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Abstract Analysis of sinusoidal noisy leaky integrate-and-fire models and compar-
ison with experimental data are important to understand the neural code and neural
synchronization and rhythms. In this paper, we propose two methods to estimate input
parameters using interspike interval data only. One is based on numerical solutions
of the Fokker–Planck equation, and the other is based on an integral equation, which
is fulfilled by the interspike interval probability density. This generalizes previous
methods tailored to stationary data to the case of time-dependent input. The main
contribution is a binning method to circumvent the problems of nonstationarity, and
an easy-to-implement initializer for the numerical procedures. The methods are com-
pared on simulated data.
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1 Introduction

Information processing in the nervous system is carried out by spike timings in
neurons. To study the neural code in such a complicated system, a first step is to
understand signal processing and transmission in single neurons. Stochastic leaky
integrate-and-fire (LIF) neuronal models are a good compromise between biophys-
ical realism and mathematical tractability, and are commonly applied as theoretical
tools to study properties of real neuronal systems. A central issue is then to perform
statistical inference from experimental data and estimate model parameters. Many
electrophysiological experiments on neurons, namely extra-cellular recordings, are
only capable of detecting the time of the spike and not the detailed voltage trajec-
tory leading up to the spike. Estimating the parameters of the LIF model from this
type of data is equivalent to estimating the parameters of a stochastic model from
the statistics of the first-passage times only. A common assumption is that the data
are well described by a renewal process, thus basing the statistical inference on the
interspike intervals (ISIs), assuming these are realizations of independent and identi-
cally distributed random variables. Since only partial information about the process
is available, the statistical problem becomes more difficult, and no explicit expression
for the likelihood is available.

Different methods have been proposed. In the seminal paper [1], a point process
approach is proposed. The spike trains of a collection of neurons are represented as
counting processes. Time is discretized and the point processes approximated by 0–1
time series. Then the probability of firing in the next time interval is modeled as a
function of the spike history. In this way, maximum likelihood estimation is feasible.
External stimuli are not considered. In [2], a numerically involved moment method
is developed. It uses the first two moments of the first-passage times of the Ornstein–
Uhlenbeck process to a constant threshold, which are given as series expressions, and
equates them to their empirical counterparts. In [3, 4], certain explicit moment re-
lations derived from the Laplace transform of the first-passage time distribution are
applied, but these are only valid under stimulation (supra-threshold regime). In [5], in-
ference is based on numerical inversion of the Laplace transform. In [6], a functional
of a three-dimensional Bessel bridge is applied to obtain a maximum likelihood esti-
mator. None of these methods are feasible to extend to the time-inhomogeneous case,
which is of our interest. In [7, 8], an integral equation is used to derive an estimator
in the time-homogeneous setting. This approach is readily extended to time varying
input, which we will explore in this paper. Some of the above methods are compared
in [9]. Finally, a review of estimation methods is provided in [10].

Many sensory stimuli, like sound, contain an oscillatory component [11, 12]. Such
inputs will cause oscillating membrane potentials in the neuron, generating rhythmic
spiking patterns. The oscillation frequency determines the basic rhythm of spiking,
and is considered to be significant for neuronal information processing. The dynam-
ics of periodically forced neuron models have been extensively studied; see [13–18]
and references therein. Even so, attempts to solve the estimation problem in these
nonstationary settings have been rare. One problem is that the ISIs are no longer in-
dependent nor identically distributed. In [19], a more complicated model with linear
filters is considered, allowing also for the spike history to influence the membrane
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potential dynamics. The estimation problem is solved through numerical solutions to
the Fokker–Planck equation, and it is shown that the log-likelihood is concave, thus
ensuring a global maximum; see also [20, 21]. Because their model is more involved,
some approximations to the solution of the Fokker–Planck equation are applied, to
ensure acceptable computing times. We will apply the full Fokker–Planck equation
to solve our estimation problem, since the computing time is always lower than 2 sec-
onds for a sample size of 1000 spikes.

In this paper, we thus describe and discuss two methods to estimate parameters of
LIF models with the added complexity of a time-varying input current. We assume
that the time-varying current is a sinusoidal wave, but we believe that the approaches
generalize to an arbitrary periodic forcing with known frequency. One approach relies
on the Fortet integral equation, which is readily extended to the time-inhomogeneous
case. An advantage of this approach is that if the transition density of the diffusion
in the LIF model is known, as is the case for the Ornstein–Uhlenbeck and the Feller
model, the computational burden is limited. A second approach involves numeri-
cal solution of the Fokker–Planck equation, where the time-dependence is explic-
itly accounted for. After a numerical differentiation, the likelihood function can be
calculated providing the maximum likelihood estimator. Nevertheless, we chose an
alternative loss function which seems marginally more robust, directly comparing
the survival function provided by the solution of the Fokker–Planck equation with
its empirical counterpart. The two approaches give similar results and they are more
carefully compared in the supplementary online material. Both methods need sensible
starting values for the optimization algorithms, and we provide an easy-to-implement
initializer. The estimation procedures are compared on simulated data and we find
that both algorithms are able to find estimates close to the true values for several
different dynamical regimes. We find that for small sample sizes the Fokker–Planck
algorithm can be considered marginally preferable, whereas for larger sample sizes
the Fortet algorithm becomes marginally superior. Moreover, at high frequencies of
the sinusoidal forcing, the Fortet is better at identifying the parameters, though in
general there is less information in the data to distinguish between a constant input
and the amplitude of the periodic forcing.

2 Model

The time evolution of the voltage of a spiking neuron is modelled by a stochastic
process, V , given as solution to the following stochastic differential equation (SDE):

dV (t) =
(

μ − V (t)

τ
+ A sin(ωt)

)
dt + σdW(t),

t0 = 0; V (t0) = v0,

tn = inf
{
t > tn−1 : V (t) = vth

}
for n ≥ 1,{

V (t+n ) = v0,

Jn = tn − tn−1.

(1)
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Here, μ is a bias current acting on the cell, τ is the decay time, A and ω are the
amplitude and (angular) frequency of the sinusoidal current acting on the cell, σ is
the strength of the stochastic fluctuations, W = {Wt }t≥0 is a standard Wiener process,
and t+n denotes the right limit taken at tn. A spike occurs when the membrane voltage
V (t) crosses a voltage threshold, vth, and then V (t) is instantaneously reset to the
resting potential v0. The difference between subsequent spike times, Jn = tn − tn−1,
is called the interspike interval (ISI).

