 = exp(−λτ0). That is (λ + 1) exp(λτ0) = 1. Given the positive
constant τ0 > 0, it is very easy to see that there exists a unique solution λ0 = 0 to
(λ + 1) exp(λτ0) = 1.

Moreover, Fig. 1 shows the space-time activity of oscillatory unstable standing
front gained by a numerical simulation of Eq. (1) for a single delay (a) and a distri-
bution of two delays (b). We observe oscillatory activity close to the threshold value
θ consistent with the reasoning in Sect. 2.2.
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3.2 Traveling Wave Front

This subsection investigates analytically the uniqueness of the stationary travelling
wave front and the spectral stability of the front. Numerical simulations validate the
analytical findings.

3.2.1 The Uniqueness

Taking a close look at the implicit equation (10), the question arises whether its solu-
tion, i.e., the wave speed μ0, is unique, or whether there are several possible traveling
wave fronts with different wave speeds. Previous studies on propagating front in neu-
ral fields involving a single axonal finite transmission speed [11] have established the
uniqueness of the traveling wave front. The present work extends these studies by
considering distributed transmission speeds and distributed feedback delays.

If the speed index functions φ1(μ), φ2(μ), and φ(μ) defined in (11), (12), and
(10) are monotonic in μ, then the wave speed of the traveling wave front is unique.
By using rigorous mathematical analysis (to keep the paper from too long, details are
not to be given here), we find that

• For all kernel functions (K,W) in classes (A) and (B), for all speed and delay
distributions (ξ, η), for all μ ∈ (0, c0), there hold the following estimates:

∂φ1

∂μ
(μ) > 0,

∂φ2

∂μ
(μ) > 0. (23)

• For all kernel functions (K,W) in class (C), for all speed and delay distributions
(ξ, η), for all μ ∈ (0, c0), there hold the following estimates:

∂φ1

∂μ
(μ) < 0 on (0,μ∗),

∂φ1

∂μ
(μ) > 0 on (μ∗, c0), (24)

∂φ2

∂μ
(μ) < 0 on (0,μ∗∗),

∂φ2

∂μ
(μ) > 0 on (μ∗∗, c0), (25)

for two positive constants μ∗ and μ∗∗, where 0 < μ∗ < c0 and 0< μ∗∗ < c0.

In addition,

lim
μ→0

φ1(μ) = lim
μ→0

φ2(μ) = 0

and hence φ1(μ
∗) < 0 and φ2(μ

∗∗) < 0. Since 0 < 2θ < α + β , condition (10)
stipulates φ1(μ0) + φ2(μ0) > 0. Consequently, it is necessary that ∂φ1

∂μ
(μ) > 0 and

∂φ2
∂μ

(μ) > 0 in at least a small neighborhood of the wave speed μ = μ0.
Overall, there exists a unique wave speed and there is a unique traveling wave

front to Eq. (1).

3.2.2 Dependence on Transmission Speed and Feedback Delays

Now we investigate the change of the wave speed while changing the speed and
delay distributions assuming the distributions (2). For simplicity, we choose c2/c1 =
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Fig. 2 Wave speeds for
different transmission speed and
feedback delay distributions in
class (A), (B) and (C) of the
spatial kernel function K with
an excitatory feedback W ≥ 0.
The transmission speed and
feedback delay distributions are
taken from Eqs. (2) with
c1 = 2c0 and τ1 = 2τ0. Panels a
and b give the speeds for class
(A), panels c and d for class (B)
and panels e and f for class (C).
The delays τ in a, c and e are
identical to the lowest delays τ0,
the transmission speeds c in b, d
and f are identical to the lowest
transmission speed c0 in the
distribution. Other kernel
parameters are taken from Fig. 3

τ2/τ1 = κ , where κ is a fixed positive constant. Then (23), (24), and (25) and the
definitions (11), (12) yield for general synaptic interactions K and W that

∂φ

∂μ0

dμ0

dc0
+ ∂φ

∂c0
= 0,

dμ0

dc0
= − ∂φ/∂c0

∂φ/∂μ0
> 0,

and for excitatory delayed feedback interaction, i.e., W(x) ≥ 0,

∂φ

∂μ0

dμ0

dτ0
+ ∂φ

∂τ0
= 0,

dμ0

dτ0
= − ∂φ/∂τ0

∂φ/∂μ0
< 0.

