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Abstract We study a population of spiking neurons which are subject to indepen-
dent noise processes and a strong common time-dependent input. We show that the
response of output spikes to independent noise shapes information transmission of
such populations even when information transmission properties of single neurons
are left unchanged. In particular, we consider two Poisson models in which indepen-
dent noise either (i) adds and deletes spikes (ADmodel) or (ii) shifts spike times (STS
model). We show that in both models suprathreshold stochastic resonance (SSR) can
be observed, where the information transmitted by a neural population is increased
with addition of independent noise. In the AD model, the presence of the SSR effect
is robust and independent of the population size or the noise spectral statistics. In the
STS model, the information transmission properties of the population are determined
by the spectral statistics of the noise, leading to a strongly increased effect of SSR in
some regimes, or an absence of SSR in others. Furthermore, we observe a high-pass
filtering of information in the STS model that is absent in the AD model. We quantify
information transmission by means of the lower bound on the mutual information rate
and the spectral coherence function. To this end, we derive the signal–output cross-
spectrum, the output power spectrum, and the cross-spectrum of two spike trains for
both models analytically.
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1 Introduction

Neurons in the sensory periphery encode information about continuous time-
dependent signals in sequences of action potentials. Hereby, upon repeated presenta-
tion of a stimulus, the response of the neuron is not perfectly reproducible but exhibits
trial-to-trial variability. Processes, leading to such variability, are termed noise and
can have various origins [1, 2]. How such noise processes affect the transmission of
time-dependent signals in neurons can be studied in the framework of information
theory [3, 4]. Within this framework, it has been shown, for instance, that the pres-
ence of noise can enhance the transmission of weak (subthreshold) signals in single
neurons and neural models [5–7], an effect known as stochastic resonance and also
observed outside biology [8, 9]. At the level of neural population coding, noise can
also have a beneficial role for the transmission of strong (suprathreshold) signals
[10, 11] by means of suprathreshold stochastic resonance (SSR), the mechanism
of which is quite distinct from that of conventional stochastic resonance despite the
similarity in their naming. Additionally, noise not only impacts the total transmitted
information, but it also affects which frequencies of the sensory signal are preferably
encoded by a neural system. The suppression of information about the input signal
in certain frequency bands can be regarded as a form of information filtering [12–
16]. Put differently, we may ask whether the neural system is preferentially encoding
slow (low-frequency) components of a signal or fast (high-frequency) components of
a signal, which can be quantified by the coherence function, as described below.

How noise affects information transmission in neural populations has been stud-
ied for a long time [11, 17, 18]. Of particular interest in the context of the informa-
tion flow through a population are the correlations among neurons that have been
observed in many experimental preparations, e.g. in the visual system [19–22], the
somatosensory system [23], the olfactory system [24, 25], the barrel cortex of rats
[26, 27], and in spinal motor neurons [28, and references therein]. Such correlations,
either in membrane potential, in output spikes, or in spike counts of two cells, can
be caused by a common input to both cells due to overlapping receptive fields. For
instance, in the electrosensory system [29], the spontaneous activity of different neu-
rons in the absence of the signal is uncorrelated and is driven by independent noise
processes. In other systems, the output correlations are not caused by a stimulus. For
example, in tangential neurons of the fly visual system, already the noise processes
are correlated and lead, even in the absence of the sensory signal, to a spontaneous
spiking activity that is correlated across different neurons [20] (for a detailed discus-
sion of the noise sources see [30]). Other examples of neurons receiving common
noise input are ganglion cells of the primate retina [21] or the projection neurons of
the Drosophila olfactory system [25]. In the present study, we consider ensembles of
neurons receiving highly correlated noise input as sketched in Fig. 1.

We consider two theoretical models of neural populations that exhibit strong spike
train correlations among the neurons within the population, even in the absence of
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Fig. 1 A population of N uncoupled neurons is driven by common processes (green box) and independent
noise processes (blue boxes). The common processes consist of a strong common noise ξ(t) and a common
sensory signal s(t), which is multiplied with a small positive scaling parameter εs � 1. Independent noise
processes ημ(t) are multiplied with another small positive scaling parameter εη � 1. In the special case
of εs = 0, εη �= 0 the sensory signal is absent and the N neurons exhibit spontaneous activity. Due to the
strong common noise ξ the spontaneous activity is highly correlated. In the special case of εs �= 0, εη = 0
all neurons generate identical output spike trains encoding the sensory signal in the time-dependent firing
rate. The output of the population is quantified by the sum y(t) of the individual spike trains

a sensory signal. In this situation, we address the question of how the spike trains
of different neurons may be decorrelated by independent noise processes and how
this affects the transmission of a sensory signal. More specifically, we are interested
in how independent noise influences the spikes of the output spike trains and study
two extreme cases. In one case, we assume that independent noise adds and deletes
spikes in the output spike trains (AD model) as illustrated in Fig. 2a. This is a likely
effect of additional noise in an excitable neuron with low firing rate. In another case,
we assume that independent noise shifts the spike times of the output spike trains
(STS model) as illustrated in Fig. 2b. This scenario applies to neurons in a tonically
firing regime, which generally do not fire with Poisson statistics. We construct the
two models in such a way that they cannot be distinguished on a single neuron level.
This allows us to ascribe any differences in the information transmission properties
of the populations unambiguously to the different effects of the noise.

This work is organized as follows: First, we describe the methods by which we will
study the effect of noise on signal transmission in a population of spiking neurons.
Second, we introduce two models where independent noise either adds and deletes
spikes, or shifts spike times in the output spike trains. In Sect. 4, we then derive the
spectral statistics for the two models. These derivations can be skipped upon the first
reading. In Sect. 5, we summarize the derived spectral statistics and proceed to study
the effect of independent noise on information filtering and the total transmission of
information in neural populations. We conclude with a summary and a discussion of
our results in Sect. 6.

2 Methods

2.1 Spike Train Statistics & Ensemble Averages

In this paper, we study the transmission of a sensory time-dependent signal by a
population of spiking neurons, which is illustrated in Fig. 1. We model the output
spike trains of single neurons by stochastic point processes. The output of the μth
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Fig. 2 Two neurons are driven by a strong common noise ξ , a weak common signal s, and independent
noise processes ημ . a Addition and deletion of spikes: Independent noise processes lead to addition and
deletion of spikes by weakly modulating the threshold value rμ(t) in Eq. (11) independently for both
neurons. The first arrow indicates the deletion of a spike, the second arrow indicates the addition of a
spike, and arrows three and four indicate time bins where there is no change in the spike trains. b Spike
time shifting: Independent noise leads to shifting of spikes by weakly modulating the integrand rμ(t)

in Eq. (16) independently for both neurons, but no spikes are added or deleted. The arrows exemplify
corresponding spikes in the two spike trains that have been shifted in time

stochastic point process can be described by the spike count nμ(t). This function
starts at 0 at t = 0 and is incremented by 1 at each spike time tμ,k , i.e. nμ(t) = 0 for
0 ≤ t ≤ tμ,1, nμ(t) = 1 for tμ,1 ≤ t ≤ tμ,2, and so forth. Equivalently, the output of a
stochastic point process can be described by the derivative of nμ(t). This derivative
is called the spike train and is given by a sum of delta functions,

xμ(t) = d

dt
nμ(t) =

∑
k

δ(t − tμ,k). (1)

We study information transmission properties of the population by quantifying the
amount of information about the input signal s(t) encoded in the sum

y(t) =
N∑

μ=1

xμ(t) (2)

of the individual output spike trains.
We take into account different sources of variability: common noise ξ(t), indepen-

dent noise sources ημ(t), and the stochastic signal s(t) (cf. Fig. 1). Consequently, we
can consider different ensemble averages, denoted by angular brackets 〈· · · 〉. Sub-
scripts indicate over which processes we average and the absence of subscripts im-
plies averaging over all involved processes. In mathematical terms this notation corre-
sponds to the expectation with respect to the conditional distribution that is indicated
by the subscripts, e.g. 〈xμ(t)〉ξ stands for the expectation of the process xμ(t) with
respect to the conditional distribution of ξ , conditioned on a realization of s and η,
whereas 〈xμ(t)〉 stands for the total expectation. Note that 〈xμ(t)〉ξ is still a random
process, unless a realization of s and η is fixed. Below, when analyzing correlation
functions, e.g. Eq. (7), we will also consider averages over products of spike trains
〈xμ(s)xν(t)〉ξ , which in mathematical terms corresponds to

d

ds̄

d

dt̄

〈
nμ(s̄)nν(t̄)

〉
ξ

∣∣∣∣
s̄=s,t̄=t

.

This applies analogously to averages over the processes s(t) and y(t).
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The instantaneous firing rate 〈
xμ(t)

〉
ξ
,

obtained by averaging the spike train only with respect to the common noise ξ(t),
will be an important quantity in our calculations. It still depends on the independent
noise and the signal and is difficult to determine in experiments. More accessible
is the average over all noise sources by repeated trials with a frozen stimulus and
summation over all spike trains. In this way, we obtain (apart from a normalization
factor 1/N ) the population rate

ρ(t) = 〈
y(t)

〉
ξ,η

. (3)

An example for a signal, spike trains, and the resulting population rate is shown in
Fig. 3.