We will assume that τ is known (but see Sect. 6 for a discussion of the alternative)
and nondimensionalize Eq. (1) as follows:

s = t

τ
, Xs = V (t) − v0

vth − v0
, Ws = W(t)√

τ
, xth = 1,

α = μτ

vth − v0
, β = σ

√
τ

vth − v0
, γ = Aτ

vth − v0
, Ω = ωτ

to obtain

dXs = (
α − Xs + γ sin(Ωs)

)
ds + βdWs,

s0 = 0; Xs0 = 0,

sn = inf{s > sn−1 : Xs = xth = 1} for n ≥ 1,{
Xs+

n
= 0,

In = sn − sn−1,

(2)

where we have defined In = Jn/τ . We can also write the dynamics between two spike
times sn and sn+1 in terms of elapsed time since the last spike, s′ = s − sn, s′ < In+1,

dXs′ = (
α − Xs′ + γ sin

(
Ω

(
s′ + φn

)))
ds′ + βdWs′,{

s′ = s − sn,

φn = sn mod 2π
Ω

.

(3)

This form of the dynamics highlights that this is not a renewal process since differ-
ent trajectories between spikes have different phase shifts φn = sn modulo 2π/Ω .
This will be important in the following discussion. The shape of the ISI distribution
depends on the model parameters, and it is natural to divide the parameter space in
different regimes characterized by their qualitative behavior. Four distinct parameter
regimes will be considered; supra-threshold, critical, subthreshold, and supersinu-
soidal. To understand the reasoning behind the regime names, observe that in the
absence of noise, β = 0, the deterministic model will produce spikes if and only if

α + γ√
1 + Ω2

> 1,

see the discussion in [14], which can be directly inferred from the solution in Eq. (12)
below. In both the supra-threshold and supersinusoidal regimes, α+γ /

√
1 + Ω2 > 1.

The difference between the two is that in the supra-threshold regime the constant bias
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Table 1 Example of α, β , γ

parameter values for the
different regimes, given Ω = 1

Regime name α β γ

Supra-threshold 1.40 0.30 0.14

Supersinusoidal 0.10 0.30 1.98

Critical 0.50 0.30 0.71

Subthreshold 0.40 0.30 0.57

current alone is sufficient for spikes to occur, also in absence of noise, that is, α > 1.
In the supersinusoidal regime, the sinusoidal current is necessary for spikes to occur
in absence of noise, that is, α +γ /

√
1 + Ω2 > 1 and α ≤ 1. In the critical regime, the

sum of the two terms is just barely enough to guarantee deterministic spiking, that is
α + γ /

√
1 + Ω2 ≈ 1. Finally, in the subthreshold regime, there would be no spikes

without the noise, α + γ /
√

1 + Ω2 < 1.
Table 1 tabulates examples of corresponding parameter values for each regime,

while Fig. 1 shows examples of individual voltage trajectories and their associated
spike trains. Figures 2 and 3 illustrate how each regime behaves for selected φ’s
by plotting the survivor distribution, Ḡφ(t), and the probability density, gφ(t), both
defined in Eq. (4) below.

Fig. 1 Example trajectories from Eq. (2) for the four different parameter regimes using the parameter val-
ues given in Table 1. a supra-threshold, b supersinusoidal, c critical, d subthreshold. In the supra-threshold
regime spikes occur regularly and often; in the supersinusoidal regime spikes cluster near the peak of the
sine wave; in the critical regime they occur less often; and in the subthreshold regime, spikes occur rarely.
For all regimes, Ω = 1
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Fig. 2 The four different parameter regimes using the parameter values given in Table 1. Illustrated are
the probability density functions, gφm(t), for representative φm = 2π/Ω × {0,0.25,0.5,0.75}. Varying
φm has, for the most part, the effect of shifting the curves laterally, while varying α, β , γ changes their
characteristic form. For all regimes, Ω = 1. a supra-threshold, b supersinusoidal, c critical, d subthreshold

With regards to Figs. 2 and 3, it is worth noting explicitly that combinations
of noise and sinusoidal forcing can cause firing patterns in which spikes are phase
locked, but skip a certain number of cycles. This leads to multimodal ISI densities.
There are many different dynamical mechanisms that can yield such patterns, and the



Journal of Mathematical Neuroscience (2014) 4:4 Page 7 of 30

Fig. 3 The four different parameter regimes using the parameter values given in Table 1. Illustrated are
the survivor distribution functions, Ḡφm(t), for representative φm = 2π/Ω × {0,0.25,0.5,0.75}. Varying
φm has, for the most part, the effect of shifting the curves laterally, while varying α, β , γ changes their
characteristic form. a supra-threshold, b supersinusoidal, c critical, d subthreshold

particular correlations between the ISIs will depend on the underlying voltage dy-
namics (which, in our case, we assume to be given by Eq. (1)); in particular, it may
be difficult to distinguish whether the dynamics are subthreshold or supra-threshold,
since both can show similar ISI densities; see [22].
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2.1 Basic ISI Probability Density Functions

Here, we introduce the notation for the probability density, distribution and survival
functions of In, an ISI arising from a trajectory produced by Eq. (3),

gφ(τ)dτ := P
(
In+1 ∈ [τ, τ + dτ)|φn = φ

)
(probability density),

Gφ(t) := P(In+1 ≤ t |φn = φ) =
∫ t

0
gφ(τ)dτ (cumulative distribution),

Ḡφ(t) := P(In+1 > t |φn = φ) = 1 − Gφ(t) (survivor distribution).

(4)

The subscript φ is to stress that g, G, and Ḡ depend on the value of φn in Eq. (3). This
is the formal statement that in a sinusoidally-driven neuron, the interspike intervals
are not identically distributed, and are only independent conditioned on the sinusoidal
phase at an interval’s onset. Knowing these distributions would provide the likelihood
function, offering estimation by the preferred method of choice, the maximum like-
lihood estimator. Unfortunately, explicit expressions for the ISI distribution are not
available except for the special case of γ = 0 and α = 1; see [3]. Different represen-
tations of the likelihood function are available though, see [23], one of which we will
use below.

2.2 Fokker–Planck Equation with Absorbing Boundaries

The Fokker–Planck equation is a partial differential equation (PDE) describing the
evolution of the probability density, f (x, t), of Xt . For the sinusoidally-forced
Ornstein–Uhlenbeck process, Eq. (3), with the threshold xth = 1, the PDE is

∂tf
(φ)(x, t) = −∂x

[(
α − x + γ sin

(
Ω(t + φ)

)) · f (φ)
]

+ ∂2
x

[
β2

2
f (φ)

]
, x ∈ (−∞,1). (5)

Due to the reset, we have that at time t = 0, Xt = 0 and so for the initial conditions
we can write

f (φ)(x, t = 0) = δ(x), (6)

where δ(·) is the Dirac delta function. The spike is represented as a zero boundary
condition for f at x = 1

f (1, t) = 0.

