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Abstract A variety of phenomena in physical and biological sciences can be math-
ematically understood by considering the statistical properties of level crossings of
random Gaussian processes. Notably, a growing number of these phenomena demand
a consideration of correlated level crossings emerging from multiple correlated pro-
cesses. While many theoretical results have been obtained in the last decades for in-
dividual Gaussian level-crossing processes, few results are available for multivariate,
jointly correlated threshold crossings. Here, we address bivariate upward crossing
processes and derive the corresponding bivariate Central Limit Theorem as well as
provide closed-form expressions for their joint level-crossing correlations.

1 Introduction

Various phenomena in the biological or physical sciences are amenable to the de-
scription by level crossings of random Gaussian processes [1, 2]. Examples of these
phenomena are spike coordination of neurons in the brain [3], insurance risk assess-
ment [4] and stress levels generated by ocean waves [5]. Therefore a number of math-
ematical studies in recent decades have focused on the statistical properties of level
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crossings arising from stationary Gaussian processes [2]. However, largely this liter-
ature addresses the properties of one level-crossing process and rarely deals with the
coordinated level crossings of multivariate Gaussian processes. A prominent appli-
cation where correlated level crossings are of particular importance is neuroscience.
Recent work has shown that the spikes of a cortical neuron can be approximated by
a Gaussian level-crossing process [3, 6]. The assumption of Gaussianity is prompted
by the experimental observation that cortical neurons are on average connected to
∼10000 neurons and therefore receive a barrage of inputs that together lead to a near-
Gaussian fluctuation at the cell body of any given cortical neuron [7]. The spikes of
two neurons are then modeled as upward level-crossing times of two cross-correlated
fluctuating Gaussian potentials.

In this article we aim to address two features of level crossings of multiple cor-
related Gaussian processes. First, we want to clarify whether level-crossing counts
derived from multiple correlated processes are jointly Gaussian. Second, we want to
understand how many more coincident level crossings in a given time instance are
expected if the underlying Gaussian random processes are correlated. Let us provide
an intuitive reason for these questions. Starting with the first question, we recognize
that if level-crossing counts of two neurons were jointly Gaussian, then a simple mea-
sure of dependence is the covariance or the Pearson correlation coefficient. Measur-
ing a vanishing correlation coefficient or vanishing covariance between two neuronal
spike counts would in this case imply true statistical independence, because only in
the case of multivariate Gaussian distribution is it permissible to conclude indepen-
dence from vanishing count correlations. This implication is not permissible if the
marginal distributions are not Gaussian or are Gaussian but the joint distribution is
not a multivariate Gaussian distribution. While marginal Gaussianity has been shown
for level-crossing counts in [2] for large bin sizes, joint Gaussianity is still an open
question. It might seem natural to imply joint Gaussianity from marginal Gaussianity
for multivariate level-crossing processes, however, numerous counter examples exist
to prove this intuition wrong, see Sect. 5 in [8]. Here, we use a modified Breuer–
Major Theorem to prove joint Gaussianity and show that any linear combination of
level-crossing counts of the two processes is also Gaussian.

The second question we address in this article deals with the conditional proba-
bilities of two level-crossing processes. We are interested in how the level crossings
of one Gaussian process can be used to predict the level-crossing probability of the
partner process in a specific time interval relative to the observed level crossing in
one process. In neuroscience, coordinated neuronal firing drives changes in synaptic
connectivity and calculating the spike count dependencies across neurons is therefore
a topic of current research efforts (e.g. Chap. 8 in [9]). The available mathematical
results for conditional upward crossings in Gaussian processes currently comprise
mostly variance and moments for one level-crossing process (see Chaps. 3–5 in [2])
as well as the low and high correlation limit in pairs of processes [3, 10]. As yet,
a comprehensive closed-form solution covering the complete level-crossing cross-
correlation function is currently lacking. Here, we use a regression approach to de-
rive, for all correlation strengths, the conditional level-crossing correlation functions
in two continuous Gaussian processes. We hypothesize that the level-crossing cor-
relations we provide in this article could also be valuable in other fields outside of
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Fig. 1 Cross-correlations in the Gaussian variables lead to correlations of coincident level crossings.
a Spike correlations can arise from common input in a neuronal network. b We consider coincident level
crossings arising from two Gaussian processes that share a common latent source. Whenever the voltage
crosses a threshold ψ from below a spike is emitted. Spikes are indicated by vertical solid lines. The

vertical dotted lines indicate the width of a time bin T used to compute spike counts U
Vi[0,T ](ψ), i = 1,2

neuroscience for example in risk assessment calculations to predict the risk of joint
default for insurance purposes.

The article is structured as follows. In Sect. 2 we define the mathematical model
setting and introduce the concept of level crossings and specifically the upward cross-
ings. In Sect. 3 we use a regression approach to obtain a general closed-form solu-
tion for cross-correlations of level crossings in two correlated Gaussian processes.
In Sect. 4 we prove the joint Gaussianity (Central Limit Theorem) for the correlated
joint upward crossings for two correlated Gaussian processes. In the section on mate-
rials and methods (Sect. 6) we provide detailed derivations of the reported results. We
assume throughout this article that both level-crossing processes arise from crossings
of the same threshold level by two Gaussian processes with different variances. This
is permissible because the number of level crossings, the Rice rate [11], depends only
on the variance-to-threshold ratio, but not on these quantities individually. We there-
fore work with a pair of level-crossing processes where each process has a unique
voltage variance and therefore the rate of crossings in the two neurons being con-
sidered are, unless stated otherwise, not the same. Let us note that this assumption
is prompted by the observation that in a living brain typically no two neurons are
identical in all their properties and differ at least in their firing rate.

2 Mathematical Definitions of Multivariate Level Crossings

Here we address the statistics of coincident level crossings arising from two Gaussian
processes that share a common latent source. This situation is illustrated in Fig. 1(a).
We choose to illustrate the situation using a neuroscience perspective. Neurons in a
mammalian brain receive synaptic inputs, both excitatory and inhibitory, from thou-
sands of other neurons. Particularly in the visual cortex, the excitatory and inhibitory
inputs largely cancel each other and lead to a net fluctuating residual current at the
cell body of each neuron. These residual fluctuations drive the spikes of individual
neurons. These voltage fluctuations arise from largely independent inputs so they are
well approximated by a random Gaussian process with temporal correlations deter-
mined by the temporal structure of synaptic currents [7].
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2.1 Definitions of Multivariate Voltage Distributions

We begin by defining the random, temporally correlated Gaussian zero mean process
Vj (t) which represents the voltage of a neuron j

Vj (t) =
∫ ∞

−∞
eitλf

1/2
V (λ)

(√
1 − rdWj(λ) + √

rdWc(λ)
)
, (1)

where fV is a combination of filters fV (λ) = γ (λ)g(λ), where γ represents the mem-
brane filter and g the synaptic filter. Both of these filters can be chosen freely, but
their combination should guarantee a continuously differentiable voltage trajectory.
Wj with j = {1,2} and Wc are complex random measures with independent incre-
ments, such that for all Borelian sets A ∈ B(R) we have E|W(A)|2 = m(A), the
Lebesgue measure of A. By Wc we denote the common noise component. Moreover
if A∩B = ∅ then W(A) and W(B) are independent Gaussian random variables. The
correlation strength r , r = [0,1), denotes the presynaptic overlap of neurons 1 and 2
generated in a neuronal network, and it is illustrated in Fig. 1. If r = 0 the voltages
V1 and V2 are independent if r = 1 the voltages V1 and V2 are identical. The auto-
and cross-correlation functions between Vi and Vj are, respectively

CVj
(τ ) = 〈Vj (0)Vj (τ )

〉= σ 2
Vj

c(τ ), (2)

CVjk
(τ ) = 〈Vj (0)Vk(τ )

〉= rσVj
σVk

c(τ ) for j, k ∈ {1,2}, (3)

where c(τ ) = ∫∞
−∞ eiτλfV (λ)dλ, and τ is the considered delay. The vector (V1(0),

V ′
1(0),V2(τ ),V ′

2(τ )) comprising the voltages and their derivatives is Gaussian and
has the covariance matrix

Σ(τ) =

⎛
⎜⎜⎜⎝

σ 2
V1

0 Σ13(τ ) Σ14(τ )

0 σ 2
V ′

1
−Σ14(τ ) Σ24(τ )

Σ13(τ ) −Σ14(τ ) σ 2
V2

0
Σ14(τ ) Σ24(τ ) 0 σ 2

V ′
2

⎞
⎟⎟⎟⎠ , (4)

where the variances are σ 2
Vj

= CVj
(0), σ 2

V ′
j

= −C′′
Vj

(0) and covariance functions are

given by

Σ13(τ ) = 〈V1(0)V2(τ )
〉= rσV1σV2c(τ ),

Σ14(τ ) = 〈V1(0)V ′
2(τ )
〉= rσV1σV2c

′(τ ),

Σ24(τ ) = 〈V ′
1(0)V ′

2(τ )
〉= −rσV1σV2c

′′(τ ).