2.2 Information Transmission & Spectral Statistics

In the case of ergodic processes, the total amount of the information about a signal
s(t) transmitted by the output y(t) can be quantified by the mutual information rate
R [3], which is measured in bits per second. For Gaussian signals, a lower bound on
the mutual information rate [4, 31, 32] is given by

Rlb = −
∫ ∞

0
df log2

(
1− Cys(f )

)
. (4)

The coherence function Cys(f ) between the input signal s(t) and the output y(t) is
calculated from second-order spectral measures of input and output and is defined as

Cys(f ) = |Sys(f )|2
Syy(f )Sss(f )

. (5)

Here Syy and Sss are the summed-spike-train and signal power spectra, respectively,
and Sys is the signal–output cross-spectrum. The numerical estimation of spectra fol-
lows standard procedures [33]. In our analytical calculations we will use the Wiener–
Khinchin theorem [34]

Sz1z2(f ) =
∫ ∞

−∞
dτei2πf τKz1z2(τ ) with z1,2 ∈ {xμ, xν, y, s}, (6)

that relates the spectra to the correlation functions in the time domain

Kz1z2(τ ) = lim
t→∞

(〈
z1(t + τ)z2(t)

〉 − 〈
z1(t + τ)

〉〈
z2(t)

〉)
. (7)

The limit of large times in Eq. (7) ensures stationarity. For the summed spike train
Eq. (2), the autocorrelation function with z1 = z2 = y in Eq. (7), can be rewritten as

Kyy(τ) = lim
t→∞

∑
k,l

(〈
xk(t + τ)xl(t)

〉 − 〈
xk(t + τ)

〉〈
xl(t)

〉)
= NKxx(τ) + N(N − 1)Kxμxν (τ ), (8)
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where Kxx(τ) is the spike train autocorrelation function and Kxμxν (τ ) the cross-
correlation function between two spike trains. Analogously, the signal–output cross-
correlation function can be written as

Kys(τ ) = lim
t→∞

〈
y(t + τ)s(t)

〉 = lim
t→∞

∑
k

〈
xk(t + τ)s(t)

〉
= NKxs(τ ), (9)

where Kxs(τ ) is the cross-spectrum between the input signal and a single output
spike train. Taking the Fourier transformation of Eqs. (8) and (9), using the Wiener–
Khinchin theorem Eq. (6), and inserting the results into Eq. (5), yield the coherence
function

Cys(f ) = N |Sxs(f )|2
(Sxx(f ) + (N − 1)Sxμxν (f ))Sss(f )

. (10)

From Eq. (10) we see that for N > 1 the cross-spectrum of two spike trains, Sxμxν ,
appears in the denominator of the coherence function and gains significance as N

becomes larger. Therefore, an essential theoretical problem is to calculate this cross-
spectrum.

As outlined above, the coherence function allows one to estimate the total flow
of information through the neural population. However, because Cys(f ) enters in
a monotonic fashion in Eq. (4), we can also regard the coherence as a frequency-
resolved measure of information transfer. Reduction of the coherence in certain fre-
quency bands can be regarded as a form of information filtering, which needs to be
distinguished from power filtering. Hence, besides the lower bound Rlb, we will also
inspect the frequency dependence of the coherence function.

3 Models

The models that we consider in this paper have the following assumptions in com-
mon:

(1) Poisson statistics of spontaneous activity;
(2) high correlations among neurons due to strong common noise input;
(3) encoding of a sensory signal in the time-dependent population rate.

For simplicity, we consider a linear encoding of a weak time-dependent signal. This
will allow us to use the lower bound on the mutual information rate as an approx-
imation for the total transmitted information. Note that, although already a single
Poisson process can show conventional stochastic resonance [35], with our linear en-
coding paradigm we exclude this possibility. In our models, the signal transmission
in a single neuron is always degraded by noise.

In our theoretical model, we assume that all neurons fire to zeroth-order in com-
plete synchrony and a weak noise input, which is independent for every neuron, leads
to a decorrelation of the output spike trains. For simplicity, we assume that for each
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neuron the independent noise process and the sensory signal are additive. Both, the
sensory signal and the independent noise signals, are modeled by Gaussian processes
with unit variance and zero mean.

The considered models can be regarded as inhomogeneous Poisson processes
[36], which are rate-modulated by a common signal εss(t) and an independent noise
εηη(t). Such processes are examples of a doubly stochastic process [37] or a Cox
process and are a special case of the inhomogeneous Bernoulli process [38]. The sim-
plicity of the considered models will allow us to characterise the information transfer
of weak time-dependent signals analytically. Note that the assumptions (1)–(3) made
above describe, in good approximation, spiking in specific sensory systems, e.g. in
tangential neurons of the fly visual system [20, 39, 40]. The additional modifications
that make up the differences between our two models can be regarded as additional
operations on the spike trains in the form of thinning (or the opposite of it) and the
introduction of an operational time [37, 41].

Before we introduce in detail the two models sketched in Fig. 2, it is worth to note
that, for weak stimuli and weak independent noise, these models possess the same
signal–output cross-spectrum Sxs , the same power spectrum Sxx , and the same time-
dependent output firing rate. Therefore, for N = 1 the coherence function and the
information rate are identical for both models. The models are mainly distinguished
by how independent noise affects the spikes of the output spike trains, which results
in different cross-spectra Sxμxν of two spike trains. This setup allows us to study how
the response of spikes to noise affects information transmission in neural populations,
while keeping all other potential influences on signal transmission unchanged.

3.1 Addition and Deletion Model (AD Model)

In the following, we introduce the model for a population of spiking neurons where
independent noise adds or deletes spikes. First, we discretize the time axis into bins
of width 
t . We generate a spike in the j th time bin in the μth spike train, whenever
the following condition is fulfilled:

ξ(
t · j) < 
t · rμ(
t · j) with (11)

rμ(t) = r0 · (1+ εss(t) + εηημ(t)
)

and r0 = const> 0.

The common noise process ξ is uniformly distributed in [0,1] and uncorrelated in
time. The spikes are assigned the height 1/
t such that the discrete spike train reads

xμ(
t · j ;
t) =
∑

k

1


t
Θ

(

t/2− |
t · j − tμ,k|

)
, (12)

where Θ(z) is the Heaviside function (implementing the indicator function) and the
second argument of xμ indicates the time-discretized version of the spike train. Here
tμ,k is the midpoint of the time bin where the kth spike of the μth spike train was
generated. In the limit 
t → 0 the spike train xμ(t;
t) approximates the sum of
δ-functions xμ(t) given by Eq. (1).
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Fig. 3 Simulations of the population response for the AD model (a–c) and the STS model (d–f). Panels
a and d show the same realization of an input signal. Panels b and e show 5 neurons of a population for
the two models subject to the signal realization from panels a and d and the same noise realizations (not
shown). In the AD model (panel b) independent noise leads to addition and deletion of spikes. In the STS
model (panel e) independent noise leads to shifting of spikes, as indicated by the coloring. Panels c and f
show the population response Eq. (3) to the signal shown in a and d, averaged over 5000 realizations of
the noise processes. The model parameters were r0 = 1 Hz, f� = 0.1 Hz, fu = 1 Hz, εs = εη = 0.2

We can compute the ensemble average of the spike train over the common noise ξ

〈
xμ(t;
t)

〉
ξ

= 1


t

∫ 1

0
dξΘ

(

t · rμ(t) − ξ

)

=

⎧⎪⎨
⎪⎩
0 if rμ(t) < 0,

rμ(t) if 0 ≤ rμ(t) ≤ 1

t

,
1


t
if rμ(t) > 1


t
.

(13)

The average 〈xμ(t)〉ξ is conditioned on specific realizations of the processes s and ημ.
As we show explicitly in Appendix A in Eq. (57), averaging additionally over the
independent noise and the signal, one finds in the limit of 
t → 0

〈
xμ(t)

〉 = r0 +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
. (14)

Throughout the paper, we will consider the limit (ε2s + ε2η) → 0, such that we can
neglect correction terms like the one in the above equation.

In the left column of Fig. 3, we show how a sensory signal is encoded in the
population firing rate ρy(t) of a population of five AD neurons and how the output
spike trains of the neurons are modulated by independent noise.

3.2 Spike-Time-Shifting Model (STS Model)

Next, we introduce the model for a population of spiking neurons where independent
noise shifts the spike times of the output spike trains. To zeroth-order the N neurons
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of the population generate identical spike trains

x0(t) =
∑

k

δ(t − hk), (15)

which we model by a homogeneous Poisson process with mean firing rate r0 and
spike times hk . For the μth neuron, the times hk are transformed into new spike
times tk,m via the transformation

r0 · h =
∫ t

0
dτrμ(τ), (16)

with rμ(t) defined in Eq. (11). For a given spike time hk , we integrate the right hand
side of Eq. (16), until the integral attains the value r0 · hk [36]. The resulting inte-
gration boundary t = tμ,k is then the kth spike time of the μth spike train xμ(t). In
general, due to the different independent noise processes ημ, the output spike trains
xμ(t) will be different for each neuron. Hereby, each spike train is an inhomogeneous
Poisson spike train with a time-dependent firing rate. The procedure described in this
section is equivalent to the simulation of a perfect integrate-and-fire neuron with ex-
ponentially distributed thresholds [36]. The time t obtained after the transformation
of the time axis h in Eq. (16) is also known as operational time [37, 41].

Although we do not model the underlying noise process explicitly, we think of
the homogeneous spike trains in Eq. (15) as a result of a common noise process ξ ,
analogously to the AD model. By the average 〈· · · 〉ξ , we will denote the average over
different realizations of the homogeneous Poisson spike trains in Eq. (15).

For a homogeneous Poisson spike train that is transformed according to Eq. (16)
with rμ(t) > 0, the average over the spike train for a fixed realization of the signal
and the independent noise reads 〈xμ(t)〉ξ = rμ(t) [36]. For a process rμ(t) that is
not bound by zero this is not strictly fulfilled. Hence, ensemble averages over the
spike train will contain correction terms that are proportional to the square root of
the probability that rμ(t) is smaller than zero, which we calculated in Appendix A in
Eq. (52). Consequently, using Eq. (11), we obtain for the averaged spike train

〈
xμ(t)

〉 = 〈
rμ(t)

〉 +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)

= r0 +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
, (17)

which in the limit (ε2s + ε2η) → 0 leads to the same mean firing rate as for the AD
model Eq. (14) in the limit of 
t → 0.

A simulation of five spike trains of the STS population, driven by a common noise
process ξ , a common signal s, and independent noise processes ημ, is shown Fig. 3e.
Note that the modulation in Eq. (16) is very distinct from adding jitter to the single
spike times, as is considered in [42–44], in that the modulation of the spike times
presented here preserves the order of the spikes in each spike train. Other models
that incorporate the deletion of spikes in a Poisson spike train [45] or a combination
of deletion and shifting as in the thinning and shifting model [42, 44], differ from
the models presented here in that the single spike trains of those models are homo-
geneous spike trains with constant rates. However, the models in the present paper
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are designed such that the single spike trains have a prescribed time-dependent firing
rate 〈x(t)〉ξ , which still depends on the realization of the signal s and the individual
noise η. The cross-correlations between spike trains are a consequence of the differ-
ent implementations of the time-dependent firing rate and are not prescribed a priori
as in [42, 44, 45]. Even if the deletion or shifting of spikes in the thinning and shift-
ing model is performed on a rate-modulated mother process, the resulting process
would not be equivalent to the AD model or STS model, in which the addition and
deletion of spikes and the shifting of spike times are not independent of the signal
realization. In particular, the thinning and shifting model of a population of daughter
processes for which the stimulus is solely encoded in the firing rate of the mother
process cannot exhibit suprathreshold stochastic resonance.