The natural way of using the Fokker–Planck equation in first-hitting-times prob-
lems is as follows. Denote the integral of f (φ) by F (φ)(x, t) = ∫

ξ≤x
f (φ)(ξ, t)dξ .

F (φ)(x, t) can be related to the ISI’s survivor distribution function, Ḡφ(t), by

Ḡφ(t) = F (φ)(1, t). (7)

Equation (7) forms the basis of one of the methods below for estimating the structural
parameters from the observed data.
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Since Eq. (5) has to be solved numerically, we will need to truncate its domain
from below. The most natural way to do this, given the dynamics, is to impose reflect-
ing boundary conditions at some x = x− 	 (α − γ /

√
1 + Ω2) where the probability

mass is very small. For the left (lower) limit of the computational domain, we use the
formula

x− = min
(
α − γ /

√
1 + Ω2︸ ︷︷ ︸

mean

−2 β/
√

2︸ ︷︷ ︸
std. dev.

,−0.25
)
.

This choice requires some explanation. In the t → ∞ limit, the distribution of Xt

in Eq. (3) without thresholding is Gaussian with mean given by Eq. (12) (below)
and variance equal to β2/2. Thus, to truncate the computational domain for the
thresholded process from below, we take the lowest value of the asymptotic mean,
α − γ /

√
1 + Ω2, then from this we subtract two standard deviations, 2β/

√
2 and set

the result to be the lower bound, x−. Finally, if this value for x− happens to be larger
than −0.25, we enforce that x− ≤ −0.25.

Numerical considerations lead us to solve for F , instead of f , since delta func-
tions are difficult to represent in floating point, while the initial conditions for F , the
Heaviside step function, H(x), faces no such difficulties [24]. The Heaviside step
function is defined to be equal to 0 for x < 0 and to be equal to 1 for x ≥ 0. At this
point, we need to derive the PDE for the distribution F , starting from the PDE for the
density, f , Eq. (5).

First, at the lower boundary, it is intuitive that the distribution should be zero,
F(x−, t) = 0, while f (1, t) = 0 implies that at the upper boundary ∂xF (1, t) = 0.
Inside the domain, the PDE itself reformulates as

∂tf (x, t) = ∂x

[
1

2
∂x

[
β2f

] − (
α − x + γ sin

(
Ω(t − φ)

))
f

]

so that

∂x∂tF (x, t) = ∂x

[
β2

2
· ∂2

xF − (
α − x + γ sin

(
Ω(t + φ)

)) · ∂xF

]
.

Integrating with respect to x then gives

∂tF (x, t) = β2

2
· ∂2

xF − (
α − x + γ sin

(
Ω(t + φ)

)) · ∂xF + C(t),

where C(t) is a constant of integration depending on t . Now consider the lower
boundary condition, x = x−. Here, F(x−, t) = 0 implies that ∂tF = 0 and so

C(t) = −
[
β2

2
· ∂2

xF − (
α − x + γ sin

(
Ω(t + φ)

)) · ∂xF

]
. (8)

The right-hand side in Eq. (8) is precisely the reflecting boundary condition on f

once we recall that ∂xF = f . Therefore, C(t) ≡ 0.
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Fig. 4 Example solution to Eq. (9) for (α,β, γ ) = (0.5,0.3,0.5
√

2); Ω = 1, φ = π/2. In a, b, c, we show
the full solution in space–time F(x, t). In d we show the time solution at the upper boundary, F(1, t)

Thus, the fully specified PDE for F , which we will be solving frequently in what
follows, is

∂tF
(φ)(x, t) = β2

2
· ∂2

xF (φ) − (
α − x + γ sin

(
Ω(t + φ)

)) · ∂xF
(φ),⎧⎪⎨

⎪⎩
F (φ)(x,0) = H(x),

F (φ)(x, t)|x=x− ≡ 0,

∂xF
(φ)(x, t)|x=1 ≡ 0.

(9)

Numerical solutions for Eq. (9) are shown in Fig. 4. We have used the stan-
dard Crank–Nicholson finite-difference algorithm (central-differences in space with
equally weighted implicit-explicit terms in time, see [25]).

2.3 Fortet Equation

Consider a general form of Eq. (3),

dYt = b(t, Yt )dt + σ(t, Yt )dWt.

Let Φ(y, t |y0, t0) := P[Yt ≤ y|Yt0 = y0] be the transition cumulative distribution
of Y . Note that this is the distribution of Yt in absence of a threshold, different from
the distribution given in Eq. (7), which is the distribution of the process constrained
to be below the threshold. Now consider an arbitrary time-dependent threshold vth(t).
The Fortet equation (see [26]) convolves the first-hitting time probabilities, g(t), with
the transition density of the process. Integrating over (−∞, vth(t)), we obtain

1 − Φ
(
vth(t), t |v0,0

) =
∫ t

0
g(τ)

[
1 − Φ

(
vth(t), t |vth(τ ), τ

)]
dτ. (10)
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The left-hand side is simply the probability of exceeding vth at time t starting at v0

at time 0. This can also be written as the probability of hitting vth for the first time at
time τ < t and then exceeding vth at time t starting at vth at time τ , integrated over
all τ .

The Fortet equation is particularly appealing to use when we have an analytical ex-
pression for Φ . For the problem at hand, Φ is complicated due to the time-dependent
forcing. However, the following transformation yields a time-homogeneous Y for
which Φ will be tractable, along with an associated moving threshold, vth(t). This
makes feasible the use of the Fortet equation. To obtain this transformation, cf. [27],
consider the deterministic version of the SDE in Eq. (3)

dv(t) = (
α − v + γ sin

(
Ω(t + φ)

))
dt,

v(0) = 0 (11)

with solution

v(t) = α
(
1 − exp(−t)

)
+ γ√

1 + Ω2

[
sin

(
Ω(t + φ) − ψ

) − exp(−t) sin(φΩ − ψ)
];

ψ = arctan(Ω).