We use the correlation time τs to quantify the width of the correlation function c(τ ):

τs =
√

c(τ )/
∣∣c′′(τ )

∣∣. (5)

If the filters γ (λ) and g(λ) are classic low-pass filters, then the correlated voltage
processes of Eq. (1) can be written in a differential form for each neuron j :

τMV ′
j (t) = −Vj (t) + Ij (t), (6)
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where Ij (t) is the residual Gaussian current fluctuation with variance σ , τM the mem-
brane time constant of the neuron, e.g. [12–15]. The synaptic drive Ij (t) can be sep-
arated into two parts: a common and an individual noise component

Ij (t) =
∫ ∞

−∞
eitλ
√

Cξ (λ)
(√

1 − rdWi(λ) + √
rdWc(λ)

)
, (7)

where Cξ (λ) is the synaptic noise spectral density. Using Eq. (6) we obtain the fol-
lowing spectral representation for the stationary solutions:

Vj (t) = σi

∫ ∞

−∞
eitλ

√
Cξ (λ)

(1 + iτMλ)

(√
1 − rdWi(λ) + √

rdWc(λ)
)
.

In this form the spectral density of each Vj is given by fV (λ) = Cξ (λ)/(1 + τ 2
Mλ2).

Analogously to Eq. (3), we obtain

E
[
V1(0)V2(τ )

]= rσ1σ2

∫ ∞

−∞
eiτλ Cξ (λ)

(1 + τ 2
Mλ2)

dλ = rσ1σ2c(τ ). (8)

2.2 Upward Crossing Definitions

Neurons communicate using brief pulses, the so called spikes, which are emitted
whenever a voltage threshold is crossed [9]. The integrate-and-fire-type neuron mod-
els that are frequently used in computational neuroscience [12–15] generate a spike
in neuron j any time a voltage Vj (t) crosses a fixed threshold ψ and subsequently
reset the voltage to a reset potential. Recently, it has been shown that in many phys-
iologically relevant cases the leaky integrate-and-fire model can be equivalent to a
level-crossing model without reset, where spikes are modeled as positive threshold
crossings and are not followed by a reset [3, 6, 16]. Here, we therefore identify the
spikes of a neuron j with the positive level crossings of its voltage Vj (t) and quan-
tify the cross-correlation between level crossings in neurons 1 and 2 by the following
level functional:

UQ(ε)(ψ) = lim
δ→0

1

(2δ)2

∫
Q(ε)

1{|V1(s1)−ψ |<δ}V ′
1(s1)1{V ′

1(s)≥0}

× 1{|V2(s1+s2)−ψ |<δ}V ′
2(s1 + s2)1{V ′

2(s1+s2)≥0}ds1ds2, (9)

where Q(ε) = I1 × I2 is a bounded and finite rectangle in R
2, ψ denotes the voltage

threshold in both neurons (see Fig. 1). Here δ is introduced to quantify the infinites-
imal interval around the threshold ψ where a spike takes place. We choose the same
threshold for both neurons and two different variances (σV1 �= σV2 ) and keep all other
parameters the same. σV1 �= σV2 represents the biological situation in which two neu-
rons of the same neuronal type could have differences in the strength of their synaptic
input and threshold-to-variance ratio but are exposed to the same temporal back-
ground statistics. We will consider the following random field Z : R2 × Ω → R

2,
defined as (s1, s2) → Z(s1, s2) = (V1(s1),V2(s1 + s2)). Ω denotes the probability
space; here Ω is the Gaussian probability space. The field Z is Gaussian and Z(s1, s2)
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and Z(0, s2 − s1) are equal in distribution. We denoted by ps2−s1(·, ·) the bivariate
Gaussian density of vector (V1(s1),V2(s2)). If Q(ε) = [t, t + ε] × [τ, τ + ε] and the
prerequisites of Theorem 6.2 in [2] are fulfilled we can write

E
[
UQ(ε)(ψ)

]
= E
[
#
{
(s1, s2) ∈ Q(ε) : V1(s1) = ψ,V2(s1 + s2) = ψ,

1V ′
1(s1)≥0,1V ′

2(s1+s2)≥0
}]

(10)

=
∫

Q(ε)

E
[∣∣detZ′(s1, s2)

∣∣,1V ′
1(s1)≥0,1V ′

2(s1+s2)≥0|Z(s1, s2) = (ψ,ψ)
]

× ps2−s1(ψ,ψ)ds1ds2 (11)

= ε

∫ τ+ε

τ

E
[∣∣detZ′(0, s2)

∣∣1V ′
1(0)≥0,1V ′

2(s2)≥0|Z(0, s2) = (ψ,ψ)
]

× ps2(ψ,ψ)ds2 (12)

= ε

∫ τ+ε

τ

E
[∣∣V ′

1(0)
∣∣∣∣V ′

2(s2)
∣∣1V ′

1(0)≥0,1V ′
2(s2)≥0|V1(0) = ψ,V2(s2) = ψ

]
× ps2(ψ,ψ)ds2, (13)

where the expectation value is denoted by E, and det(Z(s1, s2)) is the determinant
of the correlation matrix for the vector field Z(s1, s2). Now, we are left to prove
the conditions of Theorem 6.2 in [2]. First, we find that conditions (i) and (ii) of
Theorem 6.2 are satisfied by definition. Condition (iii) holds because ps2(ψ,ψ) is
not degenerate. If we let I1 and I2 be two finite and bounded intervals in R, condition
(iv) is satisfied because

P
{∃(s1, s2) ∈ I1 × I2 : Z(s1, s2) = (ψ,ψ),detZ(s1, s2) = 0

}
≤ P
{
s1 ∈ I1 : V1(s1) = ψ,V ′

1(s1) = 0
}+ P

{
s2 ∈ I2 : V2(s2) = ψ,V ′

2(s2) = 0
}
.

Here P denotes the probability measure. We can define the correlation of two spike
trains as

〈
s1(t)s2(t + τ)

〉 := lim
ε→0

E[UQ(ε)(ψ)]
ε2

= E
[
V ′

1(0)1{V ′
1(0)≥0}V ′

2(τ )1{V ′
2(τ )≥0}|V1(0) = ψ,V2(τ ) = ψ

]
× pτ (ψ,ψ) (14)

=
∫ ∞

0

∫ ∞

0
v̇1v̇2pτ (ψ, v̇1,ψ, v̇2)dv̇1dv̇2, (15)

where pτ (ψ, v̇1,ψ, v̇2) is the joint Gaussian density of the vector (V1(0),V ′
1(0),

V2(τ ),V ′
2(τ )). The conditional firing rate νcond(τ ) then is

νcond(τ ) = 〈s1(t)s2(t + τ)
〉
/
√

ν1ν2, (16)
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where νj =
σV ′

j

2πσVj
exp(− ψ2

2σ 2
Vj

) is the firing rate of a neuron j , for j = 1,2. In the next

sections we provide closed-form expressions for 〈s1(t)s2(t + τ)〉 and νcond(τ ).