Figure 2 shows the wave speed μ0 given implicitly by (10) with respect to different
transmission speed distributions and feedback delay distributions corresponding to
(2) for the kernel functions in the three classes (A), (B), and (C).
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3.2.3 Stability Analysis

Analysis of the eigenvalues of the eigenvalue problem. The introduction of the speed
index functions and the stability index functions given in Sect. 2.3.3 reveals novel re-
lationship between the uniqueness of the wave speed and the stability of the traveling
wave front. Comparing the stability index functions given in Eqs. (19), (20) and the
speed index functions in Eqs. (11), (12), we can obtain the following results.

(I) For intracortical interactions only (i.e., α > 0, β = 0, and 0 < 2θ < α), the speed
index function φ1 from Eq. (11) and the stability index function E (λ) from (18)
are related by

E (λ) = E1(λ) = 1− 1

φ1(μ0)
φ1

(
μ0

λ + 1

)
. (26)

Let E (λ) = 0, then

φ1(μ0) = φ1(γμ0), where γ = 1

λ + 1
∈ C. (27)

For the eigenvalue λ0 = 0, we find that γ = 1, and hence (27) holds. This eigen-
value reflects the translation invariance of the stationary traveling wave front. To
study the spectral stability of the front, the question arises whether there is an-
other complex eigenvalue λ0 with positive real part Reλ0 > 0 for which (27)
holds. Since the kernel function K is real, it follows that the eigenvalue λ0 (if it
exists) is real and γ < 1 if λ0 > 0. Then Eq. (27) breaks down to the question
whether there is another solution γμ0 < μ0 or, equivalently, whether φ1(μ) is
monotonic in (0, c0). This question has already been answered in the context
of the uniqueness of the wave speed in Sect. 2.3.2. Since μ0 is the unique so-
lution of Eq. (10), Eq. (27) has a unique solution γ = 1 so λ0 = 0 is the only
eigenvalue.

(II) Now let us consider feedback connections only (i.e., α = 0, β > 0, and 0 <

2θ < β). The stability index function (18) reads

E (λ) = 1− β

μ0U ′(0)

∫ ∞

0
η(τ)eτ

[∫ −μ0τ

−∞
exp

(
λ + 1

μ0
x

)
W(x)dx

]
dτ.

Then (10), (13), (14), and (15) yield

∫ ∞

0
η(τ)eτ

[∫ −μ0τ

−∞
exp

(
λ + 1

μ0
x

)
W(x)dx

]
dτ

=
∫ ∞

0
η(τ)eτ

[∫ −μ0τ

−∞
exp

(
x

μ0

)
W(x)dx

]
dτ. (28)

Since instabilities imply Reλ0 > 0, | exp(λ0x/μ0)| < 1, the left-hand side of
(28) is smaller than its right-hand side, and hence (28) holds true only for
λ0 = 0, i.e., the front is spectrally stable.
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(III) For both intracortical and feedback connections (i.e., α > 0, β > 0, and 0 <

2θ < α + β), the stability index function reads

E (λ) = 1− 1

φ1(μ0) + φ22(μ0)

[
φ1

(
μ0

λ + 1

)
+ φ22

(
μ0

λ + 1

)]
.

Similar to cases (I) and (II), we obtain the relationship

φ1(μ0) + φ22(μ0) = φ1(γμ0) + φ22(γμ0). (29)

By virtue of the monotonicity of the speed index function φ1(μ) + φ22(μ),
γ = 1 is the only solution of (29), i.e., λ0 = 0 is the only eigenvalue and the
front is spectrally stable.