(12)

Now take Xt , the solution to Eq. (3) and v(t), Eq. (12), and let Yt = Xt − v(t).
Then

dYt = −Ytdt + βdW, (13)

which has the time and parameter dependent threshold

vth{α,γ ;φ}(t) = vth − v(t). (14)

That is, Xt hits the constant threshold vth if and only if Yt hits the moving threshold
vth{α,γ ;φ}(t), where the subindex indicates the dependence on α, γ and φ. Therefore,
the ISIs produced by X and Y are the same and so are their distributions. Thus, gφ(τ)

satisfies

1 − Φ{β}
(
vth{α,γ ;φ}(t), t |0,0

)
=

∫ t

0
gφ(τ)

[
1 − Φ{β}

(
vth{α,γ ;φ}(t), t |vth{α,γ ;φ}(τ ), τ

)]
dτ, (15)

where

Φ{β}(y, t |y0, t0) = 1√
πβ2(1 − e−2(t−t0))

∫ y

−∞
exp

(
− (x − y0e

−(t−t0))2

β2(1 − e−2(t−t0))

)
dx

is the conditional cumulative distribution function of Yt defined in Eq. (13).
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3 Parameter Estimation Algorithms

The unknown parameters in Eq. (3) are α, β , and γ , while we assume Ω known. The
reason why the amplitude, γ , is often unknown while the frequency, Ω , is known is
that one can usually observe the sinusoidal input and thus its frequency. Further, the
encoding of the input into neuronal firing patterns often involves phase locking to
the sinusoidal component. However, the actual forcing amplitude at the level of the
neuron is usually modified by various synaptic and other filtering processes, unless
the cell receives direct sinusoidal current injection.

Our goal is to estimate the structural parameters (α, β , γ ) from a sample of spike
time data, {i1, . . . , iN }. There are several algorithms for estimating the parameters
for the simpler and more common case of γ = 0. One such algorithm relies on the
Fortet equation (see [7, 8]), which we extend to the presence of a time-varying cur-
rent. A more basic approach is to directly solve the Fokker–Planck equation for the
probability density of Xt , [19–21], from which one can derive the survival distribu-
tion of In, and use this to compare against the empirical survival distribution of In

obtained from data. An approximate maximum likelihood approach is also possible
by numerical differentiation. The relation between Fokker–Planck equations and the
first-passage time problem is discussed in most introductory books on stochastic anal-
ysis; see, for example, [28]. A recent review of this approach for the simple γ = 0
case in neuronal modeling can be found in [21], wherein the first passage problem
is discussed at great lengths in the context of spiking neurons. We will use this in
Sect. 2.2. A more elaborate approach using the Fokker–Planck equation to approxi-
mate the hitting time distribution is given in [29]. The techniques in [29] avoid the
need to compute the Fokker–Planck PDE numerically, instead approximating it with
analytically known solutions. This approach might offer significant computational
savings, but since this would at most amount to a computational speed-up of our
algorithm, we have left this unexplored for now.

The immediate problem in generalizing the aforementioned approaches to the case
of γ �= 0 is that the In’s are no longer identically distributed since the phase φn−1 of
the nth interval In depends on tn−1, the time the previous spike occurred. The In’s are
also dependent, but conditionally independent given φn−1. So the trajectories in each
interval are parameterized by the value of φn−1 at the time of the last spike/reset.
We overcome this obstacle by splitting the In’s in groups, and approximating the
In’s within groups as coming from identically distributed trajectories in a sense to
be specified below. This approximation which solves the challenge of dependent and
non-identically distributed ISIs is the primary contribution of this paper.

3.1 φ-Binning

Before we can use Eq. (9) or (15), we need to deal with the fact that φ is not fixed,
but instead each In starts with a distinct φn. Our approach is to partition the interval
[0,2π/Ω] into M bins, where M 	 N , and represent each bin by the midpoint of the
bin, φm. Then we approximate the N observed φn’s by the closest φm and pretend that
any observed In was not produced by a trajectory of the form in Eq. (3) with φ = φn,
but with φ = φm. Our hope is that for a judicious choice of M , we can balance the
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Fig. 5 The raw (in,φn) pairs (a) are binned into a set of M bins with a representative φm (b) and the ISIs
within each bin are treated as a renewal process. In this illustration, M = 8, Ω = 1 while the parameters
α, β , γ are taken from the supra-threshold regime

error of φn �= φm with having enough data points in each bin in order to obtain a
useful estimate from Eq. (9) or (15).

There is clearly much freedom in how one sets up these bins, but we will do the
simplest thing and make them all of equal width, δφ = 2π/(ΩM). Each φn will be-
long to one and only one of the bins [φm − δφ/2, φm + δφ/2)M

m=1, with center points
φm = δφ/2 + (m − 1)δφ, for m = 1, . . . ,M . Thus, given an empirically observed In

with associated φn, we will pretend that it was produced by the process

dXs = (α − Xs)ds + γ sin
(
Ω

(
s + φm(n)

))
ds + βdWs,

where

φm(n) = arg min
φm

|φn − φm|.

This binning is illustrated in Fig. 5.
While we have no rigorous approach to determine the value of M , our limited

experience suggests that given N = 1000 ISIs, M = 10, or M = 20 gives satisfactory
results for very different parameter regimes. In general, choosing M is a balancing
act. For M too high, the resulting bins will have too few data points to approximate
Ḡ(I ) accurately. Therefore, M is forced to be small when sample size is not large.
For M too low, the approximation of the phase shifts will be poor, leading to a biased
estimate of Ḡ(I ). We illustrate the effect of increasing M in Fig. 6. Generally, as long
as there are sufficient data points, as M increases, the approximation of using the
survival distribution with φm instead of φn improves since φm(n) → φn as M → ∞.
In the sequel, we will use M = 20 for sample sizes of N = 1000 and M = 8 for
sample sizes of N = 100.

3.2 Fokker–Planck Algorithm

Within each bin it is clear how to apply Eq. (7). In the mth bin, for a given φm, we
approximate Ḡφ(t) by

ˆ̄Gφm(t) = #[in > t |φn−1 ∈ [φm − δφ/2, φm + δφ/2)]
Nm

, (16)
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Fig. 6 Effect of M , the number of bins, on the approximate survival distribution. The full-drawn blue
curve is the true survivor distribution given in Eq. (9), the red points are the approximation given in
Eq. (16). In the figures, the least populous (above) and most populous (below) bin for each M is shown.
The width of the bins is δφ = 2π/(ΩM). We have used a, e M = 5; b, f M = 10; c, g M = 20; d, i M = 40.
As M increases, the approximation of using the survival distribution using φm instead of φn improves since
φm(n) → φn as M → ∞. The data are generated using parameter values from the supersinusoidal regime
and N = 1000. For this particular data set the largest generated ISI was 6.55 time units

where Nm is the number of ISIs in bin m. Using Eq. (7), we define the loss function

L(α,β, γ ) =
∑
φm

Nm

{
sup
t>0

∣∣ ˆ̄Gφm(t) − F
φm

α,β,γ (xth, t)
∣∣}. (17)

The weight Nm is included so that bins with larger sample sizes have a larger influ-
ence on the estimates.

