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Abstract We study the effects of synaptic plasticity on the determination of firing
period and relative phases in a network of two oscillatory neurons coupled with re-
ciprocal inhibition. We combine the phase response curves of the neurons with the
short-term synaptic plasticity properties of the synapses to define Poincaré maps for
the activity of an oscillatory network. Fixed points of these maps correspond to the
phase-locked modes of the network. These maps allow us to analyze the dependence
of the resulting network activity on the properties of network components. Using a
combination of analysis and simulations, we show how various parameters of the
model affect the existence and stability of phase-locked solutions. We find conditions
on the synaptic plasticity profiles and the phase response curves of the neurons for
the network to be able to maintain a constant firing period, while varying the phase
of locking between the neurons or vice versa. A generalization to cobwebbing for
two-dimensional maps is also discussed.
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1 Introduction

The output of a neuronal network, determined in part by the relative spiking times of
its individual neurons, depends on the coordinated activity of its neurons. Observed
phase relationships result from the combined effects of individual cells and synaptic
connections whose properties change dynamically. For example, individual neurons
in a network can differ in their intrinsic properties, being silent, spiking or bursting;
different neurons can have different responses to the synaptic inputs they receive,
and the synaptic inputs themselves can differ widely. These different characteristics
all play a role in determining the resulting network activity. Determining how these
dynamically varying components work together to influence the network activity is a
question of considerable interest.

Many studies have explored the question of how period and phase are determined
in an oscillatory neuronal network [1–7]. One of the main tools used in these studies
is the phase response (or resetting) curve (PRC) of an individual neuron. The PRC
measures how the phase of firing of an oscillatory neuron changes as a function of
perturbations that it receives at different phases of its oscillation. In prior work [8],
the PRC has been used to define a 1D map that measures the degree of network
synchrony. This map allows for the analysis of the network activity in a reduced
system by considering only the effect of the synaptic inputs on cycle length, rather
than considering multiple dynamic variables. Several studies used similar methods to
study the activity of neuronal networks [2, 8–12]. PRC-based maps were also used
to incorporate some properties of neurons or synapses. This approach was applied
to understand synchronization of adapting neurons [2, 5] as well as the effect of
conduction delays on network synchrony [1, 13].

In the current study, we are interested in predicting phase-locking by deriving
maps that combine PRCs with information arising directly from synapses that dis-
play frequency-dependent short-term plasticity. Increases in presynaptic firing fre-
quency can strengthen (facilitation) or weaken (depression) a synapse [14]. Some
synapses show a combination of both, in which case the maximal synaptic amplitude
is achieved at a specific presynaptic frequency [15] referred to as the preferred fre-
quency of the synapse. Synaptic plasticity can be described with models having two
variables, one for depression and the other for facilitation [15, 16].

The main advance in our work is the derivation of tools for analyzing higher-
dimensional maps that incorporate the effects of synaptic plasticity and provide pre-
dictions on circumstances under which an oscillatory network of neurons will phase-
lock and at what period. In particular, we consider a network of two neurons, mutually
coupled by inhibition in which the synaptic strength is frequency dependent. In deriv-
ing these maps, we must not only track the phases of each cell, but also the strength
of each synapse. As a result, the 1D map that sufficed in prior studies needs to be
replaced with 2D or 3D maps. For 2D maps, we derive a geometric method that gen-
eralizes the idea of cobwebbing. Namely, we show how iterations of the map can be
tracked through different 2D surfaces. Moreover, projections of these surfaces onto a
common plane yields two curves whose intersection is a fixed point of the map that
corresponds to a phase-locked solution. We derive conditions on the PRCs and the
parameters that govern synaptic plasticity of the neurons to show how a network can
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have a range of parameters over which the network period remains constant, but the
phase of locking between cells changes, or vice versa. We also show that the methods
derived apply to networks that are heterogeneous either in the intrinsic properties of
individual cells, in their synapses, or both.

2 Model and Methods

2.1 Dynamics of Neurons

We use Morris–Lecar (M–L) model neurons to conduct our analysis [17]. An iso-
lated M–L neuron is modeled by leak (L), potassium (K) and calcium (Ca) current.
The K current is driven by a dynamic activation variable w, while the Ca current
depends on an instantaneous function m∞ of the membrane voltage (V ). When the
neuron is synaptically coupled to another neuron, the synaptic current received from
the other cell is also included in the equation governing the membrane voltage. For
two M–L neurons coupled with synaptic inhibition, the equations for voltage V and
K activation variable w are given by

C
dVi

dt
= Iapp − (

ḡL(Vi − EL) + ḡKw(Vi − EK) + ḡCam∞(Vi)(Vi − ECa)

+ gj→iH(Vj − Vth) · (Vi − Esyn)
)

(2.1)

dwi

dt
= w∞(Vi) − wi

τw(Vi)

for i, j = 1,2, i �= j , where m∞(V ) = 0.5(1 + tanh((V − Va)/Vb)), w∞(V ) =
0.5(1+ tanh((V − Vc)/Vd)) and τw(V ) = 1/(φ cosh((V − Vc)/2Vd)). The conduc-
tances (in nS) are ḡL = 2, ḡK = 8, ḡCa = 4, the reversal potentials (in mV) are
EL = −60, EK = −84, ECa = 120 for the leak, potassium and calcium currents,
respectively. The synaptic reversal potential Esyn is −80 mV, modeling an inhibitory
synapse. Due to the presence of the Heaviside function H(V − Vth), the synapses are
all-or-none and activate (deactivate) instantaneously when the presynaptic voltage is
above (below) the synaptic threshold Vth = 0 mV. The results described in this study
remain qualitatively similar if the value of Vth is changed.

Below we will provide more details of the synaptic conductance gpre→post. We
change the applied current Iapp (in pA) between 41.2 and 44.9 to obtain a set of
intrinsic periods (in ms) ranging between 100.3 and 180.83. The rest of the model
parameters are C = 20 pF, φ = 0.067 (dimensionless), and Va = −1.2, Vb = 18,
Vc = 12, Vd = 17.4 in mV. Throughout the paper, units for time are in msec.

2.2 Phase Response Curves

The phase response curve (PRC) of an oscillator describes how the time of the next
spike of an oscillator changes depending on the phase at which it receives a per-
turbation (Fig. 1a). In general, the PRC can be computed numerically (for model
neurons) or experimentally (for biological neurons) by injecting a brief perturbing
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Fig. 1 PRC due to synaptic input. a A brief perturbing current pulse stimulus (arrow) is used to measure
the PRC as described in Eq. (2.2). b The PRC obtained from the Morris–Lecar model (2.1) neurons by
inhibitory synaptic input. The parameters are Iapp = 42.2, synaptic conductance gpre→post = 0.1 and
synaptic duration ta = 14.3

current (such as a small current pulse) and measuring the effect of this perturbation
on the cycle length as a function of the phase of the perturbing input. If the pertur-
bation is infinitesimally small, then an infinitesimal phase response curve (iPRC) of
the model neuron can be obtained by linearizing the governing differential equations
about the limit cycle and solving the adjoint equation. In this work, we will use the
term PRC to refer to responses calculated by direct perturbations, for example ones
that imitate synaptic inputs.

Denote by P0 the intrinsic period of a cell. Suppose a perturbation is given at
time dt after the firing of the cell. This yields a phase φ = dt/P0 of the perturbation.
Denote by P̃ the time between when a cell fires prior to a perturbation and the sub-
sequent firing of the cell when a perturbation is given at phase φ. Then we define the
PRC as

Z(φ) = P0 − P̃

P0
(2.2)

We have chosen parameters so that in the M–L model oscillations arise through
a saddle node on invariant circle (SNIC) bifurcation. Neurons that oscillate through
a SNIC bifurcation have a Type 1 iPRC [18], which is always of one sign. In the
case of an inhibitory perturbation received by the neuron, the Type 1 iPRC is never
positive and the next firing time is therefore delayed. A PRC obtained from our model
neurons for a specific synaptic strength is shown in Fig. 1. It is computed by applying
a perturbation of the form

Isyn = gpre→postH(Vpre − Vth)(Vpost − Esyn)

The reference point to compute the PRC is chosen to be when V crosses Vth in
the positive direction. Note again that this method of computing the PRC is different
from computing the iPRC of a spiking neuron which yields a strictly Type 1 PRC.
The PRC we obtain is very similar, but there is a region of the PRC that is positive
near small stimulus phases due to the longer active duration of the neuron.
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2.2.1 Selection of PRCs

In order for our analytical estimates to match the results of numerical simulations of
the model, we took advantage of the computability of a PRC for the M–L neuron. In
each iteration, we numerically computed the response of a neuron to a synaptic input
of a specific strength at a specific phase. Although this method yields accurate results,
it is computationally slow and it is almost impossible to implement on biological
neurons. For this purpose, we created a meshed PRC measured at discrete phase
points and for a discrete set of predetermined synaptic strengths. We used mesh sizes
of 0.1 for the phase and 0.0125 for the synaptic strength to obtain a total of 77 points
of numerically computed phase response values. The responses to the phases and
strengths not on the mesh points were calculated by linear interpolation.