3 Cross-Correlations of Two Upward Level Crossings

Here, we address 〈s1(t)s2(t + τ)〉 and provide a closed-form solution that is valid for
any cross-correlation strength r between two level-crossing processes and any time
delay τ .

Proposition 3.1 Following the steps outlined in the methods section, Sect. 6.1, we
can apply a regression model and Mehler’s Formula (see Lemma 10.7 in [2]) to prove
that 〈

s1(t)s2(t + τ)
〉= C(a,b)(τ )pτ (ψ,ψ), (17)

where pτ (·, ·) is a joint Gaussian distribution for voltages Vj as defined in Sect. 2.2
and C(a,b)(τ ) is the series given by

C(a,b)(τ ) = [bΦ(b) − φ(b)
][

aΦ(a) − φ(a)
]
σε1(τ )σε2(τ ) + Φ(a)Φ(b)Cov(ε1,ε2)(τ )

+
∑
n≥2

φ(a)φ(b)Hn−2(a)Hn−2(b)Cov(ε1,ε2)(τ )n

n!(σε1(τ )σε2(τ ))n−1
, (18)

where

σε1(τ ) = (σ 2
V ′

1
− (α2

1σ 2
V1

+ 2α1α2Σ13(τ ) + α2
2σ 2

V2

))1/2
, (19)

σε2(τ ) = (σ 2
V ′

2
− (β2

1σ 2
V1

+ 2β1β2Σ13(τ ) + β2
2σ 2

V2

))1/2
, (20)

Cov(ε1,ε2)(τ ) = Σ24(τ ) − (β1α1σ
2
V1

+ (α1β2 + α2β1)Σ13(τ ) + α2β2σ
2
V2

)
, (21)

and

a = −(ψ(α1 + α2))

σε1(τ )
, b = −(ψ(β1 + β2))

σε2(τ )
,

with

α1 = Σ14(τ )Σ13(τ )

σ 2
V1

σ 2
V2

− Σ13(τ )2
, α2 = −Σ14(τ )σ 2

V1

σ 2
V1

σ 2
V2

− Σ13(τ )2
,

β1 = σ 2
V2

Σ14(τ )

σ 2
V1

σ 2
V2

− Σ13(τ )2
, β2 = −Σ14(τ )Σ13(τ )

σ 2
V1

σ 2
V2

− Σ13(τ )2
.

φ and Φ are the standard Gaussian density and distribution, respectively, and
Φ = 1 − Φ . Hn(z) = (−1)n dn

dzn (e−z2/2)ez2/2 are the Hermite polynomials. Note that
the first two terms in Eq. (18) correspond to truncation orders n = 0 and n = 1,
respectively.
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Fig. 2 Convergence of pairwise level crossing correlations. a Spike correlation function νcond(τ ) vs. time
lag τ for different truncation orders n in Eq. (17); r = 0.7, σV1 = σV2 = 10 mV, τs = 20 ms, ν = 5 Hz,
ψ = 9.64 mV. b νcond(τ ) vs. τ for a pair of rate heterogeneous neurons with r = 0.7, σV1 = 10 mV,
σV2 = 5 mV, τs = 20 ms, ν1 = 5 Hz, ν2 = 1.24 Hz, ψ = 9.64 mV. c νcond(τ ) vs. time lag for varying
correlation strengths r in a pair of neurons with σV1 = σV2 = 10 mV, τs = 20 ms, ν = 5 Hz, ψ = 9.64.
d νcond(τ ) vs. time lag for varying correlation strengths r , in a pair of rate heterogeneous neurons with
σV1 = 10 mV, σV2 = 5 mV, τs = 20 ms, ν1 = 5 Hz, ν2 = 1.24 Hz, ψ = 9.64. The truncation order of
νcond(τ )-series in Eq. (17) in c–d is n = 10. In a–d the filled circles at τ = 0 indicate the predicted
νcond(0) (as in Eq. (23)) and colored squares denote the corresponding numerical simulations obtained
with N = 2000 independent realizations of 20 s length

To aid the explicit evaluation of C(a,b)(τ ) in Eq. (18) we provide code for a com-
puter algebra system.1 Figure 2(a), (b) demonstrate νcond(τ ) obtained using Eq. (17)
for progressively large truncation orders n. Notably, we find close correspondence
between the first truncation order n = 1 and the large n limit (n = 10). Figure 2(c),
(d) show νcond(τ ) vs. τ as in Eq. (17) for varying correlation strength r . For sim-
plicity, we chose c(τ ) = cosh(τ/τs)

−1 and r ∈ [0,1). We note that νcond(τ ) for two
identical neurons (σV1 = σV2 ) is a symmetric function while for a pair of neurons with
different rates (σV1 �= σV2 ), νcond(τ ) is asymmetric.

Let us now briefly discuss the result we obtained in Eq. (17) within the context
of previous level-crossing literature. One of the closely related results is the vari-
ance of level crossings and maxima provided in Proposition 4.4 in [2]. However, this

1We provide the MATHEMATICA 8 (Wolfram Research) code to iteratively calculate νcond(τ ). The code
can be found at: www.tchumatchenko.de/CodeNuCond_Fig2.nb.

http://www.tchumatchenko.de/CodeNuCond_Fig2.nb
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result is derived for one level-crossing process, while we addressed a pair of level-
crossing processes. For multiple cross-correlated processes orthant probabilities that
describe expressions of the form P(V1(t) > ψ1,V2(t) > ψ2) have been obtained, e.g.
Lemma 4.3 on p. 78 in [2]. However, specific results for the cross-correlations of
upward crossings are sparse. For two correlated upward level-crossing processes pre-
vious studies have addressed the limiting cases of weak (r ≈ 0) or strong (r ≈ 1,
r < 1) cross-correlations [3, 10]. However, to address upcrossing correlations in the
intermediate regimes where neither r ≈ 0 nor r ≈ 1 no analytical methods are avail-
able. Therefore, it was previously necessary to numerically evaluate the associated
Gaussian probability densities in Eq. (15). The direct numerical evaluation of multi-
dimensional Gaussian integrals can be computationally and algorithmically demand-
ing, requires adaptive grid procedures and its accuracy can be hard to evaluate [17].
For the specific case of τ = 0 we show in the materials and methods section on
‘Zero time lag correlations’, Sect. 6.2, that a direct evaluation of the Gaussian double
integral is possible via a variable substitution. The key to this variable substitution
method was a manageable unity correlation matrix. For any other finite τ > 0 and a
given finite correlation strength 0 � r < 1 we could not identify a transformation that
leads to a tractable integral and we therefore derived the series expansion in Eq. (17).
This solution is explicit such that each series term of order n can be evaluated and
studied separately. Furthermore, Eq. (17) consists of analytical functions with a well-
studied parameter dependence. This makes it possible to predict the influence of a
specific parameter, such as time scale τs , firing rate νi or correlation strength r on the
upward level-cross correlations. As an example, we evaluate Eq. (18) for an identical
pair of neurons up to the third order in r via a Taylor expansion. We obtain

νcond(τ ) = ν + rν
(
c(τ )ψ2/σ 2

V − πτ 2
s c′′(τ )/2

)
+ νr2

2

[
c(τ )2

(
ψ2

σ 2
V

− 1

)2

+ τ 2
s c′′(τ )

(
c′′(τ )τ 2

s − πc(τ)
ψ2

σ 2
V

)

+ τ 2
s c′(τ )2

(
ψ2

σ 2
V

(2 − π) − 2

)]
+ νr3

[
c(τ )3

3!
(

ψ3

σ 3
V

− 3
ψ

σV

)2

+ c(τ )c′′(τ )τ 2
s

(
c′′(τ )τ 2

s

ψ2

2
− π

4
c(τ )

(
ψ2

σ 2
V

− 1

)2)

− τ 2
s c(τ )c′(τ )2

(
π

2

(
ψ4

σ 4
V

+ 1

)
+ ψ2

σ 2
V

)]
. (22)