To evaluate the supremum in Eq. (17), we spline interpolate the empirically dis-

crete ˆ̄G for each φm, sample at the time nodes of the PDE discretization and finally
take the maximum amongst the sampled values. We then minimize L using an opti-
mization algorithm (see below, Sect. 4) and take our estimates α̂, β̂ , γ̂ to be

α̂, β̂, γ̂ = arg min
α,β,γ

L(α,β, γ ).

Note that the relation between the spike time survival density, Ḡφ and the transi-
tion distribution, Fφ , in Eq. (7) could also allow for an approximate maximum likeli-
hood estimator (MLE), based on maximizing

LMLE(α,β, γ ) =
∑
n

log
(
gφn−1(in)

) =
∑
n

log
[−∂tF

φn−1
α,β,γ (xth, t)

]∣∣
t=in

,

where the derivative has to be approximated by finite differences. We can then again
use binning to avoid having to compute the PDE separately for each (in,φn−1). Our
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experience with the MLE approach has been that the quality of the estimates provided
are similar to those obtained by minimizing Eq. (17) and that the associated comput-
ing times are on the same order. Due to this similarity and in order to keep the paper
concise, we include details of the MLE estimates only in the supplementary online
material.

3.3 Fortet Algorithm

An alternative approach is to form a loss function from Eq. (15). This is similar
to what is done in [7, 8] for the simpler case of a constant threshold. Noting that∫ t

0 g(τ)[1 − Φ]dτ = E[(1 − Φ)1I≤t ] where the expectation is taken with respect to
the distribution of the random variable I , we can use the fact that the ISIs are ap-
proximately independent and invoke the law of large numbers to estimate the integral
as ∫ t

0
gφm(τ)

[
1 − Φ

(φ)
{β}

(
vth{α,γ ;φ}(t), t |vth{α,γ ;φ}(τ ), τ

)]
dτ

≈ 1

Nm

∑
in<t

[
1 − Φ

(φ)
{β}

(
vth{α,γ ;φ}(t), t |vth{α,γ ;φ}(in), in

)]
.

We then define the loss function

L(α,β, γ ) =
∑
φm

Nm

{
sup
s>0

∣∣∣∣1 − Φ
(φm)
{β}

(
vth{α,γ ;φ}(s), s|0,0

)

− 1

Nm

∑
in<s

[
1 − Φ

(φm)
{β}

(
vth{α,γ ;φ}(s), s|vth{α,γ ;φ}(in), in

)]∣∣∣∣
/
ω(φm;α,β, γ )

}
. (18)

We divide each inner term by ω(φm;α,β, γ ) = sups>0 |1−Φ
(φm)
α,β,γ (vth(s), s|v0)|, fol-

lowing the suggestion in [8]. This scaling ensures that Eq. (15) divided by ω(α,β, γ )

will vary between 0 and 1 for all parameter values thus giving sense to the measure
defined by the loss function. Since we can solve in closed form for Φ , we have all
we need given an observed spike train of in’s. We evaluate the sup by sampling at
K = 500 uniformly spaced points in (0, Imax + ε] and taking the maximum of the
sampled values.

3.4 Initialization of the Algorithms

The parameter search can be initialized in a simple way using the fact that the Fokker–
Planck PDE is almost an “advection-diffusion” equation whose solution is almost a
Gaussian. Then Ḡ(t) can be approximated by the amount of probability mass of a
Gaussian to the left of the threshold at time t . The idea is as follows. Suppose we are
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solving the following PDE:

∂tρ = −U∂x[ρ] + β2

2
∂2
x [ρ]. (19)

Its solution given an initial condition ρ(x,0) = δ(x) will be a Gaussian bell moving
to the right with speed U and standard deviation σ = β

√
t .

The survivor function Ḡ(t) can be thought of as the amount of area that has passed
the threshold (from the left moving to the right). We can then invert the information
about Ḡ to estimate U and β . In particular, a Gaussian bell has ≈ 0.158 of its mass
more than one standard deviation to the right of its mean. Thus, at time t1 such that
Ḡ(t1) = 0.842, the right tail of more than one standard deviation of the Gaussian
bell has crossed the threshold. The threshold is at x = 1 and we obtain the following
equation:

Ut1 + β
√

t1 = 1. (20)

Similarly, at time t2 such that Ḡ(t2) = 1 − 0.842, the Gaussian bell has crossed the
threshold except for the left tail and we have

Ut2 − β
√

t2 = 1. (21)

If U and β were constant, then Eqs. (20) and (21) provide two equations in two
unknowns. However, U = U(x, t) = (α − x + γ sin(Ω(t + φ))) is not constant and
we approximate U as

U(x, t) ≈ α − 0.5 + γ
1

t

∫ t

0
sin

(
Ω(τ + φ)

)
dτ, (22)

i.e., we approximate the space-dependent term, x, with the mid-point between the re-
set value, v0 = 0, and the threshold, vth = 1, and we approximate the time-dependent
term, sin(Ω(τ + φ)), by its time-average value between 0 and t . If we use the 0th,
1st, and 2nd standard deviation points, we can form 5 equations in 3 unknowns as
follows:

αt1 + γ s(t1) + 2β
√

t1 = 1 + 0.5t1,

αt2 + γ s(t2) + β
√

t2 = 1 + 0.5t2,

αt3 + γ s(t3) + 0β = 1 + 0.5t3,

αt4 + γ s(t4) − 1β
√

t4 = 1 + 0.5t4,

αt5 + γ s(t5) − 2β
√

t5 = 1 + 0.5t5

with the time-average weighting function s(t) = (cos(Ωφ) − cos(Ω(t + φ)))/Ω .
However, the approximation is best for earlier times, when the solution is closer to a
Gaussian bell that is approaching the threshold, but less correct for later times, since it
neglects the loss of probability mass and thus overestimates the backward probability
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current. Indeed, we have found it to be best to use only t1 and t2. In the following we
use only these equations:

αt1 + γ s(t1) + 2β
√

t1 = 1 + 0.5t1,

αt2 + γ s(t2) + β
√

t2 = 1 + 0.5t2

for the initializer. We can form these equations separately for each φm bin, thus result-
ing in M × 2 equations for the unknowns α, β , and γ . Since we have more equations
than unknowns, we use least-squares estimates in a regression to pick out unique α,
β , and γ estimates.