2.3 Model for Synaptic Plasticity

The short-term synaptic plasticity in spiking cells can be described by a phenomeno-
logical model [16]. We modify this model for neurons that have broader action poten-
tials or those for which the burst envelope instead of individual spikes are modeled.
To account for the longer durations that the neurons spend above the threshold we as-
sume that there are two variables which determine the strength of the synapses when a
neuron fires; the depression variable (r) and a facilitation variable (u). The depression
variable r represents the amount of available synaptic resources, while the variable
u represents the amount of utilized synaptic resources. They change according to the
activity of the presynaptic cell and together determine the synaptic strength. These
variables obey the following dynamics:

dr

dt
=

{−r
τ1

, V ≥ Vth
1−r
τ2

, V < Vth

du

dt
=

{
1−u
τ3

, V ≥ Vth
U−u
τ4

, V < Vth

(2.3)

When the membrane voltage of the presynaptic cell is above the synaptic thresh-
old Vth, the depression variable r approaches 0 with time constant τ1, representing
the depletion of available synaptic resources. During this time interval, the facilita-
tion variable u approaches 1 with time constant τ3 representing the increase in uti-
lized resources. When the membrane voltage is below the synaptic threshold, these
variables recover to their steady-state values of 1 and U , with time constants τ2 and
τ4, respectively. The strength of the synapses is determined by scaling the maxi-
mal synaptic conductance by the product of the values of these variables when the
presynaptic cell crosses Vth. If the presynaptic cell fires a sequence of spikes, then
the term nth cycle refers to the time duration between the nth and n + 1st cross-
ings of Vth. Hence, the synaptic conductance at the start of the nth cycle is given by
gpre→post = ḡpre→postrnun, where rn and un are the values of r and u when the presy-
naptic membrane potential passes synaptic threshold in the nth cycle (n is defined
below).
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2.3.1 Steady State Synaptic Plasticity Profiles

If the presynaptic cell fires with a fixed frequency, then it reaches an oscillatory steady
state. The values r and u then also reach steady states and each oscillates between a
minimum and a maximum value. At steady state, when crossing the synaptic thresh-
old, rn is at a maximum, rmax, while un attains its minimum, umin. These values can
be calculated from (2.3) as

rmax = 1− e−tb/τ2

1− e−ta/τ1e−tb/τ2

umin = U + e−tb/τ4 − e−tb/τ4(U + e−ta/τ3)

1− e−ta/τ3e−tb/τ4

(2.4)

where ta and tb are the durations that the cell spends above and below Vth, respec-
tively.

It is often possible to measure the strength of the synaptic output when the presy-
naptic neuron is driven in a range of frequencies. The values rmax and umin depend on
the presynaptic frequency and an appropriate choice of time constants allows for our
model to fit a variety of frequency-dependent synaptic outputs. In particular, we are
interested in synapses whose strength is maximal at a unique “preferred” frequency
as we have observed in experimental measurements [19]. In our results presented
below, we will use period instead of frequency for ease of analysis. By choosing ap-
propriate parameters, therefore, we can match the period at which the peak of the
product rmaxumin is maximized with the experimentally measured preferred period of
the synapse. We define the function

g(P ) = ḡrmax(P )umin(P ) (2.5)

as the synaptic strength at the time of firing of a presynaptic neuron with constant
period P = ta + tb. We will assume that the changes in period of the bursting neurons
affect only the inter-burst duration (i.e., ta is fixed). We will henceforth refer to this
relationship (2.5) as the steady-state synaptic plasticity profile.

Figure 2 shows plots of the steady-state values of rmax, umin and the full synaptic
plasticity profile (rmaxumin) of a synapse as a function of the firing period, for a given
set of parameters. Here ta = 15. The peak of the synaptic plasticity profile in this case
occurs at P = 170. For ease of analysis in Sect. 3.3 and thereafter, we use a Gaussian
function approximation for the steady-state synaptic plasticity profile g(P ):

g(P ) = 0.75e−(P−Ppref)
2/(2σ 2) + 0.75 (2.6)

where Ppref is the peak of the profile corresponding to the preferred period of the
synapse and σ determines the spread.

3 Results

We derive Poincaré maps that relate the firing times of a network of two neurons cou-
pled with reciprocal inhibition. We assume a predetermined one-to-one firing order
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Fig. 2 Steady-state values of
plasticity variables. The
maximum value rmax that the
depression variable r and the
minimum value umin that the
facilitation variable u reach at
the steady state at the onset of
presynaptic activity plotted
against the presynaptic period.
The plasticity profile of the
synapse is given by their product

between the neurons. The fixed points of these maps correspond to one-to-one firings
of the neurons at the steady state. It is possible to derive similar maps assuming or-
ders of firing that are not one-to-one, but these derivations are beyond the scope of
the current study. We first assume a fixed synaptic strength between the neurons in
Sect. 3.1. When the synapses have a fixed strength, only the phase response infor-
mation of the neurons is used to determine the network activity, as has been shown
previously [8]. In Sect. 3.2 we derive maps that describe the network activity when
the synapses between the neurons are plastic. We compare two cases. In one case,
we assume that the synapses obey the plasticity dynamics given in Eq. (2.3). In the
second case, we consider synapses that obey the corresponding steady-state values
given in Eq. (2.4). The latter case results in a lower-dimensional map. In Sect. 3.3,
assuming both synapses obey a steady-state plasticity profile (2.6), we examine how
changes in these profiles determine the network period and relative phase relations.
We find conditions for a network to be able to keep a fixed firing period but vary the
relative firing phase between its neurons, and vice versa.

3.1 Map for Phase with Static Synaptic Strength

We start with a network of two oscillatory neurons reciprocally inhibiting each other
with constant synaptic strength. We will derive a 1D map that measures the phase
difference between the onset of firing of the two cells. A fixed point of the map
corresponds to a 1 : 1 phase-locked solution. We then derive the criteria for existence
and stability of fixed points. Finally, we test the map in a network of two M–L model
neurons.

Consider a network of two oscillatory cells, A and B, coupled with reciprocal
inhibition (Fig. 3a). Assume that the synaptic strengths between the cells are constant
in each spike, i.e., gA→B = gB→A = ḡ. The intrinsic period of cell A and cell B are
denoted by P0 and Q0, respectively. When the neurons are synaptically coupled, the
time between subsequent firing of the same neuron may change. This time is called
the cycle length, denoted by Pn and Qn in cycle n, respectively for A and B.