We recognize that the linear and quadratic expressions are equivalent to the first
and second order r-expansion reported in [3, 10]. The cubic term has not been re-
ported before, to the best of our knowledge. This demonstrates consistency with pre-
vious results and illustrates that expansions of any order can be obtained via Eq. (18).
In this context, it is desirable to have an exact reference point for deciding how many
n- orders are necessary for Eq. (17) to be sufficiently accurate. Such a reference point
can be the zero lag value which we calculate exactly. Deviation of Eq. (17) for a spe-
cific n from this reference point can serve as an accuracy benchmark. Following the
calculations in the methods Sect. 6.2, we derive
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νcond(0) = 1 + (2r arctan(
√

(1 + r)/(1 − r)))/
√

1 − r2

4π2√ν1ν2τ 2
s

× exp

( −ψ2

4σ 2
V1

σ 2
V2

[
(σV1 + σV2)

2

1 + r
+ (σV2 − σV1)

2

1 − r

])
. (23)

Figure 2(a), (b) demonstrates νcond(τ ) obtained using Eq. (17) for different trunca-
tion orders n alongside the zero lag correlation νcond(0). Figure 2(c), (d) demonstrates
νcond(τ ) obtained using Eq. (17) as a function of the correlation strength r alongside
the zero lag correlation νcond(0). As previously, we chose c(τ ) = cosh(τ/τs)

−1 and
r ∈ [0,1). We note that for two identical neurons (σV1 = σV2 ) νcond(τ ) is a symmetric
function. Yet, for a pair of neurons with different rates (σV1 �= σV2 ) the spike correla-
tion function νcond(τ ) is asymmetric, indicating that the lower rate neuron spikes on
average after the higher rate neuron.

3.1 Relation to the Leaky Integrate-and-Fire Model

Here, we address the relation between spike statistics and spike correlations in the
level-crossing setting in our article and previous results in the leaky integrate-and-
fire framework [12–15]. In a current-based leaky integrate-and-fire model driven by
fluctuating noise the voltage of a neuron Vj (t) is given by

τMV ′
j (t) = −Vj (t) + Ij (t), (24)

τI I
′
j (t) = −Ij (t) + σξ(t), (25)

where Ij (t) is the input current of a neuron, ξ(t) a white noise, unit variance drive.
The voltage power spectrum for this model is a combination of low-pass filters
fV (λ) ∼ [(1 + τ 2

Mλ2)(1 + τ 2
I λ2)]−1 and its correlation function can be determined

according to Eqs. (8). If the voltage Vj reaches the threshold φ the neuron j emits
a spike and the voltage is subsequently reset to a reset value Vr . The integrate-and-
fire model differs only in one important detail from the level-crossing approach—the
presence of a reset after a spike. A recent article by Laurent Badel systematically
compared the validity of upward level-crossing approximation for the firing rate,
spike correlations and frequency response of a leaky integrate-and-fire neuron [16].
This study reached the conclusion that the upward level-crossing approach accurately
represents the leaky integrate-and-fire model if two conditions are fulfilled: (1) the fir-
ing rate is much lower than the typical relaxation time of the voltage, (2) the synap-
tic filtering time constants remain of the same order of magnitude as the membrane
time constant (τI /τM ≈ 1). Numerically, the validity of the approximation remained
highly accurate even for synaptic time constants 0.4 � τI /τM � 2.6.

A number of spike correlation results have been derived in the leaky integrate-and-
fire model for the limit of weak correlations [18–20]. They include the observation
that the spike correlation coefficient increases with firing rate [18, 19]. The equivalent
firing rate dependent increase in spike correlations and correlation coefficients for
low correlation strengths has been reported for the level-crossing model, see [3] and
Fig. 3(A) (right) and Fig. 2(A) (top) in [10]. Furthermore, leaky integrate-and-fire
model exhibits a sublinear dependence of correlation coefficients on input strength r

[18, 21], which we see confirmed in Fig. 4.
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Fig. 3 Univariate and multivariate count Gaussianity. a Univariate Gaussianity of counts U
V1[0,T ](ψ) −

E[UV1[0,T ](ψ)] for large bin size T = 25τs . A solid black line represents the corresponding zero mean Gaus-

sian fit. b Shapiro test p-value of the projections A = XT
i

· (cos(θ), sin(θ)), for all θ ∈ [0,2π). c Prob-

ability density of D2 (left). QQ-plot between the theoretically predicted χ2
2 -quantiles and the empirical

quantiles of D2
i

in Eq. (35). Figures b and c are both validations of the multivariate Gaussianity of the
bivariate vector X in Eq. (34). In all panels ψ = 0.3, τs = 1 ms, σVi

= 1

4 Joint Gaussianity of Upcrossing Counts

Spike count cross correlations and correlation coefficient measurements in pairs of
neurons are ubiquitous in neuroscience and are often used to measure the strength of
interdependencies in a pair of neurons, e.g. in cortical neurons [18, 19, 22], in model
neurons [23] and in theoretical and experimental studies of net correlations emerging
in recurrent networks [23–28]. Spike counts and their cross correlations in neuro-
science are often computed for a variety of bin sizes varying from T = 0.1–1 ms [22]
to T = 2 s [29]. Here, we are interested in the question when spike count correlations
of two neurons computed in a bin size T are jointly Gaussian such that their cross
correlations are unbiased measures of statistical dependence or independence.

In this section we will prove that the spike counts of two neurons, approximated
by up crossings of a Gaussian process, approach a joint multivariate Gaussian dis-
tribution for large bin sizes T . We start by considering the marginal distributions
of upcrossing counts. From the one-dimensional Central Limit Theorem proven in

[2] we know that 1√
T

(U
Vj

[0,T ](ψ) − E[UVj

[0,T ](ψ)]) converges for T → ∞ to a one-
dimensional centered normal variable with finite variance. We provide a direct illus-
tration of this classical univariate result in Fig. 3(a). Now, it is tempting to conclude
that because the distribution of counts in each neuron is Gaussian, the joint distribu-
tion for the vector (U

V1[0,T ](ψ),U
V2[0,T ](ψ)) is also a multivariate Gaussian distribution.

Yet, this conclusion is mathematically forbidden. While a joint Gaussian distribution
implies marginal Gaussianity it is general not possible to inverse this relation [8].
The joint Gaussianity of spike counts is a highly desired property. If two counts are
jointly Gaussian zero count correlation directly implies statistical independence. If
count correlations between neuron 1 and neuron 2 are zero such that U

V1[0,T ](ψ) and

U
V2[0,T ](ψ) are uncorrelated, then only if the vector (U

V1[0,T ](ψ),U
V2[0,T ](ψ)) is from a

multivariate Gaussian distribution is it possible to infer independence of neuron 1
and neuron 2. Let us consider a teaching counter example where vanishing correla-
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tion between the variables X and Y does not imply independence: X ∈ N (0,1) and
Y = X2. We obtain Cov(X,Y ) = 0, but the two random variables are strongly linked.
Contrasting examples of where X and Y variables are both marginally but not jointly
Gaussian, have a zero correlation but are not independent can be found in Sect. 5
in [8]. To benefit from joint Gaussianity and be able to infer true statistical indepen-
dence from vanishing correlations, we prove here the joint Gaussianity of upward
level crossings/spike counts for large T . In the following we derive the Central Limit
Theorem for the spike counts of two neurons, using two steps. First, we use the one-
dimensional Central Limit Theorem proven in [2]. Second, we apply a version of the
Breuer–Major Theorem adapted to our upward crossing setting which we present in
Sect. 6.4.