The proposed initialization procedure has two advantages. First, it is automatic,
i.e., it requires only the data and no input or guidance from the user. Second, it is
extremely fast. While the precise effect of the initializer is shown in Sect. 4, it is intu-
itively clear that it will work best in the supra-threshold parameter regime when the
bell curve is truly moving past the threshold as a whole and less so for subthreshold
regimes, when only the diffusive force serves to propel the process to reach vth. The
behavior of the initializer in the different regimes is illustrated in Fig. 7. What we
show in Fig. 7 is the following: First, we show the survival distribution for a given
regime and φm fixed. Then using data generated from such a regime and with φn in
the mth bin, the initializer tries to find the best approximation by the motion of a
Gaussian bell which will fit these data, in the sense of solving for α, β , γ as previ-
ously described. Once this is done, we then show in red the amount of area under this
Gaussian bell to the left of the threshold. Of course, the interpretation of the survival
distribution for an ISI as a fraction of the area under a moving bell with conserved
total area is wrong, but the assumption is useful in automatically generating initial
values for the more appropriate approximations to start their work.

4 Method Comparison on Simulated Data

We will now use our algorithms on spike trains simulated from the four different
regimes: the supra-threshold, the critical, the supersinusoidal and the subthreshold.
We have used 100 sample spike trains per regime, with N = 100 as well as N =
1000 spikes per train. In order to perform the numerical minimization of Eqs. (17)
and (18), we have used an implementation of the Nelder–Mead algorithm from the
SciPy library [30]. The Nelder–Mead algorithm is a non-linear minimization routine
which uses a bounding-polygon method to zero-in on the minimum and thus avoids
the need to provide the gradient of the loss function. It is the standard non-gradient
minimization algorithm.

The estimation results are shown in Figs. 8, 9, 10, 11, where we plot box plots
for the estimates, α̂, β̂ , γ̂ in the four regimes. We also tabulate the average and the
empirical 95 % confidence intervals of the estimates in Tables 2 and 3. Conclusions
that can be drawn from these results are as follows. The initializer method is effec-
tive for the supra-threshold regime and gives reasonable ballpark estimates for all
regimes, though the error can be substantial for the supersinusoidal regime. In gen-
eral, both the Fortet and Fokker–Planck algorithm estimate the parameters well in
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Fig. 7 The blue curves are the numerically obtained survivor distributions Ḡφ for the exact parameters
in the four regimes (as in Table 1) and Ω = 1. The red curves are obtained in the following manner:
Simulations using the true parameters were used to generate sample spikes. Using these samples, the
initializer algorithm was used to generate estimates for α, β , γ . Using these estimates, the bell curve
discussed in Sect. 3.4 was formed and evolved in time. Thus, the red curve drawn in the figures measures
the area under this bell that is to the left of the threshold at time t . a supra-threshold, b supersinusoidal,
c critical, d subthreshold



Journal of Mathematical Neuroscience (2014) 4:4 Page 19 of 30

Fig. 8 Boxplots of parameter estimates for the supra-threshold regime. The upper plots (a, b, c) show
estimates using N = 100 sample spikes per estimation, while the lower plots (d, e, f) use N = 1000. The
dashed line indicates the true parameter value, while the red line inside the boxes indicates the median
of the estimates. The boxes contain the central 50 % of the estimates. The bars indicate the range of the
estimates, except for outliers given by the points outside the bars, and defined to be more than 1.5 times
the interquantile range (the height of the box) from the box

Fig. 9 Boxplots of parameter estimates for the supersinusoidal regime. The upper plots (a, b, c) show
estimates using N = 100 sample spikes per estimation, while the lower plots (d, e, f) use N = 1000. The
dashed line indicates the true parameter value, while the red line inside the boxes indicates the median
of the estimates. The boxes contain the central 50 % of the estimates. The bars indicate the range of the
estimates, except for outliers given by the points outside the bars, and defined to be more than 1.5 times
the interquantile range (the height of the box) from the box

the supra-threshold, critical and supersinusoidal regimes. The estimators’ variance is
especially low in the supra-threshold regime, while it is higher for the critical and
supersinusoidal regimes. In the supersinusoidal regime, the two algorithms give ac-
curate estimates even though the initializer can be quite off. On the other hand, in
the subthreshold regime, the initializer has a performance comparable to that of the
two more involved methods. It seems that distinguishing between the constant bias
and the sinusoidal current is difficult if their sum is not sufficient to generate spikes
without noise.

The Fokker–Planck method has a larger bias but a smaller spread than the Fortet
method for N = 100, Table 2. However for N = 1000, the two methods have com-
parable spreads, while the Fortet method retains a smaller bias, see Table 3. More
precisely, for N = 1000, the Fokker–Planck method has a smaller spread in the sub-



Page 20 of 30 A. Iolov et al.

Fig. 10 Boxplots of parameter estimates for the critical regime. The upper plots (a, b, c) show estimates
using N = 100 sample spikes per estimation, while the lower plots (d, e, f) use N = 1000. The dashed line
indicates the true parameter value, while the red line inside the boxes indicates the median of the estimates.
The boxes contain the central 50 % of the estimates. The bars indicate the range of the estimates, except
for outliers given by the points outside the bars, and defined to be more than 1.5 times the interquantile
range (the height of the box) from the box

Fig. 11 Boxplots of parameter estimates for the subthreshold regime. The upper plots (a, b, c) show
estimates using N = 100 sample spikes per estimation, while the lower plots (d, e, f) use N = 1000. The
dashed line indicates the true parameter value, while the red line inside the boxes indicates the median
of the estimates. The boxes contain the central 50 % of the estimates. The bars indicate the range of the
estimates, except for outliers given by the points outside the bars, and defined to be more than 1.5 times
the interquantile range (the height of the box) from the box

threshold regime, while the Fortet method has a smaller spread in the supersinusoidal
regime. As such, at least in the supersinusoidal regime, the Fortet method seems su-
perior. A detailed comparison between the Fortet and the Fokker–Planck estimators
for each parameter in each regime can be seen in Fig. 12 for N = 100 and in Fig. 13
for N = 1000.