Now let us consider distributed feedback delays, the stability index function
(18) and Eqs. (10), (15) yield

α

∫ ∞

0
ξ(c)

[∫ 0

−∞
exp

(
c − μ0

cμ0
x

)
K(x)dx

]
dc

+ β

∫ ∞

0
η(τ)eτ

[∫ −μ0τ

−∞
exp

(
x

μ0

)
W(x)dx

]
dτ

= α

∫ ∞

0
ξ(c)

[∫ 0

−∞
exp

(
c − μ0

cμ0
x

)
exp

(
λ

μ0
x

)
K(x)dx

]
dc

+ β

∫ ∞

0
η(τ)eτ

[∫ −μ0τ

−∞
exp

(
λ + 1

μ0
x

)
W(x)dx

]
dτ. (30)

Since | exp(λx/μ0)| < 1 for all λ with Reλ > 0, the same reasoning as in (I)
and (II) applies and the right side of Eq. (30) is smaller than its left side. Hence,
the only solution of Eq. (30) is λ0 = 0. Moreover, the derivative of the Evans
function at λ = 0 is positive, that is E ′(0) > 0. In another words, the neutral
eigenvalue λ = 0 is a simple eigenvalue.

On the other hand, note that

lim|λ|→∞ E (λ) = 1,

and

max
λ∈iR

∣∣E (λ)
∣∣ = 1.

We write λ = x + iy and E (λ) = Ereal(λ) + iEimag(λ). Note that both the real
partEreal(λ) and the imaginary partEimag(λ) of the Evans function E (λ) are real
harmonic functions of x and y. Hence, they satisfy the mean value formula; see
Evans [14–17]. As a result, E (λ) also satisfies the mean value formula. Thus,
|E (λ)| cannot attain a local maximum inside any open domain of C. By using
a strong maximum principle of |E (λ)| in Ω , we find that 0 < |E (λ)| < 1, for
all λ ∈ C with Reλ > 0. The spectral stability follows immediately. To illus-
trate this finding, Fig. 3 shows numerical simulations of Eq. (1) and we observe
stationary propagating front for kernel functions in the three classes (A), (B),
and (C).



Journal of Mathematical Neuroscience (2013) 3:9 Page 17 of 21

Fig. 3 Propagating stationary wave front of Eq. (1) for three classes of synaptic interactions and dis-
tributed speeds and delays. The kernel functions K and W are chosen from the class (A) (panel a),
(B) (panel b) and (C) (panel c). In a r = 0, b r = 0.4, ρ = 0.2 and c r = 0.4, ρ = 3.0. Other pa-
rameters are s = 1, α = 1.0, β = 0.1, σ = 1.0, θ = 0.2, and the speed and delay distributions are
ξ(c) = [δ(c − c0) + δ(c − c1)]/2, η(τ) = [δ(τ − τ0) + δ(τ − τ1)]/2 with c0 = 5.0, c1 = 10.0, τ0 = 0.1
and τ1 = 0.2

The simulations consider both distributed axonal transmission speeds and dis-
tributed feedback delays. We observe that starting from a noise-perturbed station-
ary front, the activity approaches the smooth stationary propagating front after some
time, i.e., the front is also exponentially stable in the presence of feedback delay. This
numerical result for nonvanishing feedback connections complements the analytical
result for vanishing feedback delay above.

4 Discussion

4.1 Stability of the Standing Wave Front

The results in Sect. 3.1 show that transmission delays do not destabilize standing
wave front. In contrast, nonlocal feedback delays may destabilize standing wave front
for certain delays resulting to oscillatory activity. The corresponding analytical con-
ditions for a single delay hold for feedback connections in class (C), i.e., for local
inhibition–lateral excitation interactions. Since such synaptic couplings as well as
feedback delays are omnipresent in the brain, oscillatory standing wave front may oc-
cur frequently in real neural structures. For distributed delays, such instability may be
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possible, but no analytical method is known up to today proving oscillatory instabil-
ity. Nevertheless, numerical simulations of standing wave front subject to distributed
feedback delays reveal oscillatory instability as well.

4.2 Wave Speed of the Traveling Wave Front

Section 3.2 shows that the speed index function is monotonically increasing, i.e.,
∂φ
∂μ

> 0 on the interval where the wave speed exist. Consequently, the wave speed
is unique. Moreover, the same subsection shows analytically that the increase of the
transmission speed, i.e., the decrease of the transmission delay, increases the wave
speed. Similarly, the increase of the feedback delays decreases the wave speed. Sum-
marizing these results, increasing delays slows down the wave speed of the traveling
wave front.