3.3 Modeling the Common Signal and the Independent Noise Processes

The sensory signal s and the independent noise sources ημ are modeled by Gaussian
stochastic processes with zero mean and unit variance. For simplicity, we choose for
both, the signal and the independent noise, a flat power spectrum,

Sss(f ) = Sηη(f ) =
{

1
2(fu−f�)

if |f | ∈ [f�, fu],
0 else,

(18)

where f� and fu are lower and upper cutoff frequencies, respectively. Throughout
the paper, we will consider a finite upper cutoff frequency and a non-vanishing lower
cutoff frequency. As we will show in our analytical calculation below, the cross-
spectrum for two spike trains of the STS model is finite only for f� > 0. A realization
of the common signal s is shown in Fig. 3a and 3d.

3.4 Simulations

In contrast to the AD model, the numerical measurement of the statistics of the STS
model requires a careful choice of simulation parameters. Depending on the shape
of the cross-spectrum between different spike trains for the STS model, one has to
choose a large simulation time to ensure stationarity and a very small time discretiza-
tion to be able to resolve correlations between spike trains on small time scales. Fur-
thermore, the coherence function systematically depends on the number of realiza-
tions used for the numerical averaging of the spectral statistics. The values of the
time discretization 
t , the total simulation time T , and the number of realizations
Nav used for the numerical averaging of the spectral statistics are reported in Table 1.

4 Derivation of Spectral Measures

4.1 Input–Output Cross-spectrum

In this section, we calculate the spectral measures that are necessary to quantify in-
formation transmission properties of the populations. We start by considering the
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Table 1 Parameters used in
numerical simulations Figure 
t in seconds T in seconds Nav

Fig. 3 1 · 10−1 1 · 103 5 · 103
Fig. 4 5 · 10−6 1 · 102 5 · 102
Fig. 5 1 · 10−4 1 · 102 5 · 104
Fig. 6a 5 · 10−5 3 · 101 1 · 105
Fig. 6b 3 · 10−5 2 · 102 1 · 104
Fig. 6c 1 · 10−4 3 · 102 1 · 104
Fig. 6d 3 · 10−5 1 · 103 2 · 103
Fig. 7a STS 5 · 10−5 2 · 102 2 · 104
Fig. 7a AD 5 · 10−5 3 · 101 1 · 105
Fig. 7b STS 5 · 10−5 1 · 103 2 · 103
Fig. 7b AD 1 · 10−4 3 · 102 1 · 104
Fig. 8 2 · 10−4 1 · 103 2 · 104
Fig. 9 2 · 10−4 1 · 102 –

input–output cross-correlation function

Kxs(τ ) = 〈
xμ(t + τ)s(t)

〉
ξ,ημ,s

= 〈〈
xμ(t + τ)

〉
ξ
s(t)

〉
ημ,s

= 〈
rμ(t + τ)s(t)

〉
ημ,s

+O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
.

The correction terms can be derived in complete analogy to the calculation in Ap-
pendix A. The first term in the above equation can be calculated using Eq. (11) and
the fact that s and ημ are Gaussian processes with unit variance and zero mean, which
leads to

Kxs(τ ) = r0εsKss(τ ) +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
.

In the limit (ε2s + ε2η) → 0, keeping only the first-order term in εs , the correction term
in the above equation can be neglected. Then, after a Fourier transformation, we find
the input–output cross-spectrum

Sxs(f ) ≈ r0εsSss(f ), (19)

which is equal for both models.

4.2 Cross-spectrum for Two Spike Trains for the AD Model

The cross-correlation function between two spike trains is defined as

Kxμxν (τ ) = 〈
xμ(t + τ)xν(t)

〉 − 〈
xμ(t + τ)

〉〈
xν(t)

〉
, (20)

where xμ(t) and xν(t) are different spike trains of a population with μ �= ν. The
ensemble averages in the above equation are taken over four stochastic processes:
The common noise ξ , the common signal s, and the independent noise processes ημ
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and ην . Employing Eq. (14), we can write the second term in Eq. (20) as〈
xμ(t + τ)

〉〈
xν(t)

〉 = r20 +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
.

The first term in Eq. (20) can be interpreted as a probability density [4]. Choosing a
discrete variant of the spike train x(t;
t) as introduced in Eq. (12), this leads to〈

xμ(t + τ ;
t)xν(t;
t)
〉

= 1

(
t)2
Pr

(
spike in ST μ in [t + τ − 
t/2, t + τ + 
t/2] and

spike in ST ν in [t − 
t/2, t + 
t/2])
(Pr stands for probability and ST stands for spike train). As we generate the spike
trains in discrete time steps, we first consider the cross-correlation function between
two spike trains with a finite time discretization τ = j ·
t with j = 0,±1, . . . . Split-
ting the expression in the above equation into two parts, one for τ = 0 and one for
|τ | > 
t/2, we obtain〈

xμ(t + τ ;
t)xν(t;
t)
〉

= 1

(
t)2
Θ

(

t/2− |τ |) · Psyn + 1

(
t)2
Θ

(|τ | − 
t/2
) · Pasyn(τ ), (21)

with

Psyn = Pr
(
spike in ST μ in [t − 
t/2, t + 
t/2] and

spike in ST ν in [t − 
t/2, t + 
t/2])
and

Pasyn(τ ) = Pr
(
spike in ST μ in [t + τ − 
t/2, t + τ + 
t/2] and

spike in ST ν in [t − 
t/2, t + 
t/2]||τ | > 
t/2
)
.

Note that, due to stationarity of the stochastic signals and spike trains, the probabili-
ties in Eq. (21) do not depend on t . As described in Sect. 3.1, the values of realizations
of the process ξ at different times are independent of each other, which allows us to
average both spike trains separately leading to

1

(
t)2
Pasyn(τ ) = 〈〈

xμ(t + τ ;
t)
〉
ξ

〈
xν(t;
t)

〉
ξ

〉
s,ημ,ην

= 〈
rμ(t + τ)rν(t)

〉
s,ημ,ην

+O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
.

Using Eq. (11) in the above equation and employing that ημ(t) and ην(t) are inde-
pendent Gaussian processes with zero mean we obtain in the limit 
t → 0

1

(
t)2
Pasyn(τ ) = r20 · (1+ ε2s Kss(τ )

) +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
. (22)

From the definition of the AD model in Eq. (11), we can infer that the probability
of observing a synchronous spike in two spike trains equals the probability that the
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thresholds 
t · rμ(
t ·j) and 
t · rν(
t ·j) are both higher than the realization of the
common noise variable ξ(
t · j). Then, dropping the time arguments, the probability
of synchronous spiking can be expressed as an average over two theta functions

Psyn = 〈
Θ(
t · rμ − ξ)Θ(
t · rν − ξ)

〉
ξ,s,ημ,ην

. (23)

As is shown in Eq. (59) in Appendix B, we can write the above expression for weak
sensory signals as

Psyn = 
t · r0 ·
(
1− εη√

π

)
+O

(

t

(
ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
+O

(√

t

(
ε2s + ε2η

)1/4
e−(1−r0
t)2/(4r20
t2(ε2s +ε2η))

)
. (24)

Inserting Eqs. (22) and (24) in Eq. (21), and taking the limit 
t → 0, we obtain

〈
xμ(t + τ)xν(t)

〉 = r0

(
1− εη√

π

)
δ(τ ) + r20 + r20ε2s Kss(τ )

+O
((
1+ δ(τ )

)(
ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
,

and for the cross-correlation function between two spike trains Eq. (20) we find

Kxμxν (τ ) = r0

(
1− εη√

π

)
δ(τ ) + r20ε2s Kss(τ )

+O
((
1+ δ(τ )

)(
ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
.

In the limit (ε2s + ε2η) → 0, keeping terms up to second-order in εs and εη , we can ne-
glect the correction terms in the above equation and find the following cross-spectrum
between two spike trains:

Sxμxν (f ) ≈ r0 ·
(
1− εη√

π

)
+ r20ε

2
s Sss(f ). (25)

The above equation shows that by adding and deleting spikes the weak independent
noise sources lead to a decorrelation of the two spike trains with a uniform decrease
of power at all frequencies proportional to εη . The analytical result for the cross-
spectrum of two spike trains Eq. (25) for the AD model is compared with simulations
in Fig. 4. Note that because the cross-correlation function between two spike trains is
symmetric with respect to τ , the cross-spectrum is real-valued for all frequencies.

4.3 Cross-spectrum for Two Spike Trains for the STS Model

In this section, we calculate the cross-spectrum Sxμxν between spike trains μ and ν

for the STS model. We first consider the autocorrelation function

K0
xx

(
t ′′ − t ′

) = lim
t ′′,t ′→∞

(〈
x0

(
t ′′

)
x0

(
t ′
)〉

ξ
− 〈

x0
(
t ′′

)〉
ξ

〈
x0

(
t ′
)〉

ξ

)
of a homogeneous Poisson process with constant rate r0, where we use a slightly
different notation than in Eq. (7). The last term in the above equation equals r20 . The
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Fig. 4 a AD model: Simulation results of the spike train power spectrum (green) and the real and imag-
inary part of the cross-spectrum of two spike trains (red and yellow, respectively) are compared with the
analytical results Eq. (39) and Eq. (25) (black lines). b STS model: Simulation results of the spike train
power spectrum (green) and the real and imaginary parts of the cross-spectrum of two spike trains (red
and yellow, respectively) are compared with the analytical results Eq. (39) and Eq. (38) (black lines). The
model parameters were r0 = 1 Hz, f� = 0.3 Hz, fu = 100 Hz, εs = 0.5, εη = 0.2

spike trains inside the first average can be expressed as derivatives of the spike count
n0(t) as in Eq. (1), such that

K0
xx

(
t ′′ − t ′

) = lim
t ′′,t ′→∞

d

dt̄ ′′
d

dt̄ ′
〈
n0

(
t̄ ′′

)
n0

(
t̄ ′
)〉

ξ

∣∣∣∣
t̄ ′′=t ′′,t̄ ′=t ′

− r20 . (26)