Theorem 4.1 Let Vi(t), i ∈ {1,2} be two processes satisfying Eq. (1), with covari-
ance CVij

(τ ) = E[Vi(0)Vj (τ )] where i, j = 1,2 and a common spiking threshold ψ .
To take advantage of the available Gaussianity proofs that are typically derived for
unit variance processes, we rescale the voltages Vi(t) and the threshold ψ to ob-
tain processes Xi(t) with unit variance and unit variance of the derivatives. Xi =
Vi(
√

CVii
(0)/|C′′

Vii
(0)|t)√

CVii
(0)

then has the correlation function c(τ ) = CVii
(
√

CVii
(0)/|C′′

Vii
(0)|τ)

CVii
(0)

and the spiking thresholds are ψi = ψ/
√

CVii
(0). The number of ψi -level upcross-

ings in a time interval T for process Xi is given by U
Xi

[0,T ](ψi). We assume that the

following necessary and sufficient conditions hold. First, E{(UXi

[0,T ](ψ))2} < ∞. This
holds if and only if c(τ ) satisfies Geman’s Condition (see, e.g., Theorem 3 in [30]).
Second,

∫∞
0 |c(n)(τ )|dτ < ∞ where n ∈ {0,1,2} is the order of derivation. Then

1√
T

(
U

X1[0,T ](ψ1) −E[UX1[0,T ](ψ1)]
U

X2[0,T ](ψ2) −E[UX2[0,T ](ψ2)]

)
d−−−→

T →∞ N
((

0
0

)
,

(
a11 a12
a12 a22

))
, (26)

where the count covariances aij with i, j ∈ {1,2} are three convergent series. Each is
then given by 0 < aii =∑∞

q=1 σ 2
Xi

(q) and 0 < a12 =∑∞
q=1 σX1,X2(q), both of which

are finite. The first two terms in these series for ψ = ψi , CV11(0) = CV22(0) are

σ 2
X1

(1) = 2φ(ψ)2
[
ψ2

2π

∫ ∞

0
c(s)ds − 1

4

∫ ∞

0
c′′(s)ds

]
, (27)

σ 2
X1

(2) = 2φ(ψ)2
[

1

2π

(
ψ2 − 1

)2 ∫ ∞

0
c(s)2ds

+
((

1

π
− 1

4

)
ψ2 − 1

π

)∫ ∞

0
c′(s)2ds (28)

+ 1

2π

∫ ∞

0
c′′(s)2ds − 1

4
ψ2
∫ ∞

0
c(s)c′′(s)ds

]
, (29)

and the first and second order covariances are

σX1,X2(1) = 2φ(ψ)2r

[
ψ2

2π

∫ ∞

0
c(s)ds − 1

4

∫ ∞

0
c′′(s)ds

]
, (30)
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σX1,X2(2) = 2φ2(ψ)r2
[

1

2π

(
ψ2 − 1

)2 ∫ ∞

0
c(s)2ds

+
((

1

π
− 1

4

)
ψ2 − 1

π

)∫ ∞

0
c′(s)2ds (31)

+ 1

2π

∫ ∞

0
c′′(s)2ds − 1

4
ψ2
∫ ∞

0
c(s)c′′(s)ds

]
. (32)

We note that only for r = 1 we obtain σX1,X2(j) = σ 2
X1

(j). The asymptotic Pearson
correlation coefficient ρT , defined by

lim
T →∞ρT = Cov(U

X1[0,T ](ψ1),U
X2[0,T ](ψ2))√

Var(UX1[0,T ](ψ1))

√
Var(UX2[0,T ](ψ2))

= a12√
a11a22

, (33)

will also converge to the respective ratio of the asymptotic covariances and variances.

4.1 Numerical Confirmation of Joint Gaussianity and Limit Covariances aij

In the last section we showed that spike counts of two neurons in large bins approach
a bivariate Gaussian distribution with finite variances. Here, we illustrate this theoret-
ical result in simulations of level-crossing processes. We choose two methods based
on linear combinations and the Mahalanobis distance to numerically confirm joint
Gaussianity. First, we numerically confirm the joint Gaussianity by showing that all
linear combinations of two simulated spike counts for a large bin are Gaussian. We
consider a vector

X :=
(

1√
T

(
U

X1[0,T ](ψ) −E
[
U

X1[0,T ](ψ)
])

,
1√
T

(
U

X2[0,T ](ψ) −E
[
U

X2[0,T ](ψ)
]))

(34)

where U
X1[0,T ](ψ), U

X2[0,T ](ψ) and E[UX1[0,T ](ψ)], E[UX2[0,T ](ψ)] are the spike counts
and their average in neuron 1 and 2, respectively. X consists of N × two-dimensional
samples. N denotes the number of sample realizations and i ∈ [1,N] the consecu-
tive sample number. We project each two-dimensional element Xi in all directions
(cos(θ), sin(θ)) by calculating the scalar product A = XT

i · (cos(θ), sin(θ)), with
θ ∈ [0,2π). Subsequently, we apply a Shapiro test on A to verify Gaussianity for
all univariate projections. The p-value of this Shapiro test conveys the certainty with
which the Gaussian hypothesis cannot be rejected. As a second numerical test of
joint Gaussianity we use the Mahalanobis distance. This test is based on the fact that
if X ∼ Nd(μ,Σ), where d is the dimensionality, μ is the mean and Σ the standard
deviation, then the Mahalanobis distance D2 with entries D2

i

D2
i = {(Xi − μ)′Σ−1(Xi − μ), i = 1, . . . , n

}
, (35)

is distributed according to a χ2
d -distribution with d degrees of freedom (see, e.g.,

Sect. 3.1.4 and Eq. (3.16) in [4]). By numerically estimating the count sample average
μ and Σ we calculate in our case D2

i and compare it with a χ2
2 -distribution, using

the QQ-plot method (see Fig. 3(c)).
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Fig. 4 Finite asymptotic limit of covariances aij and correlation coefficient ρT . a Count covariance

a12 =∑∞
q=1 σ 2

X1,X2
(q) vs. time bin T for varying correlation strengths r in the case of two identical

neurons. The covariances converge for increasing time bin T towards the value predicted in Theorem 4.1
(indicated by small, thick lines). Here τs = 1, and ψ = 0.3. b Limit value of the covariance a12 vs. r for

T = 20τs (from a) vs. r . The case of r = 1 (black) corresponds to the variance a11 ≈ 5.5 · 10−3, indicated
by the dashed horizontal line. c Correlation coefficient ρT vs. r for large time bins (T = 20τs ). The dashed
line indicates the equality line

Figure 3 demonstrates the results of the joint Gaussianity tests for a bin size
T = 25τs , where τs = 1 ms. Figure 3(a) shows the empirical univariate distribu-
tion of spike counts in one level-crossing process derived from N = 10000 inde-
pendent count realizations. Figure 3(b) demonstrates that in N = 10000 independent
count realizations of X p-values for all θ are above the 10 % significance level. Fig-
ure 3(c) (left) illustrates that the Mahalanobis distance D2 of a two-dimensional spike
count variable X are well approximated by the χ2

2 -distribution (solid line). Figure 3(c)
(right) demonstrates in a QQ-plot of the empirically measured D2-quantiles and the
theoretical χ2

2 -quantiles that they are linearly related. This is an indication that both
distributions are equal.

Figure 4 addresses the numerical confirmation of the constant asymptotic covari-
ances aij introduced in Theorem 4.1 in Eq. (26). We choose ψ = 0.3, τs = 1, for
N = 5000 independent count realizations. To numerically compute the covariances
aij from spike count simulations we used the covariance-matrix estimator proposed
by [31]. Figure 4(a) demonstrates the convergence of covariance a12 to a finite value
that is predicted by Theorem 4.1. The asymptotic large T limit is denoted by a brief
colored horizontal line. Figure 4(b) demonstrates the dependence of this asymptotic
limit on the correlation strength r . As expected, we find that the asymptotic estimated
covariance a12 is close to zero for r = 0 and it is close to the variance for r = 1.
Figure 4(c) demonstrates that the interplay between covariances a12 and variances
a11 and a22 leads to a sublinear dependence of the asymptotic correlation coefficient
ρT = a12/(

√
a11a22) (Eq. (33)) in the large time bin limit, T = 25τs .
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5 Conclusions