We derive a Poincaré map for the relative firing times of the neurons when they
are synaptically connected. We choose the Poincaré section to be at VA = Vth. The
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Fig. 3 Schematic diagram of
the coupled network and the
map variables. a Schematic of
the network connectivity
diagram. b The cycle length Pn

of cell A in cycle n (measured
for the M–L simulations when
voltage crosses Vth) can be
divided into the delay between
cell A activity to cell B activity
(dtn) and the opposite (dτn).
The cycle period Qn of cell B in
cycle n is dτn + dtn+1

amount of time that passes after cell A fires until cell B fires is denoted by dtn,
while the amount of time after cell B until cell A fires is denoted by dτn (Fig. 3b).
The (activity) phase of neuron A (or B) is defined as the firing time dtn (or dτn)
normalized by the cycle length. Therefore, the phases of A and B are, respectively,
given by

φ̃n = dtn/Pn (3.1a)

θ̃n = dτn/Qn (3.1b)

In the derivations of the maps, we will make use of the PRCs of A and B which
are defined in terms of P0 and Q0, the intrinsic periods of A and B. To simplify these
derivations we introduce the notation of the “intrinsic phase” of neurons A and B
which are defined, respectively, as

φn = dtn/P0 (3.2a)

θn = dτn/Q0 (3.2b)

We denote the PRC of cell A and cell B as ZA(·) and ZB(·), respectively, for
synaptic inputs with a fixed strength. Rewriting the PRC relationship (2.2) for the
cycle lengths, we can obtain the cycle lengths of each cell in cycle n as

Pn = P0
(
1− ZA(φn)

)
(3.3a)

Qn = Q0
(
1− ZB(θn)

)
(3.3b)

The following equations relate the firing times of the two cells:

dtn + dτn = Pn (3.4a)

dτn + dtn+1 = Qn (3.4b)
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From (3.3a) and (3.4a), θn can be written in terms of φn:

θn = dτn

Q0
= 1

Q0
(Pn − dtn) = 1

Q0

[
P0

(
1− ZA(φn)

) − P0φn

]

= P0

Q0

(
1− ZA(φn) − φn

)
(3.5)

Similarly, φn+1 can be expressed in terms of θn:

φn+1 = dtn+1

P0
= 1

P0
(Qn − dτn) = 1

P0

[
Q0

(
1− ZB(θn)

) − θnQ0
]

= Q0

P0

(
1− ZB(θn) − θn

)
(3.6)

using (3.3b) and (3.4b).
Thus, plugging Eq. (3.5) into Eq. (3.6) defines the following 1D map for the intrin-

sic phase of cell A (3.2a) when the 1 : 1 firing order between the cells is maintained:

φn+1 = Π(φn)

= Q0

P0

[
1− ZB

(
P0

Q0

(
1− ZA(φn) − φn

))]
− 1+ ZA(φn) + φn (3.7)

The condition for a 1 : 1 phase-locking solution is φn = φn+1 = φ∗. Plugging this
into the map gives the condition for a fixed point as

P0
(
1− ZA

(
φ∗)) = Q0

(
1− ZB

(
θ∗)) (3.8)

where θ∗ = P0
Q0

(1 − ZA(φ∗) − φ∗). The fixed point is stable if |Π ′(φ∗)| < 1, hence
the stability condition is

∣∣(Z′
A

(
φ∗) + 1

)(
Z′
B

(
θ∗) + 1

)∣∣ < 1 (3.9)

This result was previously found in [8]. If the neurons are identical, P0 = Q0 and
ZA(·) = ZB(·) = Z(·). Then the map (3.7) reduces to

φn+1 = Π(φn)

= −Z
(
1− Z(φn) − φn

) + Z(φn) + φn (3.10)

The fixed point equation (3.8) becomes

Z
(
φ∗) = Z

(
1− Z

(
φ∗) − φ∗) (3.11)

and the stability condition (3.9) becomes

∣∣(Z′(φ∗) + 1
)(

Z′(1− Z
(
φ∗) − φ∗) + 1

)∣∣ < 1
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In this symmetric case, the phase locking of the network does not depend on the
intrinsic periods P0 of the network neurons. The phase of cell A (3.1a) in cycle n can
be obtained from the relation

φ̃n = dtn

Pn

= φnP0

Pn

which can be simplified using Eq. (3.3a) to

φ̃n = φn

1− Z(φn)
≡ f (φn) (3.12)

Given the map (3.10) for φn, in order to derive a map for φ̃n+1, we need the
function given in (3.12) to be invertible. The function f is monotone increasing in
[0,1] if and only if f ′(φ) ≥ 0 on this interval where

f ′(φ) = 1− Z(φ) + φZ′(φ)

(1− Z(φ))2

The denominator is always positive. The numerator is positive if Z′(φ) ≥ 0. For
a standard Type 1 PRC (with a single local extremum), this will occur if φ is large
enough (i.e., larger than the minimum point of the PRC; see Fig. 1b). For our choice
of parameters this occurs when φ > 0.75 (Fig. 1b) where the PRC is increasing. On
the remaining interval, the expression 1− Z(φ) is ≥1. So if Z′(φ) ≥ −1/φ ≥ −4/3
on [0,0.75], then f ′(φ) would also be positive and f could then be inverted on [0,1]
(Fig. 4b). However, it is not possible to analytically make this estimate since we have
no closed form expression for Z(φ). We confirmed numerically though that Z′(φ) ≥
−4/3 in this interval, hence f ′(φ) is positive on [0,1]. Therefore, the function f

can be inverted on [0,1]. The numerically obtained inverse function f −1 is shown
in Fig. 4b. Hence, the phase of cell A (3.1a) in cycle n + 1 can be obtained from its
value in cycle n from

φ̃n+1 = f
(
Π

(
f −1(φ̃n)

)) ≡ Π̃(φ̃n) (3.13)

In general, the function f (3.12) and the map Π̃ (3.13) can be defined for networks
consisting of either identical or non-identical neurons. Here we have considered only
the networks of identical neurons in this section. The generalization to networks of
non-identical neurons is considered below in Sect. 3.3.3.

We can now assess the existence and stability of fixed points of the maps (3.10)
and (3.13). We numerically solved the map (3.10) using MATLAB to predict the
activity of two identical M–L neurons coupled with reciprocal inhibition. We also
numerically solved the differential equations governing the activity of the neurons
using XPPAUT [20]. We let the maximal synaptic conductance ḡ equal 0.1 and use
the PRCs of the neurons obtained for this value of synaptic strength. We first find the
fixed points of the map by solving the fixed point equation (3.11). The two sides of
Eq. (3.11) are plotted in Fig. 4a. They intersect only at one point φ∗ = 0.598, which
corresponds to the intrinsic phase of cell A (3.2a) at the steady state. The firing period
of cell A can be obtained from Eq. (3.3a) evaluated at this intrinsic phase. This value
is also equal to the period of B and will be referred to as the period of the coupled
network (Pst). The activity phase φ̃∗ of cell A (3.1a) at the steady state is 0.5 and



Journal of Mathematical Neuroscience (2014) 4:8 Page 11 of 29

Fig. 4 Phase locking for static synapses. a The left and right hand sides of the fixed point equation (3.11)
for two identical neurons. The left hand side (black) is the response of neuron A and the right hand side is
the response of neuron B at steady state. The intersection gives the fixed point. Note that the black curve is
the PRC of both neurons. b The relation f −1 between the intrinsic phase φ (3.2a) and the activity phase
φ̃ (3.1a). c The same graph as panel a plotted as functions of the activity phase φ̃ using the transformation
from φ to φ̃ shown in panel b. d Convergence of the iterates starting with the initial condition φ̃0 = 0.2 is
shown in a cobweb diagram. The iterates (in green) converge to the fixed point at the intersection of the
graph of φ̃n+1 = Π(φ̃n) with the line φ̃n = φ̃n+1

is obtained by using (3.12), corresponding to the anti-phase solution, which agrees
with the simulations (not shown). In Fig. 4c, the right and left hand sides of the fixed
point equation (3.11) are plotted as functions of the activity phase using (3.12). They
intersect at φ̃∗ = 0.5. In Fig. 4d, we show the cobweb diagram for the map (3.13),
starting with the initial condition φ̃0 = 0.2 leading to convergence to the stable steady
state of φ̃∗ = 0.5. For this case, the system locks in the anti-phase state because the
two neurons and the two synaptic strengths are identical.

3.2 Maps Using Dynamic Synapses or Steady-State Synaptic Plasticity Profiles in
One Synapse

In this section we derive maps to predict the network activity in the presence of
synaptic plasticity. We now let the synaptic strength from cell A to cell B be constant
and the strength from cell B to cell A exhibit plasticity.
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Fig. 5 Two-cell network with synaptic plasticity in one synapse. a Voltage traces obtained from simu-
lations of the M–L neurons when the A to B synapse is of fixed strength and B to A synapse changes
according to the plasticity model (2.3). c The evolution of the plasticity variables r , u, rn , and un accord-
ing to the activity of neuron B. d Voltage traces obtained from simulations of the M–L neurons when the
A to B synapse is of fixed strength and B to A synapse changes according to the steady-state plasticity
profiles given by (2.4). b & e Network connectivity diagram corresponding to the simulations shown in a
& d. The parameter values for the plasticity variables are τ1 = 2, τ2 = 190, τ3 = 2, τ4 = 190

The correct method for deriving the map is to assume that the strength of the
synapse from B to A changes according to plasticity dynamics given in (2.3). How-
ever, often in experiments it is easy to measure the steady-state response of a synapse
at different input frequencies without knowing what the underlying dynamics are
that give rise to this steady-state value. That is, it is possible to measure the steady-
state synaptic plasticity profile g(P ) obtained from Eq. (2.5). We therefore consider
two different approaches in the derivation of the map. In the first derivation we as-
sume that the strength of the B to A synapse is determined by the plasticity dynam-
ics given in (2.3), whereas, in the second approach, we assume that the strength of
this synapse obeys the steady-state synaptic plasticity profile gB(P ) given by (2.5)
(Figs. 5b and 5e). The first approach allows the transients due to different initial con-
ditions to potentially play a role in the convergence of the map to a fixed point. We
show, however, that both approaches produce the same result.

