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Abstract The formation of oscillating phase clusters in a network of identical
Hodgkin–Huxley neurons is studied, along with their dynamic behavior. The neu-
rons are synaptically coupled in an all-to-all manner, yet the synaptic coupling char-
acteristic time is heterogeneous across the connections. In a network of N neurons
where this heterogeneity is characterized by a prescribed random variable, the oscil-
latory single-cluster state can transition—through N − 1 (possibly perturbed) period-
doubling and subsequent bifurcations—to a variety of multiple-cluster states. The
clustering dynamic behavior is computationally studied both at the detailed and the
coarse-grained levels, and a numerical approach that can enable studying the coarse-
grained dynamics in a network of arbitrarily large size is suggested. Among a number
of cluster states formed, double clusters, composed of nearly equal sub-network sizes
are seen to be stable; interestingly, the heterogeneity parameter in each of the double-
cluster components tends to be consistent with the random variable over the entire
network: Given a double-cluster state, permuting the dynamical variables of the neu-
rons can lead to a combinatorially large number of different, yet similar “fine” states
that appear practically identical at the coarse-grained level. For weak heterogeneity
we find that correlations rapidly develop, within each cluster, between the neuron’s
“identity” (its own value of the heterogeneity parameter) and its dynamical state.
For single- and double-cluster states we demonstrate an effective coarse-graining ap-
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proach that uses the Polynomial Chaos expansion to succinctly describe the dynam-
ics by these quickly established “identity-state” correlations. This coarse-graining
approach is utilized, within the equation-free framework, to perform efficient com-
putations of the neuron ensemble dynamics.

Keywords Clustering dynamics · Heterogeneous coupling · Polynomial chaos
expansion

1 Introduction

A network of oscillators can form sets of sub-networks oscillating with phase lags
among them [1]; these are often referred to as phase clusters. The dynamic behav-
ior of such states has been investigated experimentally in globally coupled photo-
chemical oscillators [2–4]. Certain features of the cluster dynamics have been stud-
ied numerically and/or theoretically in a variety of contexts: in arrays of Josephson
junctions [5], in networks of inhibitory reticular thalamic nucleus (RTN) neurons [6],
in phase oscillators with nearest neighbor coupling [7, 8], in models for synthetic
genetic networks [9], and for identical Hodgkin–Huxley (HH) neurons with homoge-
neous, weak coupling [10], to name a few.

In this paper we study a specific type of clustering dynamics observed in synap-
tically all-to-all coupled networks of identical HH neurons, but for which certain
synaptic coupling parameters slightly vary across the population, thus making the
whole network heterogeneous. The main feature underpinning the clustering dynam-
ics is (approximate) symmetry. Aronson et al., taking a group-theoretic approach,
study the bifurcation features in oscillator networks with SN permutation symmetry,
for an array of globally coupled homogeneous Josephson junctions [5]. Dynamical
systems with such permutation symmetries are known to give rise to a large num-
ber of coexisting states—symmetrically related to one another—which is referred to
as “attractor crowding” [11, 12]. Hansel et al. show that multiple Fourier mode in-
teraction terms are necessary in a phase-reduced model of homogeneously all-to-all
coupled identical HH neurons in order to account for multiple-cluster formation [10].
A generalization of the analytical framework for the Kuramoto-like coupled phase
oscillators, including higher Fourier modes, has been attempted [13]. The dynamical
nature of the transitions between different cluster states in phase-reduced oscillator
models and slow switching along the heteroclinic orbits involved have been discussed
[3, 14–19].

In these studies of cluster dynamics, it is often assumed that the constituting en-
tities are identical and/or the coupling strength is weak, allowing dimensional re-
duction via complete synchronization within each cluster and/or through the phase
reduction procedure. An actual population of neurons (or more generally, oscilla-
tors), however, would hardly be expected to satisfy this homogeneity assumption.
In practice, heterogeneity often exists inevitably, and it can have consequences for
the collective dynamics [20–23], which are not easily deduced from the dynamics
in the homogeneous limit. In the presence of weak heterogeneity, it is natural to ex-
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pect that similar oscillators (characterized by neighboring values of the heterogeneity
parameter) may trace similar dynamical trajectories and tend to belong to the same
sub-network, when the network splits into coherent sub-networks. However, the HH
neuron networks we study here do not follow this intuitive expectation. The hetero-
geneity parameter value does not determine which sub-network the corresponding
neuron would belong to; the heterogeneous parameter (which is drawn from an i.i.d.
random variable) within each sub-network is statistically consistent with that of the
full ensemble heterogeneity distribution.

We demonstrate a coarse-graining approach enabling the analysis of the low-
dimensional dynamics of single- and double-cluster states, which provides an effi-
cient way of studying the coarse-grained clustering dynamics of an arbitrarily large
network. This work extends the approach introduced to study coarse-grained single
cluster dynamics of networks of heterogeneous Kuramoto oscillators [24]. The ap-
proach is based on the Polynomial Chaos (PC), also known as Wiener’s chaos expan-
sion [25], originally introduced to model stochastic processes with Gaussian random
variables using Hermite polynomials; it has been further developed and widely used
for uncertainty quantification [26]. The PC-based approach utilizes the correlations
that rapidly develop between the heterogeneity parameter values and the oscillator
state variables. The same types of “identity-state” correlations are commonly ob-
served to develop in a range of coupled oscillator models, including yeast glycolytic
oscillators [27], van der Pol oscillators [28], and simplified neuron models [29].