Level-crossing phenomena occur in a variety of physical and biological sciences.
In many of these situations coordination between level crossings of multiple cross-
correlated Gaussian processes is of interest. Here, we focused on neuroscience and
modeled the spikes of two cross-correlated neurons by two cross-correlated level-
crossing processes. While crossings and extrema of one level-crossing process have
been the focus of mathematical research, results describing the coordination of mul-
tiple level-crossing processes are sparse and typically available only in specific and
limited cases. Limits where level-crossing cross-correlations have been previously
calculated are the weak and strong input correlation limit [3]. Here, we studied the
case of two cross-correlated upward crossing processes and derived closed-form ex-
pressions for their joint level-crossing coordination as well their joint count Gaus-
sianity. Importantly, the results we present in this article are consistent with pre-
viously reported limits but we now extended and generalized them. The two main
results of our article are (1) closed-form explicit solution of the level-crossing cross-
correlations and (2) the joint Gaussian limit of level-crossing counts. Our first result
provides an explicit solution to νcond(τ ) = 〈s1(t)s2(t + τ)〉/√ν1ν2 that is valid for
all correlation strengths and which comprises previously obtained limits, see discus-
sion in Sect. 3. The rate of level crossings by a one-dimensional Gaussian process
is given by the prominent Rice’s equation derived by Rice in the 1950s [11]. The
solution we obtained for the level-crossing cross-correlation νcond(τ ) extends the
Rice rate to the joint rate of two correlated processes. Our second result proves the
joint Gaussianity of level crossings for large bin sizes. The joint Gaussianity of spike
counts is a highly desired property because if and only if two level-crossing counts
are jointly Gaussian can zero count cross-correlation imply statistical independence.
Notably, marginal Gaussianity of spike counts in each neuron combined with zero
count cross-correlation is not sufficient to imply independence. Contrasting exam-
ples of where X and Y variables are both marginally but not jointly Gaussian, have a
zero cross-correlation but are not independent can be found in Sect. 5 in [8]. Count
covariance and measures derived from it, such as the Pearson correlation coefficient,
are computationally inexpensive and widely used as measures of statistical interde-
pendencies [8]. Therefore, it is highly desirable to investigate the joint Gaussianity
of level counts and thereby delimit the parameter space and mathematical conditions
ensuring that independence can be implied from zero correlation coefficient. Notably,
the joint Gaussianity of spike counts in bins of size T where T is much larger than
the intrinsic time constant τs (T � τs ) also implies that models of multi-neuronal
dynamics only need to consider the mean and variance of spike counts because all
higher cumulants are zero.

6 Materials and Methods

6.1 Proof of Proposition 3.1

For simplicity of notation we adopt the following convention: (X1, Y1,X2, Y2) de-
notes the vector (V1(0),V ′

1(0),V2(τ ),V ′
2(τ )). In order to calculate 〈s1(t)s2(t + τ)〉,
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defined in (14), we use the following regression model:{
Y1 = α1X1 + α2X2 + ε1,

Y2 = β1X1 + β2X2 + ε2,

where (ε1, ε2) and (X1,X2) are independent. We use the covariance matrix in (4) and
obtain

α1 = Σ14(τ )Σ13(τ )

σ 2
X1

σ 2
X2

− Σ13(τ )2
, α2 = −Σ14(τ )σ 2

V1

σ 2
X1

σ 2
X2

− Σ13(τ )2
,

β1 = σ 2
X2

Σ14(τ )

σ 2
X1

σ 2
X2

− Σ13(τ )2
, β2 = −Σ13(τ )Σ14(τ )

σ 2
X1

σ 2
X2

− Σ13(τ )2
.

The conditional distribution L(Y1, Y2|X1 = ψ,X2 = ψ) is a bivariate Gaussian dis-
tribution

N
(

ψ(α1 + α2)

ψ(β1 + β2)
,

(
σε1(τ )2 Cov(ε1,ε2)(τ )

Cov(ε1,ε2)(τ ) σε2(τ )2

))
. (36)

Using the regression system above, we write the conditional expectation

E[Y11{Y1∈[0,∞)}Y21{Y2∈[0,∞)}|X1 = ψ,X2 = ψ]
= E
[
1{ε1∈[−ψ(α1+α2),∞]}1{ε2∈[−ψ(β1+β2),∞]}

· (ψ2(α1 + α2)(β1 + β2) + ε1ψ(β1 + β2) + ε2ψ(α1 + α2) + ε1ε2
)]

= σε1(τ )σε2(τ )
(
abE[1{Z1∈[a,∞)}1{Z2∈[b,∞)}] − bE[Z11{Z1∈[a,∞)}1{Z2∈[b,∞)}]

− aE[Z21{Z1∈[a,∞)}1{Z2∈[b,∞)}] +E[Z11{Z1∈[a,∞)}Z21{Z2∈[b,∞)}]
)
, (37)

where Z1 = ε1
σε1 (τ )

, Z2 = ε2
σε2 (τ )

, a = −(ψ(α1+α2))
σε1 (τ )

, b = −(ψ(β1+β2))
σε2 (τ )

. Now, we calcu-

late the four different expectations in Eq. (37) using Mehler’s Formula (Lemma 10.7
in [2]). First, we write

E[Z11{Z1∈[a,∞)}Z21{Z2∈[b,∞)}] =
∞∑

n=0

cn(a)cn(b)n!
(

Cov(ε1,ε2)(τ )

σε1(τ )σε2(τ )

)n

, (38)

where cn(a) and cn(b) are the Hermite coefficients associated with the expectation
E[Z11{Z1∈[a,∞)}Z21{Z2∈[b,∞)}]. Then these Hermite coefficients are given by

cn(a) = (−1)n

n!√2π

∫ ∞

a

z
dn

dzn

(
e−z2/2)dz, cn(b) = (−1)n

n!√2π

∫ ∞

b

z
dn

dzn

(
e−z2/2)dz.

In particular,

– for n = 0, c0(a) = e−a2/2√
2π

= φ(a), c0(b) = φ(b),
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– for n = 1, c1(a) = aφ(a) − Φ(a) + 1, c1(b) = bφ(b) − Φ(b) + 1,
– for n ≥ 2, cn(a) = φ(a)

n! (aHn−1(a) + Hn−2(a)), cn(b) = φ(b)
n! (bHn−1(b) +

Hn−2(b)).

Analogously we obtain

E[1{Z1∈[a,∞)}1{Z2∈[b,∞)}] =
∞∑

n=0

cn(a)cn(b)n!
(

Cov(ε1,ε2)(τ )

σε1(τ )σε2(τ )

)n

, (39)

with

cn(a) = (−1)n

n!√2π

∫ ∞

a

dn

dzn

(
e−z2/2)dz, cn(b) = (−1)n

n!√2π

∫ ∞

b

dn

dzn

(
e−z2/2)dz.

In particular,

– for n = 0, c0(a) = 1 − Φ(a) = Φ(a), c0(b) = Φ(b),
– for n = 1, c1(a) = φ(a), c1(b) = φ(b),
– for n ≥ 2, cn(a) = φ(a)

n! Hn−1(a), cn(b) = φ(b)
n! Hn−1(b).

We also have

E[1{Z1∈[a,∞)}Z21{Z2∈[b,∞)}] =
∞∑

n=0

cn(a)cn(b)n!
(

Cov(ε1,ε2)(τ )

σε1(τ )σε2(τ )

)n

, (40)

with

cn(a) = (−1)n

n!√2π

∫ ∞

a

dn

dzn

(
e−z2/2)dz, cn(b) = (−1)n

n!√2π

∫ ∞

b

z
dn

dzn

(
e−z2/2)dz.

In particular,

– for n = 0, c0(a) = Φ(a), c0(b) = φ(b),
– for n = 1, c1(a) = φ(a), c1(b) = bφ(b) − Φ(b) + 1,
– for n ≥ 2, cn(a) = φ(a)

n! Hn−1(a), cn(b) = φ(b)
n! (bHn−1(b) + Hn−2(b)).

Finally,

E[Z11{Z1∈[a,∞)}1{Z2∈[b,∞)}] =
∞∑

n=0

cn(a)cn(b)n!
(

Cov(ε1,ε2)(τ )

σε1(τ )σε2(τ )

)n

, (41)

with

cn(a) = (−1)n

n!√2π

∫ ∞

a

z
dn

dzn

(
e−z2/2)dz, cn(b) = (−1)n

n!√2π

∫ ∞

b

dn

dzn

(
e−z2/2)dz.