When plasticity is included in the B to A synapse, the synaptic strength is no longer
constant. Hence we cannot use a unique PRC for neuron A. Instead, we define a PRC
as a function of two variables, where the phase at which the synapse is received and
the strength of the synapse determine the response of the neuron. We denote this by
ZA(φ, g). The PRC of neuron B is obtained for a constant synaptic strength ḡA→B
and is denoted by ZB(θ).
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We will now determine the phase of neuron A and the network period for the two
models where the B to A synapse either

i. changes according to the dynamics of the plasticity variables r and u and is given
by ḡB→Arnun, or,

ii. obeys the steady-state synaptic plasticity profile gB(P ) = ḡB→Armax(P )umin(P ).

We start with the derivation of the map using the dynamics of plasticity variables
(case i). The voltage traces of the neurons A and B and the evolution of the plasticity
variables of neuron B obtained from simulations are shown in Figs. 5a and 5c, re-
spectively. In this case, the response of neuron A in cycle n depends on the values of
the plasticity variables in this cycle. Assume that we know the values φn, rn and un.
Then we can compute the period of neuron A in cycle n using the expression

Pn = P0
(
1− ZA(φn, ḡB→Arnun)

)
(3.14)

We can next modify Eq. (3.5) by rewriting Pn as given in (3.14) to obtain the
intrinsic phase of neuron B (3.2b) in cycle n as

θn = P0

Q0

(
1− ZA(φn, ḡB→Arnun) − φn

)
The equation giving the cycle length of neuron B becomes

Qn = Q0

(
1− ZB

(
P0

Q0

(
1− ZA(φn, ḡB→Arnun) − φn

)))
(3.15)

in cycle n. Using Eq. (3.7) together with the above equations gives a 3D map for the
evolution of the intrinsic phase of cell A (3.2a) and the synaptic plasticity variables
from cell B to cell A

φn+1 = Q0

P0

[
1− ZB

(
P0

Q0

(
1− ZA(φn, ḡB→Arnun) − φn

))]

− 1+ ZA(φn, ḡB→Arnun) + φn

rn+1 = 1− (
1− rne

−ta/τ1
)

× exp

[
−

(
Q0

(
1− ZB

(
P0

Q0

(
1− ZA(φn, ḡB→Arnun) − φn

)))

− ta

)/
τ2

]

un+1 = U − (
U − 1+ (1− un)e

−ta/τ3
)

× exp

[
−

(
Q0

(
1− ZB

(
P0

Q0

(
1− ZA(φn, ḡB→Arnun) − φn

)))

− ta

)/
τ4

]

(3.16)
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The first equation is the same as (3.7) except that now ZA is a function of two
arguments. The second and third equations are computed using (2.3) over one cycle.
The complicated expressions in the exponential of both equations are the timeQn− ta
recast in terms of φn, rn, un where Qn is given in Eq. (3.15).

We next derive the map for case ii where the synapse from neuron A to neuron B
has a constant strength at each cycle, while the synaptic strength from neuron B to
A changes according to the steady-state plasticity function gB(x). The voltage traces
of the neurons A and B obtained from simulations are shown in Fig. 5d. In this case,
instead of the depression and facilitation variables, we can use the cycle length of
one of the neurons to derive the activity map. We assume that we know the values φn

and Pn. Then the intrinsic phase of neuron B (3.2b) in cycle n can be found by using
(3.4a) as

θn = (Pn − φnP0)/Q0 (3.17)

Plugging this into (3.3b) immediately yields the expression for the cycle length of
neuron B in cycle n as

Qn = Q0
[
1− ZB

(
(Pn − φnP0)/Q0

)]
(3.18)

We can now obtain the intrinsic phase of neuron A (3.2a) in cycle n + 1 using
Eq. (3.4b) as

φn+1 = (Qn − dτn)/P0 = (Qn − θnQ0)/P0 (3.19)

We use this phase to obtain the cycle length of neuron A in cycle n + 1 as

Pn+1 = P0
[
1− ZA

(
φn+1, gB(Qn)

)]
(3.20)

Similar to Eq. (3.14), the period of neuron A is determined by ZA which is a
function of two variables. However, in this case the synaptic strength received by
neuron A in cycle n + 1 depends directly on the cycle length of neuron B in cycle n.

The map for the activity of the network can be obtained by plugging (3.17) and
(3.18) into (3.19) and (3.20) as

φn+1 = Q0

P0

[
1− ZB

(
Pn − φnP0

Q0

)]
− Pn

P0
+ φn

Pn+1 = P0

[
1− ZA

(
Q0

P0

[
1− ZB

(
Pn − φnP0

Q0

)]
− Pn

P0
+ φn,

gB

(
Q0

[
1− ZB

(
Pn − φnP0

Q0

)]))]
(3.21)

Hence, the map (3.16) is reduced to a 2D map for the intrinsic phase and cycle
length of neuron A. A fixed point (φ∗, r∗, u∗) of the 3D map (3.16) corresponds to a
1 : 1 solution. This 1 : 1 solution is also represented by a fixed point of the 2D map
(3.21) which occurs at (φ∗,P ∗), where P ∗ is the steady-state value obtained from
(3.17) at (φ∗, r∗, u∗).

To assess numerically the existence and stability of the fixed points of both the
2D map (3.21) and the 3D map (3.16), consider two identical neurons coupled with
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Fig. 6 A comparison of the 1D (3.7), 2D (3.21) and 3D (3.16) maps. a The steady-state phase of the
neuron A, φst from map (3.7), φdyn from map (3.16), φss from map (3.21), shown as a function of the
intrinsic period of both neurons (changed simultaneously). b The network period as a function of intrinsic
periods corresponding to the same maps. c The relation between the network period and the phase of A for
the same maps. The phase of A reaches a minimum at the network period equal to the preferred period of
neuron B. The results of the two maps with plasticity ((3.14) and (3.19)) overlap in all panels

asymmetric synapses. Let the synaptic strength from neuron A to B be fixed at
ḡA→B = 0.1. We use parameters for the plasticity variables that yield the steady-state
plasticity function gB(P ) with a peak at the period 169.5, as shown in Fig. 2. Denote
the steady-state network period and phase of neuron A from the 3D map (case i) as
Pdyn and φdyn, respectively, and the corresponding values from the 2D map (case ii)
as Pss and φss. Similarly, for static coupling, denote the steady-state network period
as Pst and phase of neuron A as φst.

Figure 6 shows the steady-state phase of neuron A and the network period obtained
from the 1D map (3.7), the 3D map (3.16) and the 2D map (3.21), for a set of intrinsic
periods P0 (varied simultaneously in both cells). In Fig. 6a, the steady-state phase of
neuron A is plotted as a function of P0. The maps with plasticity (cases i and ii) yield
the same steady-state phase of neuron A; this phase is not constant but is a function of
the intrinsic period (green and black), in contrast to the static case where the network
always has an anti-phase solution (dashed red line). This variation in phase depends
on the values of the steady-state plasticity profile gB(P ) (further explained below).
Figure 6b compares the steady-state network period obtained from the three maps.
The periods obtained from the maps with plasticity are again the same and they are
slightly different from the periods obtained from the static map. The blue dashed line
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is the P0 = Pnetwork line. The network period is always larger than the intrinsic period
in all cases, due to the selection of the PRC (that the inhibitory input always delays
the next firing time). Figure 6c relates the steady-state phase of neuron A with the
network period.