4.3 Stability of the Travelling Wave Front

The results in Sect. 3.2 indicate that traveling wave front is spectrally stable in the
absence of delayed feedback due to the uniqueness of the wave speed. To our best
knowledge, this relationship between the uniqueness and the stability has not been
found before, although claimed in previous studies [50, 51].

Focusing on the effect of delayed feedback, the stability analysis in Sect. 3.2.3
reveals the stability of traveling wave front for distributed delays. To support the
analytical results, numerical simulations were performed showing stable traveling
wave front, cf. Fig. 3. Additional extensive numerical studies (not shown) on the
effect of distributed feedback delays have found stable traveling wave front only.

Summarizing the latter results, distributed transmission delays do not destabilize
traveling wave front, but feedback delays may induce oscillatory instability.

4.4 Summary and Outlook

We find that the standing wave front and the stationary traveling wave front in-
volving distributed transmission speeds exhibit a unique stable traveling wave front
u(x, t) = U(x + μ0t) to Eq. (1) given any pair of synaptic couplings (K , W ), prob-
ability density functions (ξ , η), synaptic rate constants (α, β), any threshold θ and if
assumptions (3) hold. In addition, the standing wave front and the stationary traveling
wave front are spectrally stable in the presence of small external perturbations due to
the found relationship between uniqueness and stability. In contrast, the additional
presence of nonlocal feedback delays may render the stationary front instability. We
find that the delay-induced loss of stability is oscillatory. This is valid for the present
model involving a single synaptic time scale. It is worth mentioning, however, that
neural fields involving multiple synaptic time scales are sensitive to transmission de-
lays [33].

Future work may further investigate the relation of uniqueness and stability in
other wave phenomena, such as traveling pulse solutions or global waves. Moreover,
it is interesting to further study the impact of nonlocal delayed feedback on these
wave phenomena. These studies may permit deeper insight into the role of delayed
feedback loops which are omnipresent in neural systems.
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Appendix

Let U = Ufront(z) represent the traveling wave front of the nonlinear scalar integro-
differential equation (1).

Definition 1 (Eigenvalue problems, eigenvalues, and eigenfunctions) Let λ ∈ C and
Reλ > −1. Define a linear differential operator by

L0ψ = −μψ ′ − ψ.

Define a family of linear differential operators L(λ) by using the eigenvalue prob-
lem

L(λ)ψ = λψ. (31)

The eigenvalue problem is given explicitly by

μψ ′(z) + (λ + 1)ψ(z)

= α

U ′(0)

{∫ ∞

0
ξ(c)

[
c

c + s(z)μ
K

(
cz

c + s(z)μ

)]
exp

[
− λ|z|

c + s(z)μ

]
dc

}
ψ(0)

+ β

U ′(0)

{∫ ∞

0
η(τ)

[
W(z − μτ)

]
exp(−λτ)dτ

}
ψ(0).

If there exists a complex number λ0 and there exists a nontrivial bounded contin-
uously differentiable function ψ0 defined on R, such that L(λ0)ψ0 = λ0ψ0, then λ0
is called an eigenvalue and ψ0 is called an eigenfunction of the eigenvalue problem.

Definition 2 (The spectral stability)

(1) If max{Reλ : λ 
= 0, λ ∈ σ(L(λ))} ≤ −C0 and if λ0 = 0 is a simple eigenvalue of
the eigenvalue problem L(λ)ψ = λψ , then we say that the traveling wave front
is spectrally stable, where σ(L(λ)) represents the spectrum of the operator L(λ),
C0 > 0 a positive constant.
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(2) If there exists an eigenvalue with positive real part to the eigenvalue problem
L(λ)ψ = λψ , then we say that the traveling wave front is exponentially unstable.

(3) If max{Reλ : λ 
= 0, λ ∈ σ(L(λ))} < 0, that is, there exists no nonzero eigenvalue
to the eigenvalue problem L(λ)ψ = λψ in the right half plane {λ ∈ C : Reλ > 0},
but λ0 = 0 is not a simple eigenvalue of the eigenvalue problem L(λ)ψ = λψ ,
then we say that the traveling wave front is algebraically unstable.

Therefore, we have finished the proof of the spectral stability.
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