In particular,

– for n = 0, c0(a) = φ(a), c0(b) = Φ(b),
– for n = 1, c1(a) = aφ(a) − Φ(a) + 1, c1(b) = φ(b),
– for n ≥ 2, cn(a) = φ(a)

n! (aHn−1(a) + Hn−2(a)), cn(b) = φ(b)
n! Hn−1(b).
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Then, combining the four expectations (38)–(41), the associated Hermite coefficients,
and Eq. (37), we obtain

E[Y11{Y1∈[0,∞)}Y21{Y2∈[0,∞)}|X1 = ψ,X2 = ψ]
= (bΦ(b) − φ(b)

)(
aΦ(a) − φ(a)

)
σε1(τ )σε2(τ )

+ Φ(a)Φ(b)Cov(ε1,ε2)(τ )

+
∑
n≥2

Cov(ε1,ε2)(τ )n

n!(σε1(τ )σε2(τ ))n−1

(
φ(a)φ(b)Hn−2(a)Hn−2(b)

)
. (42)

Note that the first two terms in Eq. (42) correspond to orders n = 0 and n = 1, re-
spectively. Denoting E[Y11{Y1∈[0,∞)}Y21{Y2∈[0,∞)}|X1 = ψ,X2 = ψ] = C(a,b)(τ ) we
find 〈s1(t)s2(t + τ)〉 = C(a,b)(τ )pτ (ψ,ψ). Here, C(a,b)(τ ) is a uniformly convergent
series. �

6.2 Zero Time Lag Correlations

In this section we derive the zero lag spike correlation using the Gaussian probabil-
ity integrals in Eq. (15). Following the previously introduced notation the spiking
threshold level in a neurons is ψ and variance σVi

we can write

νcond(τ ) = 〈s1(t)s2(t)
〉
/(ν1ν2)

= 1√
ν1ν2

∫ ∞

0

∫ ∞

0
V̇1 · V̇2(t + τ)pτ (ψ,ψ, V̇1, V̇2)dV̇1dV̇2(τ ).

Now, we substitute the variables:

Σ = ψ(σV1 + σV2)√
2σV1σV2(rσV1σV2 + σV1σV2)

,

Σ̇ =
√

σV̇2
/σV̇1

V̇ (t) +√σV̇1
/σV̇2

V̇ (t + τ)
√

2
√

σV̇1
σV̇2

− rσV1σV2c
′′(τ )

,

Δ = ψ(σV2 − σV1)√
2σV1σV2(σV1σV2 − rσV1σV2)

,

Δ̇ =
√

σV̇2
/σV̇1

V̇ (t) −√σV̇1
/σV̇2

V̇ (t + τ)
√

2
√

σV̇1
σV̇2

+ rσV1σV2c
′′(τ )

.

The correlation matrix CΣ,Δ̇,Σ̇,Δ for τ = 0 is a four-dimensional identity matrix.

νcond(0) =
σ 2

V̇1
σ 2

V̇2√
ν1ν2

√
1 − r2

8π2(1 − r2)σV1σV2σV̇1
σV̇2

×
∫ ∞

−∞

[
exp

(
− Δ̇2(1 − r)

2(1 + r)

)
|Δ̇|
√(

1 − r2
)
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+
√

π

2

[
(1 + r) − Δ̇2(1 − r)

]
Erfc

(∣∣∣∣ Δ̇
√

(1 − r)√
2
√

(1 + r)

∣∣∣∣
)]

· exp

(
− ψ2(σV1 + σV2)

2

4σV1σV2(rσV1σV2 + σV1σV2)

− ψ2(σV2 − σV1)
2

4σV1σV2(σV1σV2 − rσV1σV2)
− Δ̇2

2

)
dΔ̇. (43)

Solving this integral we obtain Eq. (23).

6.3 Proof of Theorem 4.1

To prove joint Gaussianity, it is instructive to briefly recapitulate the one-dimensional
Central Limit Theorem. We start by writing

U
Xi

[0,T ](ψ1) =
∞∑

j=0

∞∑
k=0

d
(i)
j (ψi)ak

∫ T

0
Hj

(
Xi(s)

)
Hk

(
X′

i (s)
)
ds, (44)

with d
(i)
j (ψi) = 1

j !φ(ψi)Hj (ψi) and ak = 1
k!
∫∞

0 xHk(x)φ(x)dx. Defining the level

count deviation for neuron i by Si(T ) we obtain

Si(T ) = 1√
T

(
U

Xi

[0,T ](ψi) −E
[
U

Xi

[0,T ](ψ)
])

=
∞∑

q=1

1√
T

∫ T

0

∑
k+j=q

d
(i)
j (ψi)akHj

(
Xi(s)

)
Hk

(
X′

i (s)
)
ds (45)

=
∞∑

q=1

1√
T

∫ T

0
Gi

q

(
Xi(s),X

′
i (s)
)
ds (46)

=
∞∑

q=1

J i
q

(
T ,Xi,X

′
i

)
, (47)

where Gi
q(x1, x2) =∑k+j=q d

(i)
j (ψi)akHj (x1)Hk(x2). A Gaussian distribution is a

stable limit distribution for a sum of independent finite variance variables. Therefore,
all that is left to prove is that contributions q �= q ′ are independent and have finite
variance. From Mehler’s Formula we recognize that the contributions for q �= q ′ are
independent. The finite variance follows from the observation that for all q the vari-
ance of Gi

q(Xi(s),X
′
i (s)) is proportional to the expectation of a product of four Her-

mite polynomials, which has been proven to be finite (Theorem 10.10 in [2]) if the
conditions of Theorem 4.1 are satisfied.

Now, we address the joint Gaussianity. A random vector is jointly Gaussian if and
only if any linear combination of its components has a univariate normal distribution
(see [4, 32, 33]). Thus, we need to prove that the sequence α1S

1(T ) + α2S
2(T ) is

asymptotically Gaussian and satisfies a Central Limit Theorem, for all α1, α2 ∈R. We



Page 20 of 25 E. Di Bernardino et al.

start from Eq. (45) and consider a truncated series for Si
Q(T ) =∑Q

q=1 J 1
q (T ,X1,X

′
1)

consisting of the first Q terms and denote by ‖ · ‖ the norm in L2(Ω). First, we show
that the remainder is bounded

lim
T →∞

∥∥∥∥∥
2∑

i=1

αiS
i(T ) −

2∑
i=1

αiS
i
Q(T )

∥∥∥∥∥
≤ |α1|

√√√√ ∞∑
q=Q+1

σ 2
X1

(q) + |α2|
√√√√ ∞∑

q=Q+1

σ 2
X2

(q). (48)

As Q grows, this difference diminishes such that if α1S
1
Q(T )+α2S

2
Q(T ) is Gaussian

for large Q then this will imply that α1S
1(T ) + α2S

2(T ) is Gaussian, too. Now, we
only need to show Gaussianity of α1S

1
Q(T ) + α2S

2
Q(T ). Using a modified version of

the Breuer–Major Theorem (Sect. 6.4), we know that for each q

α1J
1
q

(
T ,X1,X

′
1

)+ α2J
2
q

(
T ,X2,X

′
2

) d−−−→
T →∞ N

(
0, σ 2

G̃q

)
,

where σ 2
G̃q

is given in Eq. (51). The same theorem implies that α1J
1
q (T ,X1,X

′
1) +

α2J
2
q (T ,X2,X

′
2) and α1J

1
q ′(T ,X1,X

′
1) + α2J

2
q ′(T ,X2,X

′
2) are asymptotically inde-

pendent if q �= q ′. Thus we obtain for any Q ≥ 1

α1S
1
Q(T ) + α2S

2
Q(T )

d−−−→
T →∞ N

(
0,

Q∑
q=1

σ 2
G̃q

)
.