The two algorithms are numerically intensive. For N = 100 and N = 1000 spikes,
we show the times taken for the estimation in Table 4. While we have done most of
our numerical work in Python/SciPy [30], we have implemented the critical compo-
nents of both algorithms in C. That is, we solve the inner part of Eq. (18) and the
Fokker–Planck PDE, Eq. (9), in C using the GSL libraries [31]. From Table 4, we
can verify that the computing time for the Fortet algorithm scales proportionally with
the number of spikes. This is to be expected, since the Fortet equation has a term of
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Table 2 Averages and empirical 95 % confidence intervals of the estimates for N = 100 spikes per train

Parameter Initializer Fokker–Planck Fortet

Supra-threshold regime

α = 1.40 1.43: [1.29,1.56] 1.34: [1.24,1.43] 1.41: [1.33,1.49]
β = 0.30 0.17: [0.10,0.24] 0.29: [0.21,0.39] 0.29: [0.22,0.36]
γ = 0.14 0.16: [0.02,0.33] 0.12: [0.02,0.23] 0.12: [0.01,0.24]
Supersinusoidal regime

α = 0.10 0.92: [0.83,1.01] 0.28: [0.02,0.59] 0.24: [−0.22,0.42]
β = 0.30 0.15: [0.10,0.25] 0.31: [0.14,0.53] 0.32: [0.14,0.46]
γ = 1.98 1.35: [1.13,1.57] 1.67: [1.33,2.05] 1.77: [1.44,2.38]
Critical regime

α = 0.50 0.72: [0.66,0.80] 0.57: [0.32,0.73] 0.57: [0.36,0.73]
β = 0.30 0.19: [0.10,0.26] 0.27: [0.17,0.40] 0.25: [0.15,0.40]
γ = 0.71 0.57: [0.44,0.73] 0.55: [0.30,0.83] 0.62: [0.38,0.93]
Subthreshold regime

α = 0.40 0.62: [0.57,0.67] 0.63: [0.33,0.84] 0.58: [0.03,1.00]
β = 0.30 0.17: [0.10,0.29] 0.20: [0.10,0.37] 0.19: [0.00,0.41]
γ = 0.57 0.32: [0.00,0.53] 0.29: [0.00,0.62] 0.46: [0.00,1.19]

Table 3 Averages and empirical 95 % confidence intervals of the estimates for N = 1000 spikes per train

Parameter Initializer Fokker–Planck Fortet

Supra-threshold regime

α = 1.40 1.44: [1.40,1.50] 1.36: [1.33,1.40] 1.40: [1.37,1.42]
β = 0.30 0.25: [0.22,0.28] 0.29: [0.26,0.32] 0.30: [0.27,0.32]
γ = 0.14 0.14: [0.10,0.19] 0.14: [0.10,0.17] 0.14: [0.10,0.18]
Supersinusoidal regime

α = 0.10 0.90: [0.85,0.92] 0.11: [0.03,0.29] 0.10: [0.03,0.16]
β = 0.30 0.18: [0.14,0.23] 0.30: [0.21,0.34] 0.31: [0.22,0.34]
γ = 1.98 1.26: [1.16,1.34] 1.92: [1.49,2.05] 1.96: [1.86,2.07]
Critical regime

α = 0.50 0.73: [0.70,0.75] 0.51: [0.43,0.63] 0.53: [0.45,0.64]
β = 0.30 0.20: [0.17,0.24] 0.29: [0.24,0.32] 0.28: [0.19,0.33]
γ = 0.71 0.54: [0.44,0.61] 0.66: [0.52,0.76] 0.67: [0.54,0.77]
Subthreshold regime

α = 0.40 0.62: [0.55,0.65] 0.57: [0.45,0.66] 0.56: [0.26,0.71]
β = 0.30 0.20: [0.17,0.26] 0.22: [0.18,0.29] 0.21: [0.13,0.35]
γ = 0.57 0.36: [0.18,0.44] 0.36: [0.25,0.50] 0.43: [0.28,0.72]
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Fig. 12 Estimates based on samples of N = 100 spikes obtained from the Fokker–Planck algorithm
against the Fortet algorithm for the four different parameter regimes, with parameter values given in
Table 1, fixing Ω = 1. Each row corresponds to one regime and one set of simulations. Each column
corresponds to a parameter, with the specific value indicated above each plot. a, b, c supra-threshold; d, e,
f supersinusoidal; g, h, i critical; j, k, l subthreshold
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Fig. 13 Estimates based on samples of N = 1000 spikes obtained from the Fokker–Planck algorithm
against the Fortet algorithm for the four different parameter regimes, with parameter values given in Ta-
ble 1, fixing Ω = 1. Each row corresponds to one regime and one set of simulations. Each column cor-
responds to a parameter, with the specific value indicated above each plot. a, b, c supra-threshold; d, e, f
supersinusoidal; g, h, i critical; j, k, l subthreshold
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Table 4 Average times ± standard deviations in seconds for the algorithm in various regimes. Left:
N = 100 spikes; right: N = 1000 spikes

Regime Fortet Fokker–Planck

Subthreshold 1.29 ± 0.72 0.52 ± 0.21

Supra-threshold 0.83 ± 0.28 0.18 ± 0.20

Critical 0.94 ± 0.42 0.36 ± 0.16

Supersinusoidal 1.36 ± 0.46 0.43 ± 0.17

Regime Fortet Fokker–Planck

Subthreshold 9.68 ± 4.98 1.69 ± 0.91

Supra-threshold 3.90 ± 1.05 0.21 ± 0.06

Critical 10.03 ± 2.88 1.28 ± 0.41

Supersinusoidal 10.13 ± 2.24 1.06 ± 0.33

the form
∑

in
which in turn has N terms and this forms the bulk of the computing time

for the Fortet equation. The Fokker–Planck algorithm, on the other hand, scales less-

than-linearly with N , since the dependency on N is in forming the approximation, ˆ̄G
to the survivor function and that is not computationally intensive (solving the PDE
is).

5 The Effect of Ω

So far, we have held Ω constant and equal to 1. We now investigate the effect of
varying Ω on the quality of estimates. To narrow the scope, we focus on increasing
Ω while keeping the parameters in the critical regime such that α + γ /

√
1 + Ω2 = 1

and α = 0.5. This amounts to increasing γ with Ω . We do the estimations for four
values of Ω = [1,5,10,20]. Similarly to the previous section, we use 100 sample
spike trains per parameter set, with each spike train consisting of N = 1000 ISIs.