The power spectrum of a homogeneous Poisson process is constant S0
xx = r0 and

implies for the autocorrelation function of a homogeneous Poisson process

K0
xx

(
t ′′ − t ′

) = r0δ
(
t ′′ − t ′

)
. (27)

Combining Eq. (27) with Eq. (26), we obtain

lim
t ′′,t ′→∞

d

dt̄ ′′
d

dt̄ ′
〈
n0

(
t̄ ′′

)
n0

(
t̄ ′
)〉

ξ

∣∣∣∣
t̄ ′′=t ′′,t̄ ′=t ′

= r0δ
(
t ′′ − t ′

) + r20 . (28)

Now we calculate the cross-correlation function between two spike trains

Kxμxν

(
t ′′ − t ′

) = lim
t ′′,t ′→∞

(〈
xμ

(
t ′′

)
xν

(
t ′
)〉 − 〈

xμ

(
t ′′

)〉〈
xν

(
t ′
)〉)

(29)

of the full process, subject to an intrinsic noise ξ , independent noise processes ημ

and ην , and an input signal s. Employing Eq. (17), the last term in the above equation
can be written as〈

xμ

(
t ′′

)〉〈
xν

(
t ′
)〉 = r20 +O

((
ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
. (30)

The first term of the cross-correlation function can be recast as before into

lim
t ′′,t ′→∞

〈
xμ

(
t ′′

)
xν

(
t ′
)〉 = lim

t ′′,t ′→∞
d

dt̄ ′′
d

dt̄ ′
〈
nμ

(
t̄ ′′

)
nν

(
t̄ ′
)〉

ημ,ην,s,ξ

∣∣∣∣
t̄ ′′=t ′′,t̄ ′=t ′

. (31)
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The rate-modulated Poisson process generated by the STS model is related to a ho-
mogeneous Poisson process with constant rate by the time transformation Eq. (16).
We use this relation to link the inhomogeneous to the homogeneous spike count via

nμ(t) = n0
(
γμ(t)

)
with γμ(t) =

∫ t

0
dt ′

(
1+ εss

(
t ′
) + εηημ

(
t ′
))

. (32)

Using the above relation and Eq. (28), we find

d

dt̄ ′′
d

dt̄ ′
〈
nμ

(
t̄ ′′

)
nν

(
t̄ ′
)〉

ξ

∣∣∣∣
t̄ ′′=t ′′,t̄ ′=t ′

= d

dt̄ ′′
d

dt̄ ′
〈
nμ

(
t̄ ′′

)
nν

(
t̄ ′
)〉

ξ

∣∣∣∣
t̄ ′′=γμ(t ′′),t̄ ′=γν(t ′)

dγμ(t ′′)
dt ′′

dγν(t
′)

dt ′

= (
r0δ

(
γμ

(
t ′′

) − γν

(
t ′
)) + r20

)dγμ(t ′′)
dt ′′

dγν(t
′)

dt ′
.

Note that the above relation is valid only if rμ is strictly larger than zero. Hence, we
obtain for Eq. (31)

lim
t ′′,t ′→∞

〈
xμ

(
t ′′

)
xν

(
t ′
)〉

= lim
t ′′,t ′→∞

〈(
r0δ

(
γμ

(
t ′′

) − γν

(
t ′
)) + r20

)
× (

1+ εss
(
t ′′

) + εηημ

(
t ′′

))(
1+ εss

(
t ′
) + εηην

(
t ′
))〉

ημ,ην,s

+O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
, (33)

where the correction term is proportional to the square root of the probability that
rμ(t) < 0 computed in Eq. (52). Using 〈s〉 = 〈ημ〉 = 0, employing the relation
Eq. (62) derived in Appendix C, and substituting the variables t = t ′ and t + τ = t ′′,
we transform Eq. (33) into

lim
t ′′,t ′→∞

〈
xμ

(
t ′′

)
xν

(
t ′
)〉

= lim
t ′′,t ′→∞

r0
〈〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))〉

ημ,ην

(
1+ εss

(
t ′′

))(
1+ εss

(
t ′
))〉

s

+ ε2s r
2
0Kss

(
t ′′ − t ′

) + r20 +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
. (34)

Using the definition of γμ(t) Eq. (32), we can write the average over the delta function
in Eq. (34) as〈

δ
(
γμ(t + τ) − γν(t)

)〉
ημην

= 〈
δ
(
τ + εs s̄(t, τ ) + g(t, τ )

)〉
g

with

g(t, τ ) =
∫ t+τ

0
dt1εηημ(t1) +

∫ t

0
dt2εηην(t2) and

s̄(t, τ ) =
∫ t+τ

t

dt3s(t3).
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The new stochastic variable g is a sum of two integrals over Gaussian variables and
therefore also a Gaussian variable. The average of the delta function over realizations
of g is then the probability that g attains the value τ + εs s̄(t, τ ), and is given by

〈
δ
(
τ + εs s̄(t, τ ) + g(t, τ )

)〉
g

= 1√
2πσ 2

g (t, τ )
exp

[
− (τ + εs s̄(t, τ ))2

2σ 2
g (t, τ )

]
, (35)

where σ 2
g (t, τ ) is the variance of g(t, τ ). In Appendix D, Eq. (64), we show that

σ̂ 2
g = lim

t→∞σ 2
g (t, τ ) = ε2η

π2fuf�

, (36)

for our specific choice of a flat noise power spectrum, introduced in Sect. 3.3. Em-
ploying Eqs. (35), (34), and (30) in Eq. (29) and expanding up to second-order in εs ,
we obtain for the cross-correlation function for two spike trains

Kxμxν (τ ) = r0√
2πσ̂ 2

g

exp

[
− τ 2

2σ̂ 2
g

]
+ ε2s r

2
0Kss(τ )

+ r0√
2πσ̂ 2

g

exp

[
− τ 2

2σ̂ 2
g

](
ε2s

2σ̂ 2
g

(
τ 2

σ̂ 2
g

− 1

)∫ τ

0
dt ′Kss

(
t ′
)(

τ − t ′
)

+ ε2s Kss(τ ) − 2ε2s τ

σ̂ 2
g

∫ τ

0
dt ′′Kss

(
t ′′

))

+O
(
ε4s

) +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
. (37)

We note that the linear term in εs vanishes due to the zero mean of the Gaussian
signal 〈s〉 = 0. Equivalently, all higher-order odd terms in εs in Eq. (37) vanish due
to the Gaussian nature of the signal (except for the correction term due to realizations
of signal and individual noise that lead to rμ(t) < 0). From Eqs. (36) and (37) it can
be seen that for a vanishing lower cutoff frequency of the independent noise spectrum
(f� → 0), the variance σ̂ 2

g diverges and as a consequence of this the cross-correlation
between the two spike trains vanishes—only the part that is due to the signal (second
term in Eq. (37)) still contributes.

After Fourier transforming Eq. (37) (neglecting the correction terms), we find the
cross-spectrum for two spike trains in the STS population,

Sxμxν (f ) ≈ S0
xμxν

(f ) + r20ε
2
s Sss(f ) + ε2s I (f ) with (38)

S0
xμxν

(f ) = r0 · exp[−2f 2π2σ̂ 2
g

]
, σ̂ 2

g = ε2η

π2fuf�

, and

I (f ) = f 2
∫ ∞

−∞
df ′ Sss(f

′)
f ′2

(
S0

xμxν

(
f − f ′) − S0

xμxν
(f )

)
.

In Fig. 4, the analytical result for the cross-spectrum for two spike trains of the
STS model Eq. (38) is compared with simulations. As for the AD model the cross-
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spectrum of two spike trains is real valued. In contrast to the AD model Eq. (25),
the cross-spectrum of two spike trains for the STS model Eq. (38) exhibits a strong
decrease at high frequencies, while it approaches the spike train power spectrum
Eq. (39) at low frequencies. Note that, although we derived Sxμxν only up to second-
order in εs , the theory fits the simulation results very well even for εs = 0.5.

4.4 Single Spike Train Power Spectrum

In Appendix E in Eqs. (67) and (72), we derive the spike train power spectrum which
in the limit of 
t → 0 and (ε2s + ε2η) → 0 (keeping terms up to second-order in εs

and εη) is equal for the AD and STS model

Sxx(f ) ≈ r0 + r20ε
2
s Sss(f ) + r20ε

2
ηSηη(f ). (39)

For εs = 0 and εη = 0, the power spectrum is flat, as we would expect for homoge-
neous Poisson spike trains.

5 Information Transmission in Neural Populations

Here, we use the spectral measures derived in the previous section to study informa-
tion transmission in two neural populations. The populations are constructed in such a
way that they both encode the sensory signal in the time-dependent population firing
rate, and both exhibit identical single-spike-train power spectra and identical signal–
output cross-spectra. The main difference between the populations lies in the effect
that independent noise has on the spikes of the output. In one population independent
noise adds and deletes spikes (AD model), while in the other independent noise leads
to spike-time-shifting (STS model). We quantify the total of the transmitted infor-
mation about the sensory signal via the lower bound on the mutual information rate
Eq. (4),

Rlb = −
∫ ∞

0
df log2

(
1− Cys(f )

)
,

and study information filtering by means of the coherence function Eq. (10),

Cys(f ) = N |Sxs(f )|2
(Sxx(f ) + (N − 1)Sxμxν (f ))Sss(f )

.

The input–output cross-spectrum Eq. (19) and the single spike train power spectrum
Eq. (39) read

Sxs(f ) ≈ r0εsSss(f ),

Sxx(f ) ≈ r0 + r20ε
2
s Sss(f ) + r20ε

2
ηSηη(f ),

while the different cross-spectra between two spike trains for the two different models
are given by Eq. (25), and Eq. (38):

AD model: Sxμxν (f ) ≈ r0 ·
(
1− εη√

π

)
+ r20ε2s Sss(f ),
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STS model: Sxμxν (f ) ≈ S0
xμxν

(f ) + r20ε2s Sss(f ) + ε2s I (f ) with

S0
xμxν

(f ) = r0 · exp[−2f 2π2σ̂ 2
g

]
, σ̂ 2

g = ε2η

π2fuf�

, and

I (f ) = f 2
∫ ∞

−∞
df ′ Sss(f

′)
f ′2

(
S0

xμxν

(
f − f ′) − S0

xμxν
(f )

)
.