We now examine how the steady-state phase of neuron A changes with respect
to changes in the intrinsic period. The phase of neuron A depends on the value of
the synaptic strength received from neuron B at the steady state. This value is deter-
mined byQ∗, the steady-state firing period of neuron B, which equals the steady-state
network period P ∗. When this value equals ḡA→B = 0.1, then anti-phase solutions
occur. This happens for two sets of coupled neurons, where the red dashed line inter-
sects green and black curves (Figs. 6a and 6c). Between these two points, the synaptic
strength received by neuron A, given by gB(Q∗), is larger than ḡA→B. Since the cells
are identical, the neurons must give equal amount of response (so that their steady-
state firing periods will be equal) for a steady-state solution to occur. When both
synaptic strengths are equal, both neurons have steady-state phase at 0.5. However, if
gB(Q∗) > ḡA→B, then neuron A receives stronger synaptic input than neuron B. This
difference can be balanced if neuron A receives this synaptic input at a phase that
yields less response. As the PRCs of the neurons are decreasing around the phase
0.5, neuron A needs to phase lock at a phase smaller than 0.5. This explains why
phase of neuron A decreases between these intersection points. A similar argument
holds when gB(Q∗) < ḡA→B.

The phase of neuron A reaches a minimum when the synaptic strength reaches
a maximum. As can be seen in Fig. 2, the synaptic plasticity profile has its peak at
169.5. Therefore, the minimum phase of neuron A is observed at the network period
169.5 (Fig. 6c). The network period of 169.5 is obtained when two cells with intrinsic
periods 141.8 are coupled (Fig. 6b).

3.3 Maps Using Steady-State Synaptic Plasticity Profiles in Both Directions

Let both reciprocal synapses have short-term plasticity. The map involving the synap-
tic plasticity variables (2.3) that generalizes (3.16) would now be 5D. But given the
results from the previous section showing that the simplified map using the steady-
state synaptic plasticity profiles provides the same stable output, we derive only the
2D map associated with the latter. We again start with the intrinsic phase φn (3.2a)
and cycle length Pn of neuron A in cycle n. Equation (3.17) can still be used to obtain
the intrinsic phase of neuron B (3.2b), θn, in cycle n. However, the cycle length of
neuron B is now given by the equation

Qn = Q0
[
1− ZB

(
θn, gA(Pn)

)]
(3.22)

in cycle n, since the synapse from neuron A to B also has plasticity and depends on
Pn. The cycle length P and intrinsic phase φ of neuron A in cycle n + 1 is given by

φn+1 = Π1(φn,Pn) = 1

P0
(Qn − Pn + P0φn)

= Q0

P0

[
1− ZB

(
1

Q0
(Pn − P0φn), gA(Pn)

)]
− Pn

P0
+ φn
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Pn+1 = Π2(φn,Pn) = P0
[
1− ZA

(
φn+1, gB(Qn)

)]
(3.23)

= P0

[
1− ZA

(
Q0

P0

[
1− ZB

(
1

Q0
(Pn − P0φn), gA(Pn)

)]
− Pn

P0
+ φn,

gB

(
Q0

[
1− ZB

(
1

Q0
(Pn − P0φn), gA(Pn)

)]))]

Equation (3.23) determines the values of P and φ when both synapses have plas-
ticity. In the case where the two cells are identical, ZA(·) = ZB(·) = Z, this map
simplifies to

φn+1 = Π1(φn,Pn) = 1

P0
(Qn − Pn + P0φn)

= 1− Z

(
1

P0
(Pn − P0φn), gA(Pn)

)
− Pn

P0
+ φn

Pn+1 = Π2(φn,Pn) = P0
[
1− Z

(
φn+1, gB(Qn)

)]
(3.24)

= P0

[
1− Z

(
1− Z

(
1

P0
(Pn − P0φn), gA(Pn)

)
− Pn

P0
+ φn,

gB

(
P0

[
1− Z

(
Pn

P0
− φn,gA(Pn)

)]))]

We now explore whether these equations yield stable fixed points and, if so, how
changes in the synaptic profiles affect the resulting phase- and period-locking of the
network.

To be able to have explicit control of the preferred frequency of the synapses,
instead of using Eq. (2.5) for g(P ), we assume that the steady-state synaptic pro-
files obey Gaussian functions gA(·) (for the A to B synapse) and gB(·) (for the B
to A synapse) (2.6) with peaks (preferred periods) PA and PB, respectively. Equa-
tions (3.24) define two surfaces Π1(φn,Pn) and Π2(φn,Pn) which can be plotted in
R
3. We plot two 3D coordinate systems to be able to visualize the evolution of the

2D map. We show three iterations of the map (3.24) in Fig. 7. The values (φn,Pn)

in cycle n are located on the x–y axes. These values are mapped through the sur-
faces Pn+1 = Π2(φn,Pn) (Fig. 7a) and φn+1 = Π1(φn,Pn) (Fig. 7b) to the next it-
eration points (φn+1,Pn+1) in cycle n + 1. Start with the initial condition (φ0,P0)

which is shown in both coordinate systems. The image of (φ0,P0) on the surface
φn+1 = Π1(φn,Pn) gives the next intrinsic phase value φ1, and the image of (φ0,P0)

on the surface Pn+1 = Π2(φn,Pn) gives the next cycle length P1 (shown by the ver-
tical lines with one arrow). These φ1 and P1 values are located, respectively, on the
x and y axes of both coordinate systems (shown by the inclined lines with one ar-
row). The point (φ1,P1) is then located on the x–y axes in both coordinate sys-
tems and mapped to the point (φ2,P2) by the same procedure (shown by the lines
with two arrows). We are able to geometrically observe the iterations (only three
shown) approach a fixed point; hence this is a generalization of cobwebbing for the
2D map.
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Fig. 7 Cobwebbing diagram of the 2D map (3.24) for two identical cells (P0 = Q0) and distinct synaptic
plasticity profiles (PA = 150, PB = 190) shown in two coordinate systems. The period P1 and the intrinsic
phase φ1 of neuron A in cycle 1 is obtained by evaluating the initial condition (φ0,P0) on the period
surface Pn+1 = Π2(φn,Pn) (a) and the phase surface φn+1 = Π1(φn,Pn) (b). The point (φ1,P1) is then
projected back to the x–y axis in both coordinate systems and mapped to the point (φ2,P2) with the same
procedure. Lines with one arrow correspond to the first and lines with two arrows correspond to the second
iteration

The fixed point equations of the map (3.24) in a 1 : 1 firing condition are

P ∗ = Q0

[
1− ZB

(
P ∗ − P0φ

∗

Q0
, gA

(
P ∗))]

P ∗ = P0

[
1− ZA

(
Q0

P0

[
1− ZB

(
P ∗ − P0φ

∗

Q0
, gA

(
P ∗))]

− P ∗

P0
+ φ∗, (3.25)

gB

(
Q0

[
1− ZB

(
P ∗ − P0φ

∗

Q0
, gA

(
P ∗))]))]

These simplify to

P ∗ = P0

[
1− Z

(
P ∗

P0
− φ∗, gA

(
P ∗))]

P ∗ = P0
[
1− Z

(
φ∗, gB

(
P ∗))] (3.26)

for identical cells.
The fixed point of this 2D map occurs when φn = φn+1 and Pn = Pn+1. We can

visualize how the fixed point is obtained. For this purpose, we plot the surfaces for the
evolution of intrinsic phase and period (previously drawn on separate coordinate axes
in Fig. 7) on the same coordinate axis, above and below the z = 0 plane, and denote by
the axes z1 and z2, respectively in Fig. 8. The equality φn = φn+1 is satisfied when the
surface z1 = Π1(x, y) and the plane z1 = x intersect. Denote this intersection curve
as C1. Similarly, the equality Pn = Pn+1 is satisfied when the surface z2 = Π2(x, y)

intersects the plane z2 = y (denoted as C2). The curves C1 and C2 are shown in black
above and below the z = 0 plane. The fixed point of the map lies on both curves;
hence it lies on the intersection of C1 and C2. The projections of C1 and C2 on the
z = 0 plane are shown in the figure together with the iterations (red dots) approaching
the fixed point at their intersection.