We show box plots of the estimates for each Ω in Fig. 14. We then directly com-
pare the two algorithms, Fortet vs. Fokker–Planck, in Fig. 15. The immediate obser-
vation is that the Fokker–Planck algorithm fails to keep up at the higher frequencies
and consistently underestimates γ . The Fortet algorithm does better, but still underes-
timates γ . In general, this underestimation of γ is accompanied by an overestimation
of α. This is exacerbated at higher Ω . We illustrate the relation between estimates for
α vs. γ in Fig. 16, where it is quite clear that an underestimation of γ is proportional
to the overestimation of α.

For completeness, we also include the estimates’ average and empirical 95 % con-
fidence intervals in Table 5.

6 Discussion and Outlook

We have shown two methods to estimate parameters in Eq. (2) from ISI data. Our
methods are based on binning the spikes into bins with representative phase shifts.
We have devised a constructive procedure to automatically initialize the methods
from the data.

Our computational results suggest that for low frequencies the Fortet algorithm is
superior for large sample sizes, especially in the supersinusoidal regime, while the
Fokker–Planck algorithm has a comparable accuracy and a lower variance for small
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Fig. 14 Boxplots of parameter estimates for varying Ω across [1,5,10,20] while holding γ /
√

1 + Ω2

constant as to keep the parameters in the critical regime. a–c Ω = 1, d–f Ω = 5, g–i Ω = 10, j–l Ω = 20.
The boxes contain the central 50 % of the estimates. The bars indicate the range of the estimates, except
for outliers given by the points outside the bars, and defined to be more than 1.5 times the interquantile
range (the height of the box) from the box

sample sizes. Both algorithms find sensible estimates most of the time, although they
seem less effective in the subthreshold regime. Their performance can be partially
attributed to the ability of the initializer algorithm to supply good guesses for starting
the optimization iterations.

The Fokker–Planck equation allows for approximate maximum likelihood estima-
tion. We chose an alternative loss function, though, because it marginally appeared
more robust, possibly because a numerical derivation step is avoided. This is further
investigated by simulations in the supplementary online material. The simulations
suggest that the distribution of the maximum likelihood estimates in the supersinu-
soidal regime appears bimodal, which is not the case for the alternative loss function,
Eq. (17).

We have also made a preliminary exploration of the effect of Ω on the quality of
the estimates. Our results show that an increase in Ω makes the parameters α and γ

more difficult to estimate accurately and at high Ω , γ is underestimated, while α is
over-estimated. We find that in this scenario, the Fortet algorithm does a markedly
more accurate job then the Fokker–Planck algorithm.

We have assumed the time-constant τ of the leak term to be known. In most ex-
periments that is not realistic, and it would be preferable to estimate τ alongside the
other parameters. However, it is difficult to estimate [32]. When we tried to estimate
it together with the other parameters, we usually obtained results which were not
accurate. The obtained estimates resulted in ISIs that very well matched the data,
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Fig. 15 Estimates based on samples of N = 1000 spikes obtained from the Fokker–Planck algorithm
against the Fortet algorithm for a parameter set in the critical regime, while varying Ω across [1,5,10,20]
and holding γ /

√
1 + Ω2 and α constant. a, b, c Ω = 1; d, e, f Ω = 5; g, h, i Ω = 10; j, k, l Ω = 20

no worse than the ISIs obtained from the true parameters. This leads us to believe
that the simultaneous estimation of τ along with α, β , γ using only ISI data suf-
fers from identifiability problems. In [5], they were able to estimate τ in the simpler
nonsinusoidally-driven model, but concluded that adding τ as an unknown dramat-
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Fig. 16 Comparison of α̂ vs. γ̂ parameter estimates while varying Ω across [1,5,10,20], holding

γ /
√

1 + Ω2 constant as to keep the parameters in the critical regime. a, b, c Ω = 1; d, e, f Ω = 5; g,
h, i Ω = 10; j, k, l Ω = 20

ically reduced the accuracy in the estimation of the other unknown parameters. The
reason is that if τ is also estimated from a single dataset alongside the other parame-
ters, then a reasonable fit can be found to the data for various combinations of α, β ,
γ , and τ , but the so-obtained parameter values can be far from the true values.

Our model is relatively simple and ignores neurophysiological realism, such as the
fact that the spiking threshold is likely nonconstant, with a time-dependent functional
form that would involve further unknown parameters. A recent paper attempting the
parameter estimation in such a model, but without sinusoidal forcing, is [20]. Further-
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Table 5 Averages and empirical 95 % confidence intervals of estimates for N = 1000 spikes per train in
the critical regime for varying Ω across [1,5,10,20]. Note that the upper subtable corresponds to the third
subtable in Table 3; numbers differ slightly due to statistical fluctuations in the simulations

Parameter Initializer Fokker–Planck Fortet

Ω = 1

α = 0.50 0.73: [0.69,0.75] 0.52: [0.45,0.61] 0.52: [0.44,0.62]
β = 0.30 0.20: [0.17,0.25] 0.29: [0.24,0.33] 0.29: [0.22,0.34]
γ = 0.71 0.54: [0.44,0.62] 0.64: [0.53,0.75] 0.68: [0.55,0.81]
Ω = 5

α = 0.50 0.88: [0.76,0.99] 0.78: [0.61,0.89] 0.64: [0.39,0.99]
β = 0.30 0.24: [0.17,0.31] 0.26: [0.20,0.34] 0.27: [0.12,0.34]
γ = 2.55 0.85: [0.00,1.65] 0.92: [0.00,1.68] 1.86: [0.00,3.10]
Ω = 10

α = 0.50 0.90: [0.78,0.99] 0.71: [0.52,0.88] 0.58: [0.37,0.86]
β = 0.30 0.25: [0.18,0.33] 0.26: [0.20,0.35] 0.28: [0.23,0.32]
γ = 5.02 2.82: [0.92,4.38] 2.72: [0.95,3.88] 4.32: [1.20,6.49]
Ω = 20

α = 0.50 0.93: [0.76,1.02] 0.75: [0.50,0.92] 0.62: [0.31,0.97]
β = 0.30 0.27: [0.20,0.33] 0.29: [0.20,0.43] 0.29: [0.25,0.33]
γ = 10.01 5.35: [0.00,12.29] 3.98: [0.00,6.83] 7.48: [0.00,13.96]

more, intracellular recordings suggest that a hard threshold is a rough approximation
and an exponential voltage-dependent spiking intensity is more realistic [33].

While our work has used a very specific form of the periodic forcing term, namely
γ sin(Ωt), it is clear how to apply the approach to an arbitrary periodic function.
This can be done as long as one knows where in the period of oscillation a spike
has occurred. If that is the case, then the binning procedure can be applied and the
estimation methods proposed can be attempted.
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