In all expression above, we considered the limits 
t → 0 and (ε2s + ε2η) � 1. If the
sensory signal is weak compared to the noise processes driving the neurons, as is
assumed throughout this paper, the coherence is much smaller than one. This allows
us to employ an approximation for the lower bound on the mutual information rate,

Rlb ≈ 1

ln(2)

∫ ∞

0
df Cys(f ), (40)

in the analytical calculations to obtain simpler expressions. In the subsequent sec-
tions, we will study information transmission in populations of AD neurons and STS
neurons.

5.1 AD Population

Inserting the single spike train power spectrum Eq. (39), the input–output cross-
spectrum Eq. (19), and the cross-spectrum for two spike trains Eq. (25) into Eq. (10),
we find for the coherence function of the AD population

Cys(f ) ≈ r0ε
2
s Sss(f )

1+ r0ε2s Sss(f ) + (r0/N)ε2ηSss(f ) − ((N − 1)/(N
√

π))εη

. (41)

Here, we used that signal and noise have equal power-spectra Sss(f ) = Sηη(f ), as
described in Sect. 3.3. The coherence function for the AD model is plotted and com-
pared with numerical simulations in Fig. 5. The only dependence of the coherence
function Eq. (41) on frequency comes from the signal power spectrum Sss(f ). There-
fore, for a flat signal power spectrum the coherence function of the AD model is also
flat for frequencies f� ≤ |f | ≤ fu. Consequently, a population of AD neurons can be
referred to as a broadband filter of information, because the sum of the output spike
trains contains equal amounts of information about different frequency bands of the
signal.

Inserting the coherence Eq. (41) into Eq. (40) and employing Eq. (18), we obtain
for the lower bound on the mutual information rate of the AD population

Rlb ≈ r0ε
2
s

2 ln(2)
·
(
1+ r0

ε2s + ε2η(1/N)

2(fu − f�)
− (N − 1)

N
√

π
εη

)−1

. (42)

The approximate expression Eq. (42) is compared with simulations for two sets of
parameters in Fig. 6.
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Fig. 5 Simulation results for the spectral coherence function for the AD model (indigo) and the STS
model (orange) for N = 5 and a comparison with analytical results Eq. (41) and Eq. (46) (black lines).
The AD population exhibits a flat coherence function and corresponds to a broadband filter of information.
The coherence function of the STS population is monotonously increasing with the frequency and leads
to a high-pass filter of information. The model parameters were r0 = 10 Hz, f� = 0.3 Hz, fu = 50 Hz,
εs = 0.3, εη = 0.1, and N = 5

For N = 1, the last term in the denominator of Eq. (42) vanishes and the lower
bound of the mutual information rate can be simplified as

Rlb|N=1 ≈ r0ε
2
s

2 ln(2)
·
(
1+ r0

ε2s + ε2η

2(fu − f�)

)−1

. (43)

From the above equation, it becomes evident that in a single neuron an increase of
the independent noise level can only decrease the lower bound on the mutual infor-
mation rate. For N > 1, additional independent noise (εη > 0) has a positive effect
on information transmission and SSR is observed. The denominator of Eq. (42) is a
quadratic function in εη and exhibits a minimum at a finite level of independent noise,
resulting in a maximum of the lower bound on the mutual information rate. To study
the behavior of Rlb for weak independent noise, we expand Eq. (42) with respect to
εη and obtain

Rlb ≈ R0
lb + R0

lb

1+ r0ε2s /(2(fu − f�))

(
N − 1√

πN

)
εη

+ R0
lb

1+ r0ε2s /(2(fu − f�))

(
((N − 1)/(

√
πN))2

1+ r0ε2s /(2(fu − f�))
− r0

2N(fu − f�)

)
ε2η

(44)

with

R0
lb = r0ε

2
s

2 ln(2)

(
1+ r0

ε2s

2(fu − f�)

)−1

. (45)

The linear term in Eq. (44) is always positive. Hence, the population of AD neurons
always profits fromweak independent noise regardless of the specific choice of model
parameters.
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Fig. 6 The lower bound on the mutual information rate Rlb for the AD population (a, c) and the STS
population (b, d) as a function of the independent noise level εη . The analytical results Eq. (42) and
Eq. (47) (black lines) are compared with numerical simulations (circles) of the lower bound on the mutual
information rate for various N for a weak sensory signal with εs = 0.1 (panels a, b) and a stronger sensory
signal with εs = 0.4 (panels c, d). For N = 1 the lower bound on the mutual information rate is identical
for both models and is degraded by independent noise. For N > 1 both models exhibit SSR, where a non-
vanishing level of independent noise increases the lower bound on the mutual information rate. Hereby, the
STS population profits significantly more from independent noise than the AD population. For N = 10 in
panel d the theory Eq. (47) fails due to the linearization of the logarithm in Eq. (40). Here we plot Eq. (4),
where we inserted the analytically calculated coherence function Eq. (46) and integrated numerically. We
note that our analytical theory appropriately describes the increase of the mutual information for weak
independent noise levels. The firing rate was r0 = 65 Hz and the signal and noise cutoff frequencies were
f� = 3 · 10−2 Hz and fu = 100 Hz

5.2 STS Population

Inserting the single spike train power spectrum Eq. (39), the input–output cross-
spectrum Eq. (19), and the cross-spectrum for two spike trains Eq. (38) into Eq. (10),
we find for the coherence function of the STS population

Cys(f ) ≈ Nr0ε
2
s Sss(f )

1+ r0ε2ηSss(f ) + Nr0ε2s Sss(f ) + ((N − 1)/r0)(S0
xμxν

(f ) + ε2s I (f ))
,

(46)
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where S0
xμxν

(f ) and I (f ) are defined in Eq. (38). As for the AD model discussed
above, we used that signal and noise have equal power-spectra Sss(f ) = Sηη(f ).
Due to the frequency dependence of the cross-spectrum Sxμxν , the coherence function
also depends strongly on the frequency and exhibits a monotone increase as shown
in Fig. 5. Thus, the population of STS neurons can be regarded as a high-pass filter
of information, similar to that observed for heterogeneous short-term plasticity [16]
or coding by synchrony [13, 15].

In order to understand the high-pass filter effect in the coherence function as well
as the stochastic resonance effect discussed below, we note that the cross-correlations
between different spike trains contribute largely to the sum’s output variability, in
particular in the absence of intrinsic noise. This output variability is quantified by the
output’s power spectrum and appears in the denominator of the coherence function.
With individual intrinsic noise, spike times of different neurons are slightly shifted,
drastically reducing cross-correlations at high frequencies and thus the amount of
the signal-unrelated variability in these frequency bands. Therefore, the coherence
function increases with frequency.

Inserting Eq. (46) into Eq. (40) and inserting the noise and signal power spectrum
Eq. (18), we find for the lower bound on the mutual information rate of the STS
population

Rlb ≈ Nr0ε
2
s

2 ln(2)(fu − f�)

×
∫ fu

f�

df

(
1+ r0

(ε2η + Nε2s )

2(fu − f�)
+ N − 1

r0

(
S0

xμxν
(f ) + ε2s I (f )

))−1

. (47)

The lower bound on the mutual information rate for the STS population is compared
with simulations for two sets of parameters in Fig. 6. We observe that for the given
parameters the STS model shows a large SSR effect, while the AD model profits only
weakly from additional noise.

For N = 1, the frequency dependent term in the integrand of Eq. (47) vanishes and
the lower bound on the mutual information rate transforms into

Rlb|N=1 ≈ r0ε
2
s

2 ln(2)
·
(
1+ r0

ε2s + ε2η

2(fu − f�)

)−1

,

which is equal to Eq. (43) for the AD model. We compare the lower bound on the
mutual information rate for N = 1 for the two models numerically in Fig. 7 for dif-
ferent signal strengths and independent noise levels. For sufficiently low levels of
independent noise, there is no difference in the amount of transmitted information
for the AD and the STS model on the level of a single neuron. By construction, from
the observation of one single spike train it is impossible to distinguish between the
two models.

For N > 1, additional noise can have a positive effect on information transmission,
as illustrated in Fig. 6. Increasing εη leads to a decrease of S0

xμxν
in the denomina-

tor of the integral Eq. (47), as already discussed in the beginning of this section in
the context of the high-pass coherence function. However, an increase of εη also in-
creases the second term in the denominator of Eq. (47), which is proportional to ε2η.
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Fig. 7 Comparison of the lower bound on the mutual information rate between the AD model (indigo)
and the STS model (orange) for N = 1 for a weak signal with εs = 0.1 (panel a) and a stronger signal with
εs = 0.4 (panel b). The analytical prediction Eq. (43) (black line) is in good agreement with numerical
simulations (colored points). As predicted by our theory, a single neuron transmits the same amount of
information in both models. For strong independent noise and a strong sensory signal we observe a slight
deviation of the theory from simulation results, as well as slight differences between the two models. These
differences are due to nonlinear effects of the independent noise and signal on the time-dependent firing
rate. Model and simulation parameters were as in Fig. 6

Therefore, whether SSR is observed depends on the specific parameter values cho-
sen. As for the AD model, we expand the lower bound on the mutual information rate
Eq. (47) with respect to εη and obtain

Rlb ≈ R0
lb + R0

lb

(
(4/3)((N − 1)/N)((f 3

u − f 3
� )/(fuf�))(1+ ε2s ) − r0/N

2(fu − f�) + r0ε2s

)
ε2η,

(48)

with R0
lb defined in Eq. (45). The above expansion illustrates that, when the indepen-

dent noise vanishes, the lower bound on the mutual information rate is identical for
the two models for arbitrary N . The second-order term in Eq. (48) can attain both
negative and positive values depending on the choice of the model parameters. The
condition that the second-order term becomes negative and that the lower bound on
the mutual information rate at εη = 0 is a decreasing function of εη reads

r0

N − 1
>

4

3

f 3
u − f 3

�

fuf�

(
1+ ε2s

)
.

If the above condition is fulfilled, the weak individual noise does not improve the
information transmission of a sensory signal and no SSR is observed. Two examples
are shown in Fig. 8. In contrast to the AD model, where SSR is always observed for
N > 1, the occurrence of SSR in the STS model depends on the specific choice of the
model parameters.