Journal of Mathematical Neuroscience (2014) 4:8 Page 19 of 29

Fig. 8 Fixed points of 2D (3.24) map when P0 = Q0 obtained by solving (3.26). The surfaces for the
evolution of period and intrinsic phase of the 2D map with synaptic preferred periods PA = 150, PB = 190
are drawn above and below the z = 0 plane denoted by the axes z1 = Pn+1 and z2 = φn+1, respectively.
The equality Pn = Pn+1 is satisfied when the surface z1 = Π2(x, y) (colored surface on top) and the
plane z1 = y (gray-scaled plane on top) intersect. Similarly, the equality φn = φn+1 is satisfied when
the surface z2 = Π1(x, y) (colored surface on bottom) intersects the plane z2 = x (gray-scaled plane on
bottom). These intersections yield the two black curves above and below the z = 0 plane. The fixed point
of the map lies on the intersection of the two fixed point curves. The projections of these curves on the
z = 0 plane are shown together with the iterates (red dots) approaching the fixed point at their intersection
in the order enumerated in the figure

The stability of the fixed point can be examined using the Jacobian of the 2D map
(3.24). If the eigenvalues of the Jacobian at the fixed point are located inside the unit
circle, the fixed point is stable. For our choice of parameter values, the fixed point
can be shown to be stable.

3.3.1 Phase and Period Locking for Different Synaptic Plasticity Profiles

Having determined a method for calculating the steady-state network period and
phase, we now determine how these quantities depend on various network param-
eters. For simplicity, in this section we consider identical neurons. We use the 2D
map (3.24) to obtain the network phase and period when both synapses have plas-
ticity. For comparison, we also obtain the same from the 1D map (3.10), when the
synaptic strength is fixed.

We are interested in how differences in the plasticity profiles of the two synapses
affect the network period and phase of neuron A (Figs. 9a1 and 9b1). The distinct
plasticity profiles (Fig. 9a1) are produced by simply shifting one profile along the
intrinsic period axis. In the non-identical case, the plasticity profiles are chosen to
approach the same value at the tails (Fig. 9a1) and, therefore, for small (and large) in-
trinsic periods, φss = 0.5 due to identical synaptic strengths (Fig. 9a3). As the intrin-
sic period is increased, the difference between gA(P ) and gB(P ) first increases until
P = PA and then decreases to zero when P = Peq (Fig. 9a1). This causes φss to in-
crease from 0.5 to 0.58 until Pss = PA and then decrease to 0.5 again when Pss = Peq
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Fig. 9 Period and phase locking when both synapses follow the synaptic plasticity profile. Dashed line
in all panels shows the case with two static synapses. a1 Synaptic plasticity profiles of the two synapses
chosen to have different preferred periods at 150 and 190. a2 Network period as a function of the intrinsic
periods. a3 Phase φ̃ of neuron A with respect to B as a function of intrinsic period. b1–b3 Same as a1–a3
but with identical synaptic plasticity profiles (preferred period at 170)

(Fig. 9a3), since the weaker synapse from B to A is balanced by a phase that yields
more response (more detail is explained in Sect. 3.2). For firing periods greater than
Peq, the opposite relation holds, causing φss first to decrease to 0.41 and then increase
back to 0.5. In contrast to φss varying between 0.41 and 0.58, φst is always fixed at 0.5
due to identical neurons and synapses. Since the values of the plasticity profiles at the
tails are less than the strength ḡ = 0.1 of the static synapses, Pss is slightly smaller
than Pst for small (and large) intrinsic periods (Fig. 9a2). For a range of intermediate
intrinsic periods, when the network synapses have plasticity, Pss is almost equal to
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the network period with static synapses Pst (Fig. 9a2). The balancing effects of the
two synaptic profiles (gA(P ) being greater, gB(P ) being smaller than ḡ for Pss < Peq
and gA(P ) being smaller, gB(P ) being greater than ḡ for Pss < Peq) causes Pss and
Pst to be almost equal for intermediate intrinsic periods. Thus, this choice of synaptic
plasticity profiles provides the network the ability to produce a range of distinct phase
relationships as the intrinsic period changes (Fig. 9a3). Note that the steady-state net-
work period remains almost equal to its value as if no plasticity is included (Fig. 9a2).

In the case of identical plasticity profiles, the neurons have the same preferred
periods and the values of the plasticity profiles again approach 0.075 at the tails
(Fig. 9b1). This causes Pss to be smaller than Pst for small and large intrinsic pe-
riods (Fig. 9b2). For intermediate firing periods, the opposite holds. In contrast to
the almost linear change in Pst, Pss changes nonlinearly as a function of the intrin-
sic periods. Also, in contrast to the nonlinear change in Pss, the phase of neuron
A is fixed at 0.5, because both the neurons and their plasticity profiles are identical
(Fig. 9b3). Hence, depending on the choice of plasticity profiles, the network cou-
pled with synaptic plasticity can have the same period but different relative phases
(Fig. 9a1–a3), or the same phases but different periods compared to the network cou-
pled with static synapses (Fig. 9b1–b3).

3.3.2 Conditions for Phase or Period Constancy

Short-term synaptic plasticity profiles are subject to change by neuromodulation and
other long-term modifications [21]. In the previous section, we showed that as the
synaptic plasticity profile changes, the network can maintain the network period or
the relative activity phases among the network neurons. In this section, we examine
the conditions on the steady-state synaptic plasticity profiles that would allow the
network to maintain either a constant period or a constant phase.

For this purpose, we make use of the fixed point equations for identical cells (3.26)
obtained from the 2Dmap. The phase φ∗ in (3.26) stand for the intrinsic phase of neu-
ron A (3.2a). We use Eq. (3.12) and rewrite (3.26) as implicit functions of the steady-
state phase of A φ̃, network period P and synaptic preferred periods PA and PB as

F1(PA,PB, φ̃,P ) = P − P0

[
1− Z

(
P − φ̃P

P0
, gA(P )

)]

F2(PA,PB, φ̃,P ) = P − P0

[
1− Z

(
φ̃P

P0
, gB(P )

)]

Let F(PA,PB, φ̃,P ) = (F1(PA,PB, φ̃,P ),F2(PA,PB, φ̃,P )). At the fixed point,
F(P ∗

A,P ∗
B, φ̃∗,P ∗) = (0,0). We would like to solve this equation for PA and PB as a

function of P and φ̃. Using the Implicit Function Theorem, the condition that needs
to be satisfied is det(DPA,PBF) �= 0 at (P ∗

A,P ∗
B, φ̃∗,P ∗) where

DPA,PBF |(P ∗
A,P ∗

B ,φ̃∗,P ∗) =
[

∂F1
∂PA

∂F1
∂PB

∂F2
∂PA

∂F2
∂PB

]
(P ∗

A,P ∗
B ,φ̃∗,P ∗)

(3.27)

The function F1 does not depend on PB, hence ∂F1/∂PB = 0. So, for the deter-
minant to be nonzero, both ∂F1/∂PA and ∂F2/∂PB have to be nonzero. These terms
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are given as

∂F1

∂PA

∣∣∣∣
(P ∗

A,P ∗
B ,φ̃∗,P ∗)

= P0
∂Z

∂y

(
P ∗(1− φ̃∗)

P0
, gA

(
P ∗)) ∂gA

∂PA

∂F2

∂PB

∣∣∣∣
(P ∗

A,P ∗
B ,φ̃∗,P ∗)

= P0
∂Z

∂y

(
φ̃∗ · P ∗

P0
, gB

(
P ∗)) ∂gB

∂PB

One condition for the determinant to be nonzero is ∂Z/∂y(x, y)|(P ∗
A,P ∗

B ,φ̃∗,P ∗) �= 0;
that is, the response of the neuron to perturbations should change with the change
in the strength of the perturbation. This is a standard assumption on phase re-
sponse curves with small perturbations. The other two conditions to be satisfied
are ∂gA/∂PA|(P ∗

A,P ∗
B ,φ̃∗,P ∗) �= 0 and ∂gB/∂PB|(P ∗

A,P ∗
B ,φ̃∗,P ∗) �= 0, which, upon using

Eq. (2.6), are equivalent to PA �= P ∗ and PB �= P ∗, respectively. In other words, the
network period should be different from the synaptic preferred periods.

Under these three conditions, the Implicit Function Theorem guarantees that PA

and PB can be expressed in terms of φ and P near (P ∗
A,P ∗

B, φ̃∗,P ∗). More pre-
cisely, there are neighborhoods U of (φ̃∗,P ∗) and W of (P ∗

A,P ∗
B) such that, for

each (φ̃,P ) ∈ U , there exists a unique (PA,PB) ∈ W such that F(PA,PB, φ̃,P ) =
F(PA(φ̃,P ),PB(φ̃,P ), φ̃,P ) = 0. Hence, there is a unique function h = (h1, h2) :
U → W such that F(h1(φ̃,P ),h2(φ̃,P ), φ̃,P ) = 0 for every (φ̃,P ) ∈ U .