To calculate the count covariances in Eq. (26) we use Lemma 10.7 in [2] and obtain

aij = 2
∞∑

q=1

q∑
k=0

q∑
k′=0

d
(1)
q−k(ψi)d

(2)

q−k′(ψj )akak′

×
∫ ∞

0
E
[
Hq−k

(
Xi(0)

)
Hk

(
X′

i (0)
)
Hq−k′

(
Xj(s)

)
Hk′
(
X′

j (s)
)]

ds. (49)

Applying the Mehler Formula to a four-dimensional Gaussian random vector
(Lemma 10.7 in [2]) we find

E
[
Hq−k

(
Xi(0)

)
Hk

(
X′

i (0)
)
Hq ′−k′

(
Xj(s)

)
Hk′
(
X′

j (s)
)]

=

⎧⎪⎨
⎪⎩

0, if q �= q ′,
(rq)1−δij

∑
(d1,d2,d3,d4)∈Z

(q−k)!k!(q−k′)!k′!
d1!d2!d3!d4!

· c(s)d1c′(s)d2(−c′(s))d3(−c′′(s))d4 , if q = q ′.
(50)

Here, δij is the Kronecker delta, Z is the set of di ’s satisfying: di ≥ 0, d1 +d2 = q −k,
d3 + d4 = k, d1 + d3 = q − k′, and d2 + d4 = k′. We thus can express the covariances
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of the spike counts as

aij = 2
∞∑

q=1

(
rq
)1−δij

q∑
k=0

q∑
k′=0

d
(1)
q−k(ψ)d

(2)

q−k′(ψ)akak′

×
∫ ∞

0

∑
d1,d2,d3,d4∈Z

(q − k)!k!(q − k′)!k′!
d1!d2!d3!d4!

· c(s)d1c′(s)d2
(−c′(s)

)d3
(−c′′(s)

)d4 ds.

This is the result reported in Theorem 4.1. �

6.4 Modified Breuer–Major Theorem

Here, we adapt the Breuer–Major Theorem [34] to show that the bivariate vector
(J 1

q (T ,X1,X
′
1), J

2
q (T ,X2,X

′
2)) is Gaussian.

Theorem 6.1 We consider two zero mean and unit variance Gaussian processes
Xi(t), which are described by the properties in Sect. 2 and a correlation func-
tion E[Xi(0)Xj (t)] = cij (t), where i, j ∈ {1,2}. For all functions Gi(·, ·) that fulfill
E[Gi(Xi(0),X′

i (0))] = 0 and E[G2
i (Xi(0),X′

i (0))] < ∞ and two real constants αi

the following integral is Gaussian and we have

1√
T

∫ T

0

(
α1G1

(
X1(t),X

′
1(t)
)+ α2G2

(
X2(t),X

′
2(t)
))

dt
d−−−→

T →∞ N
(
0, σ 2

G

)
,

where

σ 2
G = 2α2

1

∫ ∞

0
E
[
G1
(
X1(0),X′

1(0)
)
G1
(
X1(t),X

′
1(t)
)]

dt

+ 2α2
2

∫ ∞

0
E
[
G2
(
X2(0),X′

2(0)
)
G2
(
X2(t),X

′
2(t)
)]

dt

+ 4α1α2

∫ ∞

0
E
[
G1
(
X1(0),X′

1(0)
)
G2
(
X2(t),X

′
2(t)
)]

dt. (51)

Proof We start by considering the Hermite expansion of the functions Gi(·, ·) and
write

Gi

(
X1(t),X

′
2(t)
) = lim

Q→∞

Q∑
q=1

∑
k1+k2=q

ck1k2,Gi
Hk1

(
X1(t)

)
Hk2

(
X′

2(t)
)

(52)

= lim
Q→∞G

Q
i , (53)
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where G
Q
i denotes the sum over q in Eq. (52) truncated at Q, and the convergence is

in L2(Ω). We write

1√
T

∫ T

0
α1G1

(
X1(t),X

′
1(t)
)+ α2G2

(
X2(t),X

′
2(t)
)
dt (54)

= lim
Q→∞

1√
T

∫ T

0

(
α1G

Q
1

(
X1(t),X

′
1(t)
)+ α2G

Q
2

(
X2(t),X

′
2(t)
))

dt. (55)

Now, to prove the Gaussianity of Eq. (54) it is sufficient to prove the asymptotic
Gaussianity of (α1G

Q
1 (X1(t),X

′
1(t)) + α2G

Q
2 (X2(t),X

′
2(t))). This is sufficient be-

cause

KQ(T ) =
∥∥∥∥∥ 1√

T

∫ T

0

[
2∑

i=1

αi

(
Gi

(
Xi(t),X

′
i (t)
)− G

Q
i

(
Xi(t),X

′
i (t)
))]

dt

∥∥∥∥∥ (56)

≤
2∑

i=1

|αi |
∥∥∥∥ 1√

T

∫ T

0

[(
Gi

(
Xi(t),X

′
i (t)
)− G

Q
i

(
Xi(t),X

′
i (t)
))]

dt

∥∥∥∥, (57)

where ‖ · ‖ is the norm in L2(Ω). Each of the terms is bounded,

∥∥∥∥ 1√
T

∫ T

0

[
Gi

(
Xi(t),X

′
i (t)
)− G

Q
i

(
Xi(t),X

′
i (t)
)]

dt

∥∥∥∥
2

≤ 2
∞∑

Q+1

∫ a

0

(
1 − t

T

) ∑
k1+k2=q

c2
k1k2,Gi

k1!k2! (58)

+
∞∑

Q+1

∫ T

a

(
1 − t

T

)
ψ(t)Q

∑
k1+k2=q

c2
k1k2,Gi

k1!k2! (59)

≤ a

∞∑
Q+1

∑
k1+k2=q

c2
k1k2,Gi

k1!k2!

+
∞∑

Q+1

∫ T

a

(
1 − t

T

)
ψ(t)Q

∑
k1+k2=q

c2
k1k2,Gi

k1!k2!, (60)

where ψ(t) = max(|c11(t)| + |c12(t)|, |c21(t)| + |c22(t)|) and a is a positive real
number such that ψ(t) < 1 whenever t > a. Since Eq. (60) is a vanishing series,
limQ→∞ limT →∞ KQ(T ) = 0. Now, we address the Gaussianity of (α1G

Q
1 (X1(t),

X′
1(t))+α2G

Q
2 (X2(t),X

′
2(t))). A result of Kratz and León, Lemma 3, p. 653 in [35],

implies that

Li(T ) = 1√
T

∫ T

0
G

Q
i

(
Xi(t),X

′
i (t)
)
dt
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can be approached in L2(Ω) by the sequence of ε-dependent processes Xε
i (t)

Li,ε(T ) = 1√
T

∫ T

0 G
Q
i (Xε

i (t), (X
ε
i )

′(t))dt . The 1
ε

-dependent processes for i = 1,2,
are defined as

Xε
i (t) =

∫ ∞

−∞
eitλ
(
fV ∗ βε(λ)

)1/2(√1 − rdWj(λ) + √
rdW3(λ)

)
, (61)

where ∗ denotes a convolution, βε is βε(t) = 1
ε
β( t

ε
), β being a positive function

with
∫∞
−∞ |λ|j |β(λ)dλ < ∞, j = 1,2 and such that its Fourier transform has support

in [−1,1], where E[Xε
i (0)Xε

i (τ )] = cjj (τ )β̂(ετ ) these processes are 1
ε

-dependent.
Then

∥∥∥∥ 1√
T

∫ T

0

2∑
i=1

αiG
Q
i

(
Xi(t),X

′
i (t)
)
dt − αiL

i,ε(T )

∥∥∥∥
≤

2∑
i=1

|αi |
∥∥Li(T ) − Li,ε(T )

∥∥, (62)

lim
ε→0

lim
T →∞

2∑
i=1

|αi |
∥∥Li(T ) − Li,ε(T )

∥∥= 0. (63)

This follows from the Central Limit Theorem for 1
ε

-dependent random vectors and
concludes the proof. �
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