Using Eq. (44) and Eq. (48), we can find for εη > 0 and N > 1 a noise strength

ε̄η = √
π

(
2π

3fuf�

(f 3
u − f 3

� )

(fu − f�)
− N − 1

N(1+ ε2s )

)−1

,
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Fig. 8 The presence of SSR in the STS population is parameter dependent, in contrast to the AD popula-
tion where SSR is always observed for N > 1. a The lower bound on the mutual information rate for the
STS population is plotted for various population sizes as a function of the individual noise level εη . SSR is
observed for N ≥ 3 but not for N = 2. The model parameters were r0 = 20 Hz, f� = 0.2 Hz, fu = 1.5 Hz,
and εs = 0.04. b The lower bound on the mutual information rate for the STS population is plotted in units
of bits per spike for various mean firing rates r0. SSR is observed for r0 ≤ 20 Hz but not for r0 ≥ 35 Hz.
The model parameters were f� = 0.2 Hz, fu = 1.5 Hz, N = 3, and εs = 0.04

for which the lower bound on the mutual information rate is equal for both models.
From the above equation we can see that whether the STS population or the AD pop-
ulation transmits more information for a given value of independent noise is mainly
determined by the noise and signal cutoff frequencies fu and f�.

Finally, let us illustrate in Fig. 9 the stochastic resonance effect when it is most
pronounced, namely, in the STS model for a large number of neurons (N = 1000)
and a high cutoff frequency (except for N , all parameters as in Fig. 6d). In this situa-
tion, we consider the low-pass filtered summed output of the population for different
levels of the intrinsic noise. Without intrinsic noise (Fig. 9a), the output, i.e. the sum
of N perfectly synchronized spike trains, does not resemble the input signal very
much. It is important to note that according to Eq. (19) and Eq. (9) an average over
many such runs would yield a time series that tracks the input signal closely. How-
ever, single runs (red, black, green) in the absence of the intrinsic noise are strongly
unreliable. The right amount of intrinsic noise (used in Fig. 9b) desynchronizes the
N spike trains, reduces cross-correlations at high frequencies, and thus reduces out-
put variability due to the common noise. Consequently, different realizations of the
process for a frozen input signal look more similar and track the input signal reli-
ably (cf. Fig. 9b). However, if we increase intrinsic noise to much higher levels, as in
Fig. 9c, this noise itself starts to contribute significantly to the output variability and
the reliability of signal transmission is diminished again.

6 Summary and Conclusions

In this paper, we investigated how the effect of noise on the output spikes influences
information transmission properties of Poisson neurons. In particular, we considered
two populations with strong common input, where in one case weak independent
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Fig. 9 We illustrate the emergence of SSR in the STS model for the same parameters as in Fig. 6d.
a A fixed realization of the signal (blue) and three realizations (different common noise realizations) of the
output of the STS population for N = 1000 and εη = 0 (black, green, and red). For better visualization the
output is convoluted with a Gaussian filter and all outputs and the signal are rescaled to unit variance and
zero mean over the time window shown. For vanishing independent noise, the individual spike trains of
the population are identical for a fixed realization of the signal and the common noise. In this case signal
transmission is not improved by the large population size. b Same as in a but for εη = 0.5 (close to the
point of stochastic resonance). The individual noise leads to shifting of spikes, such that the convoluted
summed output is smoothed. Note that the three realizations of the output are all close to the input signal
as well as to each other, indicating a reliable signal transmission. c Same as in a but for εη = 2 (far beyond
the point of stochastic resonance). Note that our average over a comparatively short time window implies
the suppression of long-term variability (corresponding to leaving out low-frequency components of the
coherence function)

noise added and deleted spikes, while in the other it shifted spikes. In the limit of
a weak sensory signal, we analytically derived the spectral statistics of both mod-
els and studied information filtering and the emergence of suprathreshold stochastic
resonance (SSR). We showed that, even when single neurons of the AD model and
STS model cannot be distinguished by their response statistics, the different effects
of independent noise on spikes lead to qualitative and quantitative differences in in-
formation transmission on a population level.

In the AD model, the presence of the SSR effect is robust—whenever we consider
a population with N > 1, a small amount of intrinsic noise has a beneficial effect on
the signal transmission. In the STS model, the information transmission properties of
the population are determined by the cutoff frequencies of the noise. Depending on
the specific parameters, one finds a pronounced SSR in some regimes (exceeding the
effect in the AD model by far) or no SSR effect in other regimes. Furthermore, we
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observe a high-pass filtering of information in the STS model that is absent in the AD
model.

There are a number of studies that explored theoretically the case of weakly cor-
related neurons and employed perturbation methods to relate output spike train cor-
relations to input correlations [46–52]. In this paper, we have considered the opposite
limit of strongly correlated spike trains that are only weakly decorrelated due to in-
trinsic noise sources. In this limit, we were not only able to derive comparatively
simple expressions for the cross-correlation between two spike trains but were also
able to explore analytically the consequences of these correlations for the transmis-
sion of time-dependent signals.

The question arises how the specific choice of the output, which is taken to be the
sum of individual spike trains, affects the findings discussed above. The most general
approach would be to study the multivariate mutual information between the input
signal and the population of output spike trains. This quantity is hard to compute nu-
merically and analytically, and its exact calculation is beyond the scope of this study.
However, the mutual information between the input signal and the sum of outputs is a
lower bound for the full multivariate mutual information, because the summation can
only degrade the information content contained in the entire set of the output spike
trains. Additionally, for vanishing individual noise, εη = 0, all output spike trains
are identical and the information content of the population does not differ from the
information content of the sum of identical spike trains. Therefore, if the mutual in-
formation between the input signal and the summed output increases with individual
noise, i.e. exhibits suprathreshold stochastic resonance, the full multivariate mutual
information increases as well.

The mutual information between the input signal and the summed output has been
estimated here by its lower bound Rlb. In our setting with a weak signal that is en-
coded in the firing rate of the Poisson process, we expect that this bound is rather
tight. In fact, for a single inhomogeneous Poisson process, the mutual information
and its lower bound coincide in leading-order of the signal amplitude [53].

In this study, we inspected two simple and abstract models for the effect of a
weak noise on neural spikes and its consequences on signal transmission by neural
populations. We would like to emphasize that the pure limits of an AD model or an
STS model approximate the behavior of biophysical neuron models. On one hand, it
is plausible that in an excitable neuron model, in which the crossing of a threshold
may be aided or prevented by a weak driving, addition and deletion of spikes as in
our AD model can be observed. Stochastic oscillators, on the other hand, display a
shifting of spike times due to a weak driving, as described by the phase response
curve [54]. In between these limits, we expect a combination of both, addition and
deletion as well as shifting of spikes. Indeed, such a combination has been observed
experimentally [55]. Hence, a generalization of our framework to a Poisson process
that includes both effects and allows one to tune gradually between the pure AD and
STS models inspected in this paper would be certainly worth additional efforts in a
future study.
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Appendix A: Mean Firing Rate of the AD and STS Model

For the AD model the average of the spike train over the intrinsic noise is given by
Eq. (13) as

〈
xμ(t;
t)

〉
ξ

= 1


t

∫ 1

0
dξΘ

(

t · rμ(t) − ξ

) =

⎧⎪⎨
⎪⎩
0 if rμ(t) < 0,

rμ(t) if 0 ≤ rμ(t) ≤ 1

t

,
1


t
if rμ(t) > 1


t
.

The average of the spike train over all stochastic processes can now be written as〈
xμ(t;
t)

〉 = 〈
rμ(t)

〉 − 〈
rμ(t)Θ

(−rμ(t)
)〉

−
〈(

rμ(t) − 1


t

)
Θ

(
rμ(t) − 1


t

)〉
. (49)

With rμ(t) = r0 · (1 + εss + εηη) from Eq. (11) the first term in the above equation
gives 〈

rμ(t)
〉 = r0 (50)

as s and η are Gaussian processes with unit variance and zero mean. For the other
terms in Eq. (49), we will show that they are of higher-order in 
t , εs , and εη. For
the second term in Eq. (49), we can find an upper bound using the Cauchy–Schwarz
inequality

〈
rμ(t)Θ

(−rμ(t)
)〉2 ≤ 〈

rμ(t)2
〉〈
Θ

(−rμ(t)
)2〉

= r20
(
1+ ε2s + ε2η

) · 〈Θ(−rμ(t)
)〉

. (51)

The average in the last line of the above equation is the probability that rμ(t) is
smaller than zero and is given by

〈
Θ

(−rμ(t)
)〉 = 1√

2π(ε2s + ε2η)

∫ ∞

1
dze−z2/(2(ε2s +ε2η))

= 1

2
erfc

(
1√

2(ε2s + ε2η)

)
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≤ 1√
2π(ε2s + ε2η)

∫ ∞

1
dzze−z2/(2(ε2s +ε2η))

=
√

ε2s + ε2η

2π
e−1/(2(ε2s +ε2η)), (52)

which gives for Eq. (51)

〈
rμ(t)Θ

(−rμ(t)
)〉2 ≤ r20

(
1+ ε2s + ε2η

)√ε2s + ε2η

2π
e−1/(2(ε2s +ε2η)). (53)

For the third term in Eq. (49) we can find an upper bound using again the Cauchy–
Schwarz inequality

〈(
rμ(t) − 1


t

)
Θ

(
rμ(t) − 1


t

)〉2

≤
〈(

rμ(t) − 1


t

)2〉〈
Θ

(
rμ(t) − 1


t

)2〉

≤
(

r20
(
1+ ε2s + ε2η

) + 1


t2

)〈
Θ

(
rμ(t) − 1


t

)〉
, (54)

where in the last line we have dropped the mixed term that is always negative. Fur-
thermore, note that the average in the last line of Eq. (54) is the probability that rμ(t)

is larger than 1/
t and is given by〈
Θ

(
rμ(t) − 1


t

)〉
= 1√

2π(ε2s + ε2η)

∫ ∞

(1/(r0
t)−1)
dze−z2/(2(ε2s +ε2η))

≤ 1√
2π(ε2s + ε2η)

r0
t

1− r0
t

∫ ∞

(1/(r0
t)−1)
dzze−z2/(2(ε2s +ε2η))

=
√

(ε2s + ε2η)

2π

r0
t

1− r0
t
e−(1−r0
t)2/(2r20
t2(ε2s +ε2η)), (55)

which gives for Eq. (54)

〈(
rμ(t) − 1


t

)
Θ

(
rμ(t) − 1


t

)〉2

≤
(

r20
(
1+ ε2s + ε2η

) + 1


t2

)

×
√

(ε2s + ε2η)

2π

r0
t

1− r0
t
e−(1−r0
t)2/(2r20
t2(ε2s +ε2η)). (56)
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Inserting Eqs. (50), (53), and (56) into Eq. (49), we obtain the mean firing rate for the
AD model 〈

xμ(t;
t)
〉 = r0 +O

((
ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
+O

(
(ε2s + ε2η)

1/4

√

t

e−(1−r0
t)2/(4r20
t2(ε2s +ε2η))

)
.