We can interpret this result in two ways. First, around the fixed point (P ∗
A,P ∗

B,

φ̃∗,P ∗), we can choose (φ̃′,P ∗) such that P ∗ is fixed and φ̃′ �= φ̃∗, for which there
exist (PA′ ,PB′) that satisfy the fixed point equations (3.26). Hence, for a specific P ∗,
around a point with a phase φ̃′, there exist synaptic preferred periods PA′ and PB′
that enable the network to stay on the level set of P ∗, while setting the phase equal
to a new value φ̃′. In other words, it is possible to keep the network period constant
and set the network phase to a new value by changing the synaptic plasticity profiles
of the network neurons.

The second interpretation is that, around the fixed point (P ∗
A,P ∗

B, φ̃∗,P ∗), we can
choose a (φ̃∗,P ′) such that φ̃∗ is fixed and P ′ �= P ∗, and can find (PA′ ,PB′) that
satisfy the fixed point equations (3.26). This enables the network to stay on the level
set for a specific φ̃∗, while changing the network period to a new value P ′.

In the example demonstrated in Fig. 10, the intrinsic periods of the two neurons
are kept constant but the two synaptic plasticity profiles are allowed to vary. As be-
fore, the synaptic plasticity profiles are changed only by shifting them along the pe-
riod axis. We keep track of different synaptic plasticity profiles by the values of the
synaptic preferred periods PA and PB (the peak of the profile). Figure 10 shows the
changes in the network period and phase as the synaptic plasticity profiles of the neu-
rons are varied. The neurons are identical with an intrinsic period P0 of 137. The
colored curves are subsets of the level sets of the phase; the phase of the network is
fixed on a curve with a specific color. The gray bands correspond to the level sets of
the network period. These level sets provide conditions for the network to maintain a
specific period but have different phase relations, or vice versa, through varying the
combination of synaptic preferred periods.
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Fig. 10 Period and phase locking for different steady-state synaptic plasticity profiles. The steady-state
network period (gray) and phase (colored) are shown as a function of different steady-state synaptic plas-
ticity profiles. Colored curves correspond to level sets of the phase. The edges of the gray bands correspond
to the level sets of the network period. The plasticity profile of each synapse is marked by its preferred
period

3.3.3 Networks of Non-identical Neurons

We now examine a network of two non-identical M–L neurons. The neurons are
chosen to have different intrinsic periods by applying different levels of external cur-
rent but otherwise using the same parameters. We consider the two cases where the
synapses are static or they follow steady-state synaptic plasticity profiles and compare
the predictions of the 1D map (3.7) and the 2D map (3.24) with the simulations of the
corresponding model equations. We let the preferred period of the A to B synapse be
PA = 150 and from neuron B to A be PB = 190 for the case with synaptic plasticity.
The results are shown in Fig. 11.

Note that the maps continue to give good predictions when the neurons are not
necessarily identical. The difference between the simulations (filled circles) and the
map predictions (open circles) is indistinguishable in most cases. The diagonal corre-
sponds to coupling of identical neurons. Moving away from the diagonal, the differ-
ence between the intrinsic periods of the neurons increases and eventually prevents
the neurons to phase lock in a 1 : 1 manner because the fixed point equation (3.8) is
not satisfied anymore. These are the limits of the region shown in Fig. 11. Observe
that the limits determined by the map and the simulations overlap except at one single
case shown only by an open circle in Figs. 11c and 11d. Here, the map predicts that
a 1 : 1 solution exists, while the simulation does not converge to that. In this case,
the simulation shows that the firing order between the neurons is not preserved which
violates the 1 : 1 firing assumption of the map.
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Fig. 11 Coupling of non-identical M–L neurons. The phase of neuron A (a and c) and the period of the
network (b and d) for coupled neurons with different intrinsic periods are shown for static synapses (a and
b; ḡ = 0.1) and when the network follows the synaptic plasticity profile (c and d; PA = 150, PB = 190).
The axes are the intrinsic periods of the two neurons. Plasticity adds nonlinearity to the period and phase
distribution. Filled circles denote simulation results whereas open circles denote the map predictions. The
map yields predictions very close to the simulations in most cases

The phase of neuron A equals 0.5 on the diagonal in the static coupling case
(Fig. 11a). It decreases (resp. increases) linearly as Q0 moves down (resp. up) from
the diagonal. This behavior can be predicted by analyzing Eq. (3.8). In the identi-
cal network, where P0 = Q0, the activity phases (φ̃∗ = θ̃∗ = 0.5), and the intrinsic
phases (φ∗ = θ∗ = 0.598) of the two neurons are equal and hence ZA(φ∗) = ZB(θ∗).
If the solution is perturbed such that P0 > Q0, then the response of neuron A to
synaptic inputs from neuron B must be smaller than the response of neuron B for the
Eq. (3.8) to be satisfied. The PRC of the neurons has a negative slope at this intrinsic
phase φ∗ (Fig. 1b). So, the intrinsic phase φ of neuron A in the perturbed solution
must be smaller than φ∗ for ZA(φ) to be smaller than ZA(φ∗). As the function (3.12)
relating φ and φ̃ is monotone increasing, the activity phase φ̃ of neuron A in the
perturbed solution must also be smaller than φ̃∗. Hence, as the difference P0 − Q0
increases (resp. decreases), the phase of neuron A decreases (resp. increases). The
period of the network increases linearly as the intrinsic periods increase in the static
coupling case (Fig. 11b). Due to symmetry in the synaptic strengths, the distribution
of the period is symmetric with respect to the diagonal.
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When the synapses are plastic, some 1 : 1 phase-locked solutions that existed with
static coupling no longer exist, while new solutions may emerge (Figs. 11c and 11d).
Due to asymmetry in the synaptic plasticity profiles, the upper bound for the dif-
ference in intrinsic periods that allow a 1 : 1 phase-locked solution varies. This can
be seen by comparing the circles in the top row and rightmost column of Figs. 11c
and 11d. At the right top corner, P0 = Q0 = 181, and the network has an anti-phase
solution. If Q0 is fixed, while P0 decreases, the network continues to phase lock in a
1 : 1 solution for P0 ≥ 152.1. On the other hand, if P0 is fixed, while Q0 decreases,
then the network phase locks in a 1 : 1 solution only when Q0 ≥ 174.8. Although
the absolute difference between the intrinsic periods are equal, different plasticity
profiles causes convergence in one case but not the other. This can be understood
by considering (3.25). For the identical cell case where P0 = Q0 = 181, the net-
work period is equal to P ∗ = 219.5. Due to the selection of the plasticity profiles,
gA(P ∗) < gB(P ∗), since P ∗ is close to PB = 190 than it is to PA = 150. As a re-
sult, neuron A receives stronger synaptic input from neuron B at the steady state (as
gB(P ∗) determines gB→A). The firing periods of both neurons must be equal at the
fixed point. This is only possible if neuron B receives synaptic input at a phase that
yields a larger response than that of neuron A. Hence, although the neurons are identi-
cal, the difference in their plasticity profiles causes a phase-locking solution different
from anti-phase. Assume now that Q0 > P0. Then the relation gA(P ) < gB(P ) will
still hold as P will stay close to P ∗. In this case, the synaptic strength received by
neuron A will be larger, while its intrinsic period will be smaller than that of B. These
two opposing effects will let the network continue having a solution until the differ-
ence between the intrinsic periods are too large to be compensated for and (3.25)
are not satisfied. On the other hand, if the symmetric solution is perturbed such that
P0 > Q0, then the synaptic strength received by neuron A and its intrinsic period will
both be larger than those of neuron B. The phase of neuron B must increase further
and yield a larger response to compensate for these adding effects. But when the PRC
reaches a maximum in absolute value and starts to decrease, there would be no phase
value that would compensate for these effects and the network will not be able to have
a 1 : 1 solution. This explains why the limits of the regions in the case with synaptic
plasticity are not symmetrical.

In general, whether (3.25) are satisfied or not depends on the intrinsic periods P0,
Q0 and the values of the PRCs as in the static map case. But in this case the values of
the PRCs are also determined by two factors, the phase of inhibition received, and its
strength—which is determined by the network period. Hence, the phase of neuron A
is a determined both by the interaction of intrinsic periods and the plasticity profiles.
This is also responsible for the nonlinearity in the distribution of phase. The level
curves of phase are nonlinear in the case with synaptic plasticity as opposed to the
linear level curves in the static coupling case.