In the limit of 
t → 0, the last term in the above equation can be dropped and we
obtain 〈

xμ(t)
〉 = r0 +O

((
ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
. (57)

A similar estimation leads to the same formula for the STS model.

Appendix B: Probability for Synchronous Spikes in the AD Model

For the AD model, according to Eq. (23), the probability to observe two spikes in a
time window 
t in two spike trains xμ and xν is given by

Psyn = 〈
Θ(
t · rμ − ξ)Θ(
t · rν − ξ)

〉
ξ,s,ημ,ην

=
∫ 1

0
dξ

∫ ∞

−∞
dsp(s)

∫ ∞

−∞
dημp(ημ)

×
∫ ∞

−∞
dηνp(ην)Θ(
t · rμ − ξ)Θ(
t · rν − ξ),

where p(x) is a Gaussian distribution with unit variance and zero mean. Splitting the
integration interval of the last integral in the above equation into two parts, such that
for one interval ημ ≥ ην and for the other ημ < ην , we obtain

Psyn =
∫ 1

0
dξ

∫ ∞

−∞
dsp(s)

∫ ∞

−∞
dημp(ημ)

×
(∫ ∞

ημ

dηνp(ην)Θ(
t · rμ − ξ) +
∫ ημ

−∞
dηνp(ην)Θ(
t · rν − ξ)

)
,

which after a change of the order of integration can be transformed into

Psyn = 2
∫ 1

0
dξ

∫ ∞

−∞
dsp(s)

∫ ∞

−∞
dημp(ημ)Θ(
t · rμ − ξ)

∫ ∞

ημ

dηνp(ην). (58)

The average of the theta function over ξ reads

∫ 1

0
dξΘ

(

t · rμ(t) − ξ

) =

⎧⎪⎨
⎪⎩
0 if rμ(t) < 0,


t · rμ(t) if 0 ≤ rμ(t) ≤ 1

t

,

1 if rμ(t) > 1

t

.
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Using the above equation, Eq. (58) can now be written as

Psyn = 2
t

〈
rμ

∫ ∞

ημ

dηνp(ην)

〉
− 2
t

〈
rμ

∫ ∞

ημ

dηνp(ην)Θ(−rμ)

〉

− 2
t

〈(
rμ − 1


t

)∫ ∞

ημ

dηνp(ην)Θ

(
rμ − 1


t

)〉
.

The order of the second and the third term in the above equation can be calculated
analogously to the calculation in Appendix A which leads to

Psyn = 
t · r0
(
1− εη√

π

)
+O

(

t · (ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
+O

(√

t

(
ε2s + ε2η

)1/4
e−1/(4r20
t2(ε2s +ε2η))

)
. (59)

Appendix C: Simplification of the Cross-correlation Function for the STS
Model

In this section, we simplify Eq. (33) in Sect. 4.3. Therefore, we first consider

Γ1 = lim
t ′′→∞

〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))(

1+ εss
(
t ′′

) + εηημ

(
t ′′

))〉
ημ

, (60)

where the average over ημ is conditioned on fixed realizations of the signal s(t) and
the noise process ημ(t). The variable γμ(t) is defined in Eq. (32). We first express the
delta function in the above expression as a derivative of a Heaviside function, which
leads to

Γ1 = lim
t ′′→∞

d

dt ′′
〈
Θ

(
γμ

(
t ′′

) − γν

(
t ′
))〉

ημ

= lim
t ′′→∞

d

dt ′′
1√

2πσ(t ′′)2

∫ α(t ′′,t ′)

−∞
dx exp

[
− x2

2σ(t ′′)2

]
with (61)

α
(
t ′′, t ′

) = t ′′ − t ′ +
∫ t ′′

t ′
dt1εss(t1) −

∫ t ′

0
dt2εηην(t2) and

σ
(
t ′′

)2 = ε2η

〈∫ t ′′

0
dt3

∫ t ′′

0
dt4ημ(t3)ημ(t4)

〉
ημ

.

As we will show in Eq. (63), the variance σ(t ′′)2 becomes constant in the limit of
large t ′′. Performing the derivative with respect to t ′′ in Eq. (61), we find

Γ1 = lim
t ′′→∞

1√
2πσ 2

exp

[
−α(t ′′, t ′)2

2σ 2

]
dα(t ′′, t ′)

dt ′′

= lim
t ′′→∞

〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))〉

ημ

(
1+ εss

(
t ′′

))
.
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Combining the above equation with Eq. (60), we finally obtain the relation

lim
t ′′→∞

〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))(

1+ εss
(
t ′′

) + εηημ

(
t ′′

))〉
ημ

= lim
t ′′→∞

〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))〉

ημ

(
1+ εss

(
t ′′

))
.

Using the above result, we rewrite the average over the delta function in Sect. 4.3 in
Eq. (33) as

Γ2 = lim
t ′′,t ′→∞

〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))

× (
1+ εss

(
t ′′

) + εηημ

(
t ′′

))(
1+ εss

(
t ′
) + εηην

(
t ′
))〉

ημ,ην

= lim
t ′′,t ′→∞

〈〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))〉

ημ

× (
1+ εss

(
t ′′

))(
1+ εss

(
t ′
) + εηην

(
t ′
))〉

ην
.

Expressing the delta function in the above equation as the derivative of a Heaviside
function with respect to t ′ as in Eq. (61) and following the steps from the calculation
of Γ1, we find

Γ2 = lim
t ′′,t ′→∞

〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))〉

ημ,ην

(
1+ εss

(
t ′′

))(
1+ εss

(
t ′
))

,

which leads to the result

lim
t ′′,t ′→∞

〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))

× (
1+ εss

(
t ′′

) + εηημ

(
t ′′

))(
1+ εss

(
t ′
) + εηην

(
t ′
))〉

ημ,ην

= lim
t ′′,t ′→∞

〈
δ
(
γμ

(
t ′′

) − γν

(
t ′
))〉

ημ,ην

(
1+ εss

(
t ′′

))(
1+ εss

(
t ′
))

, (62)

used in the calculation of the cross-correlation function in Eq. (34).

Appendix D: Variance of the Integrated Independent Noise

To calculate the variance from Eq. (35), we first consider

σ 2(t) = ε2η

〈∫ t

0

∫ t

0
dt1 dt2η(t1)η(t2)

〉

for a Gaussian signal η(t) with zero mean and unit variance. Performing the average
in the above equation and performing a change of integration variables, we can write

σ 2(t) = 2ε2η

∫ t

0
dτKηη(τ )(t − τ).
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Next, we express the autocorrelation function in the above equation by its Fourier
transform according to Eq. (6) and find

σ 2(t) = 2ε2η

∫ t

0
dτ

∫ ∞

−∞
df e−i2πf τ Sηη(f )(t − τ)

= 2ε2η

∫ ∞

−∞
df Sηη(f )

(
t

i2π
− e−i2πf t

4π2f 2
+ 1

4π2f 2

)
,

where in the last line of the above equation we integrated over τ . Since the power
spectrum Sηη(f ) is the Fourier transform of a real function, it is symmetric with
respect to f , which leads to

σ 2(t) = ε2η

∫ ∞

0
df Sηη(f )

1− cos(2πf t)

2π2f 2
.

For a band-pass limited white noise with the power spectrum

Sηη(f ) =
{

1
2(fu−f�)

for |f | ∈ [f�, fu],
0 else,

we obtain in the limit of large times

lim
t→∞σ 2(t) = ε2η

2π2fuf�

, (63)

and for the variance in Eq. (35) for large t we find

σ̂ 2
g = lim

t→∞
(
σ 2(t + τ) + σ 2(t)

) = ε2η

π2fuf�

. (64)

Appendix E: Single Spike Train Power Spectrum

In this section, we calculate the single spike train power spectrum for the AD model.
Therefore, we consider the autocorrelation function of the spike train

Kxx(τ) = 〈
x(t + τ)x(t)

〉 − 〈
x(t + τ)

〉〈
x(t)

〉
, (65)

where we assume that the spike trains are stationary. Since a single spike train is
considered and the average is taken over one independent noise process η, we will
drop the subscript employed previously.

We first consider the ADmodel. As for the time-discrete cross-correlation function
between two spike trains in Sect. 4.2, we can express Eq. (65) in terms of probability
densities

Kxx(τ) = 1

(
t)2
Θ

(

t/2− |τ |) · Pspike

+ 1

(
t)2
Θ

(|τ | − 
t/2
) · Ptwo spikes(τ ) − r20 , (66)
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where Pspike is the probability to find a spike in a given time bin of width 
t and
Ptwo spikes(τ ) is the probability to find two spikes separated by the time interval τ

with |τ | > 
t/2. Analogously to Eq. (23) we find

Pspike = 〈
Θ(
t · r − ξ)

〉
= 
t · r0 +O

(

t · (ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
+O

(√

t

(
ε2s + ε2η

)1/4
e−1/(4r20
t2(ε2s +ε2η))

)
,

where in the first line of the above equation we dropped the subscript and the time-
argument for the parameter r , which is defined in Eq. (11). For the probability of
asynchronous spikes with |τ | > 
t/2 we find

1

(
t)2
Ptwo spikes(τ ) = 〈

x(t + τ)x(t)
〉

= 〈〈
x(t + τ)

〉
ξ

〈
x(t)

〉
ξ

〉
s,η

= r20
(
1+ ε2s Kss(τ ) + ε2ηKηη(τ )

)
+O

((
ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
,

which in the limit of 
t → 0 leads for the autocorrelation function Eq. (66) to

Kxx(τ) = δ(τ )r0 + r20
(
ε2s Kss(τ ) + ε2ηKηη(τ )

)
+O

((
ε2s + ε2η

)1/4
e−1/(4(ε2s +ε2η))

)
.

Taking the limit (ε2s + ε2η) → 0 in the above equation (keeping terms up to second-
order in εs and εη), we find after a Fourier transformation the single spike train power
spectrum for the AD model

Sxx(f ) ≈ r0 + r20
(
ε2s Sss(f ) + ε2ηSηη(f )

)
. (67)

Next, we calculate the single spike train power spectrum for the STS model. Em-
ploying Eq. (17), the last term in Eq. (65) can be written as

〈
x(t + τ)

〉〈
x(t)

〉 = r20 +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
. (68)

In analogy to Eq. (33), we can transform the first term of the autocorrelation function
Eq. (65) into〈

x(t + τ)x(t)
〉 = r0

〈(
δ
(
γ (t + τ) − γ (t)

) + r20
)

× (
1+ εss(t + τ) + εηη(t + τ)

)(
1+ εss(t) + εηη(t)

)〉
η,s

,

with the difference that we now consider a single spike train, and therefore only
averages over one independent noise process η. The above equation can be rewritten
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as 〈
x(t + τ)x(t)

〉 = r0
〈
δ
(
γ (t + τ) − γ (t)

)
× (

1+ εss(t + τ) + εηη(t + τ)
)(
1+ εss(t) + εηη(t)

)〉
η,s

+ r20 + r20ε
2
s Kss(τ ) + r20ε2ηKηη(τ ). (69)

After a Fourier transformation of the above equation, the autocorrelation functions
of signal and noise are transformed into their respective power-spectra. Inserting the
definition of γ (t) Eq. (32), the first term of Eq. (69), which we denote by W , is
Fourier transformed into

W = r0

〈∫ ∞

−∞
dτei2πf τ δ

(
G(τ)

)

× (
1+ εss(t + τ) + εηη(t + τ)

)(
1+ εss(t) + εηη(t)

)〉
η,s

with (70)

G(τ) =
∫ t+τ

t

dt ′
(
1+ εss

(
t ′
) + εηη

(
t ′
))

.

Changing the integration variable in Eq. (70), we find

W = r0

〈∫ ∞

−∞
dGei2πf τ(G)δ(G)

(
1+ εss(t) + εηη(t)

)〉
η,s

= r0
〈
ei2πf τ(0)(1+ εss(t) + εηη(t)

)〉
η,s

.

For a strictly positive process r(t) (see Eq. (11)), the only zero crossing of the integral
G(τ) is at τ = 0. We can invert this relation to find τ(0) = 0, which leads to

W = r0
〈(
1+ εss(t) + εηη(t)

)〉
η,s

+O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)

= r0 +O
((

ε2s + ε2η
)1/4

e−1/(4(ε2s +ε2η))
)
. (71)

The order of the correction term in the above equation is proportional to the square
root of the probability that rμ(t) < 0, which has been calculated in Appendix A
Eq. (52).

Employing Eqs. (65), (68), (69), and (71) we find in the limit (ε2s +ε2η) → 0 (keep-
ing terms up to second-order in εs and εη) the single spike train power spectrum for
the STS model

Sxx(f ) ≈ r0 + r20ε
2
s Sss(f ) + r20ε

2
ηSηη(f ). (72)

References

1. Tuckwell HC: Stochastic Processes in the Neuroscience; 1989.
2. Faisal AA, Selen LPJ, Wolpert DM: Noise in the nervous system. Nat Rev Neurosci 2008, 9:292.



Page 34 of 35 S.O. Voronenko et al.

3. Shannon R: The mathematical theory of communication. Bell Syst Tech J 1948, 27:379.
4. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W: Spikes: Exploring the Neural Code.

Cambridge: MIT Press; 1999.
5. Wiesenfeld K, Moss F: Stochastic resonance and the benefits of noise: from ice ages to crayfish

and SQUIDs. Nature 1995, 373:33.
6. Hänggi P: Stochastic resonance in biology. ChemPhysChem 2002, 21:285-290.
7. McDonnell MD, Ward LM: The benefits of noise in neural systems: bridging theory and experi-

ment. Nat Rev Neurosci 2011, 12:415.
8. Gammaitoni L, Hänggi P, Jung P, Marchesoni F: Stochastic resonance. Rev Mod Phys 1998, 70:223.
9. Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L: Effects of noise in excitable systems.

Phys Rep 2004, 392:321.
10. Stocks NG: Suprathreshold stochastic resonance in multilevel threshold systems. Phys Rev Lett

2000, 84:2310.
11. Stocks NG, Mannella R: Generic noise-enhanced coding in neuronal arrays. Phys Rev E 2001,

64:030902.
12. Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J: Non-classical receptive field mediates switch

in a sensory neuron’s frequency tuning. Nature 2003, 423:77.
13. Middleton JW, Longtin A, Benda J, Maler L: Postsynaptic receptive field size and spike threshold

determine encoding of high-frequency information via sensitivity to synchronous presynaptic
activity. J Neurophysiol 2009, 101:1160.

14. Lindner B, Gangloff D, Longtin A, Lewis JE: Broadband coding with dynamic synapses. J Neurosci
2009, 29:2076.

15. Sharafi N, Benda J, Lindner B: Information filtering by synchronous spikes in a neural population.
J Comput Neurosci 2013, 34:285.

16. Droste F, Schwalger T, Lindner B: Interplay of two signals in a neuron with heterogeneous synap-
tic short-term plasticity. Front Comput Neurosci 2013, 7:86

17. Knight BW: Dynamics of encoding in a population of neurons. J Gen Physiol 1972, 59:734.
18. Gerstner W, Kistler WM: Spiking Neuron Models. Cambridge: Cambridge University Press; 2002.
19. Alonso JM, Usrey WM, Reid RC: Precisely correlated firing in cells of the lateral geniculate

nucleus. Nature 1996, 383:815.
20. Warzecha AK, Kretzberg J, EgelhaafM: Temporal precision of the encoding of motion information

by visual interneurons. Curr Biol 1998, 8:359-368.
21. Trong PK, Rieke F: Origin of correlated activity between parasol retinal ganglion cells. Nat Neu-

rosci 2008, 11(11):1343-1351.
22. Churchland M, Byron M, Cunningham J, Sugrue LP, Cohen MR, Corrado GS, Newsome WT, Clark

AM, Hosseini P, Scott BB, Bradley DC, Smith MA, Kohn A, Movshon JA, Armstrong KM, Moore T,
Chang SW, Snyder LH, Lisberger SG, Priebe NJ, Finn IM, Ferster D, Ryu SI, Santhanam G, Sahani
M, Shenoy KV: Stimulus onset quenches neural variability: a widespread cortical phenomenon.
Nat Neurosci 2010, 13:369-378.

23. Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E: Attention modulates syn-
chronized neuronal firing in primate somatosensory cortex. Nature 2000, 404:187-190.

24. Stopfer M, Bhagavan S, Smith BH, Laurent G: Impaired odour discrimination on desynchroniza-
tion of odour-encoding neural assemblies. Nature 1997, 390:70-74.

25. Kazama H, Wilson RI: Origins of correlated activity in an olfactory circuit. Nat Neurosci 2009,
12(9):1136-1144.

26. Poulet JFA, Petersen CCH: Internal brain state regulates membrane potential synchrony in bar-
rel cortex of behaving mice. Nature 2008, 454:881.

27. Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH: Membrane potential dynamics of
gabaergic neurons in the barrel cortex of behaving mice. Neuron 2010, 65(3):422-435.

28. Binder MD, Powers RK: Relationship between simulated common synaptic input and discharge
synchrony in cat spinal motoneurons. J Neurophysiol 2001, 86:2266.

29. Neiman AB, Russell DF: Two distinct types of noisy oscillators in electroreceptors of paddlefish.
J Neurophysiol 2004, 92:492.

30. Warzecha AK, Rosner R, Grewe J: Impact and sources of neuronal variability in the fly’s motion
vision pathway. J Physiol 2013, 107(1):26-40.

31. Bialek W, Deweese M, Rieke F, Warland D: Bits and brains—information-flow in the nervous-
system. Physica A 1993, 200:581.

32. Gabbiani F: Coding of time-varying signals in spike trains of linear and half-wave rectifying
neurons. Netw Comput Neural Syst 1996, 7:61.



Journal of Mathematical Neuroscience (2015) 5:1 Page 35 of 35

33. Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes: The Art of Scientific
Computing. 3rd edition. Cambridge: Cambridge University Press; 2007.

34. Gardiner CW: Handbook of Stochastic Methods; 1985.
35. Bezrukov SM, Vodyanoy I: Stochastic resonance in non-dynamical systems without response

thresholds. Nature 1997, 385:319-321.
36. Gabbiani F, Cox SJ: Mathematics for Neuroscientists. San Diego: Academic Press; 2010.
37. Cox DR, Isham V: Point Processes. London: Chapman & Hall; 1980.
38. Feller W: An Introduction to Probability Theory and Its Applications. Volume 1. 3rd edition. New

York: Wiley; 1968.
39. Gestri G, Mastebroek HAK, Zaagman WH: Stochastic constancy, variability and adaptation of

spike generation—performance of a giant-neuron in the visual-system of the fly. Biol Cybern
1980, 38:31.

40. de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W: Reproducibility and
variability in neural spike trains. Science 1997, 275:1805.

41. Feller W: An Introduction to Probability Theory and Its Applications. Volume 2. 2nd edition. New
York: Wiley; 1971.

42. Bauerle N, Grubel R: Multivariate counting processes: copulas and beyond. ASTIN Bull 2005,
35(2):379.

43. Neiman AB, Russell DF, Rowe MH: Identifying temporal codes in spontaneously active sensory
neurons. PLoS ONE 2011, 6:e27380.

44. Trousdale J, Hu Y, Shea-Brown E, Josic K: A generative spike train model with time-structured
higher order correlations. Front Comput Neurosci 2013, 7:84.

45. Kuhn A, Aertsen A, Rotter S: Higher-order statistics of input ensembles and the response of
simple model neurons. Neural Comput 2003, 15(1):67-101.

46. Moreno-Bote R, Parga N: Auto- and crosscorrelograms for the spike response of leaky integrate-
and-fire neurons with slow synapses. Phys Rev Lett 2006, 96:028101.

47. de la Rocha J, Doiron B, Shea-Brown E, Josic K, Reyes A: Correlation between neural spike trains
increases with firing rate. Nature 2007, 448:802.
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