4 Discussion

In the analysis of an oscillatory network, the steady-state activity of the network can
often be reduced to the study of a return map. The advantage of using maps is that
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it often allows the network dynamics to be understood by tracking empirically ob-
servable characteristics such as period and phase. Here, we derive such a map for
a two-cell network coupled with inhibitory synapses with the goal of understanding
how short-term synaptic plasticity and other factors determine the network period and
the relative activity phase of the two neurons. Our results show that the information
on the network period and phase can be obtained using maps that keep track of ob-
servable network variables such as the intrinsic periods of the neurons involved, their
phase response curves and the synaptic plasticity profiles: relationships describing
how the synaptic strength depends on input frequency. These variables can be read-
ily determined experimentally with “feed-forward” measurements where the input is
controlled by the experimenter and the output is measured. For example, the strength
of a synapse can be measured at all frequencies simply by driving the presynaptic
neuron at different rates and measuring the postsynaptic current. In fact, the current
study was motivated by our experimental measurements of these types of network
variables in the crab stomatogastric pyloric network [22–24].

There are several prior works that utilize PRCs and map-based techniques to un-
derstand phase locking [1–13]. Of particular interest is the result of Cui et al. [5] who
use a functional PRC (fPRC) that is calculated from actual experimental measure-
ments of Aplysia pacemaker neurons. Cui et al. show that the fPRC differs from the
single pulse PRC (as was used in this paper) due to accommodation of the pacemaker
neurons. They then go on to use the fPRC to study phase-locking in a coupled network
by deriving a map that encodes how a neuron responds to a period input that arrives
a fixed time after the firing of the cell. By linearizing about a fixed point of their 1D
map, they find conditions for the existence and stability of 1 : 1 phase-locked solu-
tions. Their predictions from the fPRC method are better matched to simulations than
predictions from a conventional single-pulse PRC. Importantly, their fPRC methods
do not depend on the exact shape of the PRC but rather on the effect on the cycle
period based on the time the input was given. This is a statistic that is easily found in
experiments. Moreover, their results are obtained from combining feed-forward pro-
cesses as opposed to directly studying a feedback map, which they call open-looped
versus closed-looped.

Our results complement those of Cui et al. in the sense that we relate cycle-to-
cycle changes in the period independent of how those changes arise, allowing us to
also use experimentally obtainable information to derive the maps. Our maps are also
based on assumptions that are consistent with Cui et al.’s assumption that the closed-
loop behavior of a system can be predicted by knowing the open-looped behavior of
some of its components. Our results extend those of Cui et al. and other prior works
in that we allow the timing of inputs to vary on a cycle by cycle basis that is deter-
mined by the synaptic plasticity profile of the presynaptic neuron. This results in a
higher-dimensional map arising by specifically considering the dynamics of synap-
tic facilitation and depression on a cycle by cycle basis. This yields a 3D map when
plasticity is present only in one direction of the two-cell network, or a 5D map if
present in both directions. When we used the steady-state synaptic plasticity profile,
both cases reduce to a 2D map. For this 2D map, we derived a geometric method that
generalizes cobwebbing in a 1D map to allow us to study the existence and stability
of fixed points. For a generic 1D map, Π(x), the intersection of the curve y = Π(x)
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with the curve y = x, and the slope at that point, determine existence and stability of
the fixed point. In our generalized 2D case, given maps Π1(x, y) and Π2(x, y), it is
the intersection of these surfaces with appropriate planes that yield two curves. It is
the intersection of the projection of these two curves onto a common plane that deter-
mines existence of the fixed point. Stability is more complicated than just checking
the slopes at the point of intersection. We showed how it could depend on both the
PRC and the synaptic plasticity profile.

In this study, we considered a general form of short-term synaptic plasticity
which is a combination of short-term facilitation and depression. We modeled such
a synapse using an ad hoc model as described previously [16]. The advantage of this
model is that the extent to which facilitation or depression is a dominant factor can
be simply determined by changing the model parameters. Our analysis progressed
through a network of two neurons with static synapses, the same network but with
one synapse having plasticity and finally with both synapses showing plasticity. The
analysis of a two-cell network with static synapses yields a 1D map [6, 8]. Including
synaptic plasticity increases the dimension of the map because variables underlying
synaptic dynamics must be tracked as well. The change in synaptic strength due to
the plasticity means that the PRCs of the neurons also change. Our analysis shows
that these higher-dimensional maps can accurately predict the steady-state phase and
period of the network, as seen in comparisons with numerical simulations of the un-
derlying ODEs.

In experimental measurements, synaptic plasticity profiles are often measured us-
ing repetitive input pulses or waveforms and reported at steady state, i.e., the steady-
state strength of the synapse is known for each stimulation frequency [23, 25, 26].
In most cases, the mechanisms that underlie these synaptic dynamics are unknown
and it is therefore impossible to track how synaptic strength changes as a function of
frequency on a cycle-to-cycle basis. One of the interesting findings from our work is
that the prediction of the higher-dimensional map obtained when using dynamics of
the synapse is the same as a lower-dimensional map that uses only the steady-state
plasticity profile. In other words, the network output is dependent on the steady-state
strength independent of the mechanisms through which this synaptic strength is ac-
tually generated. In turn, this allows an experimentalist to understand the effects of,
say a synaptic neuromodulator, on the network output simply by understanding the
effect on a single component such as the synaptic plasticity profile.

The results of our maps help us understand the role of synaptic dynamics in deter-
mining the relative phase between two neurons in an oscillatory network. For exam-
ple, neurons in the crustacean pyloric oscillatory network, involve multiple recipro-
cally inhibitory connections. Pyloric oscillations are quite stable in individual prepa-
rations and are generated by a pacemaker group of neurons (AB/PD) which make
reciprocally inhibitory connections with a single follower neuron, LP. The analysis of
this reciprocally inhibitory network provided the motivation for the current study. As
in other rhythmic motor networks, the pyloric network neurons maintain a constant
phase relationship even when these phases are measured in different animals [27].
Surprisingly this tight phase relationship is maintained despite a large variability in
the pyloric cycle period (1–2.5 s) across preparations. In fact, different preparations
differ both in the intrinsic periods of the neurons involved as well as the synaptic
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plasticity profiles. The results of the current study indicate that the pyloric network
could maintain constant phase relationships, even in different animals, by tuning the
synaptic plasticity profiles along the level sets of phase (Fig. 10). Alternatively, if the
relative activity phases of the neurons involved in producing the network oscillations
are not an essential component of the network output, but the network must maintain
a constant period, the maps we have derived can be used to establish the relationships
that could produce a constant frequency output. These are plausible strategies for all
rhythmic motor networks in which the output is tightly constrained by the proper
phase of muscle movements to produce meaningful behavior.

An interesting implication of our results is that if the network period coincides
with the synaptic preferred periods, it is not possible to uniquely prescribe the synap-
tic profiles in terms of the network period and the relative phase of the neurons
(Eq. (3.27)). If the level sets of phase, described in Fig. 10, provide a unique rule
for the network to tune its synaptic plasticity profiles for phase maintenance, then the
network period should avoid the synaptic preferred periods. Additionally, by avoid-
ing the periods at which the synaptic strengths are maximal, the network can operate
with a larger degree of flexibility and perhaps more efficiently. This is in fact the case
for the synapses between the AB/PD pacemaker neurons and the follower LP neuron
in the crustacean pyloric network. The network period is around 1–2.5 s, in a range of
values that is larger than the preferred periods of the synapses (∼0.5 Hz) [23]. Hence,
our findings give an insight for this experimentally observed fact.

In conclusion, we have shown that the frequency-dependent information on
synapses can be combined with the PRCs of oscillatory neurons to predict the ac-
tivity period and phases of a coupled network using maps derived from empirically
observable relationships. It is plausible that a similar approach can be used whenever
there is frequency-dependent information about the network components to construct
maps that predict the activity of an oscillatory network, even when the synapses in-
clude excitatory connections or obey different plasticity profiles. In relationship to
the crustacean pyloric network that motivated this study, current experimental work
in our lab involves measuring the changes in the synaptic plasticity profiles and the
neuronal PRCs in the presence of different neuromodulators to see whether the maps
derived here can predict how the network output changes in the presence of these
modulators.
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