The paper is organized as follows: The model and the parameter values used in
it are described in Sect. 2, and some observations on the clustering dynamics in net-
works of heterogeneously coupled neurons are presented in Sect. 3. As a basis for
understanding the dynamics of larger networks, the individual-level dynamics of a
small number of neurons are analyzed in some detail (Sect. 4). A short survey of the
PC expansion is provided and the dynamic behavior of large networks of neurons
is studied in Sect. 5, while the derivation and the exploitation of our coarse-grained
description of the clustering dynamics, utilizing the PC expansion, is presented in
Sect. 6. The paper concludes with a brief summary and discussion.

2 Model

We study ensembles of Hodgkin–Huxley neurons. The dynamical state of each of the
HH neurons is described by a set of variables (V ,m,h,n), where V is the membrane
potential, m and h are the activation and inactivation variables of the sodium current,
and n is the activation variable of the potassium current. The equations for the ith
neuron read [30]

C
dVi

dt
= I − gNam

3
i hi(Vi − VNa) − gKn4

i (Vi − VK)

− gl(Vi − Vl) + Isyn,i ,

dmi

dt
= m∞(Vi) − mi

τm(Vi)
, (1)
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dhi

dt
= h∞(Vi) − hi

τh(Vi)
,

dni

dt
= n∞(Vi) − ni

τn(Vi)
,

where I is the external current (an important control parameter in our study), Isyn,i is
the synaptic current entering the ith neuron (see Eq. (2) below), and

x∞(V ) = ax(V )

ax(V ) + bx(V )
,

τx(V ) = 1

ax(V ) + bx(V )
,

for x = m,h, and n, where

am(V ) = 0.1(V + 40)/
[
1 − exp (−V − 40)/10

]
,

ah(V ) = 0.07 exp
[
(−V − 65)/20

]
,

an(V ) = 0.01(V + 55)/
[
1 − exp (−V − 55)/10

]
,

bm(V ) = 4 exp
[
(−V − 65)/18

]
,

bh(V ) = 1/
[
1 + exp (−V − 35)/10

]
,

bn(V ) = 0.125 exp
[
(−V − 65)/80

]
.

We use almost the same parameter values as in [10], which correspond to a squid
axon’s typical values at 6.3 °C: VNa = 50 mV; VK = −77 mV; Vl = −54.4 mV;
gNa = 120 mS/cm2; gK = 36 mS/cm2; gl = 0.3 mS/cm2; C = 1 µF/cm2. The units
for the parameters remain the same throughout the paper, and they are omitted here-
after, unless ambiguous.

The synaptic current for each neuron in a network of N all-to-all coupled neurons
is modeled as

Isyn,i = − g

N

N∑
j �=i

sj (t)
[
Vi(t) − Vsyn

]
, (2)

where Vsyn = 30, g is the coupling strength among the neurons (which is mostly set
to 3.0 in this paper), and the synaptic variable si is governed by

dsi

dt
= Θs(Vi)[1 − si] − si

τi

. (3)

The sigmoid Θs(V ) is chosen to be Θs(V ) = 1/[1 + exp(−V/5.0)]; its exact func-
tional form does, to some extent, affect the overall dynamics. The network of neu-
rons we consider is heterogeneous in the following sense: each neuron has a different
synaptic time constant τi in Eq. (3). So even though the neurons are identical, they
are coupled in a heterogeneous fashion, and there is one heterogeneous parameter
(τi ) associated with each neuron. Assuming that τi = 1 + ωi , for ω we consider an
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i.i.d. uniform or normal random variable of zero mean value; however, the results
presented below are not restricted to these particular choices of the heterogeneity dis-
tribution. Note that the normal distribution needs to be truncated so that ωi > −1.0
(hence τi > 0) is retained.

We choose the synaptic time τ to be heterogeneous, because overall clustering
dynamics is sensitive to its variation. The presence of the heterogeneity in other pa-
rameters (such as g, gNa, or I , as opposed to τ ) would alter the detailed clustering
dynamics in different ways (see Sect. 3 for details); however, whenever the strong
correlation between the heterogeneity parameter and the variables develops in one
way or another (see Sect. 3 for further details), the basic underpinning concept for
the equation-free coarse-grained analysis presented in this paper can be again applied
after an appropriate modification. In reality, all parameters are likely to be hetero-
geneous. The analysis of a network with multiple heterogeneities of this form is an
interesting challenge, which is beyond the scope of the current study. In what follows,
we consider the case g = 3.0, unless specified otherwise, and the width of the ω dis-
tribution (i.e., the standard deviation of ω, denoted by σω) remains small compared
to 1 so that the oscillators can still synchronize.

3 Cluster States

Given the parameter values presented in the previous section, an isolated neuron
(N = 1 and Isyn = 0) undergoes a subcritical Andronov–Hopf bifurcation from a
steady state as the external current reaches the value I = 9.78. The unstable pe-
riodic orbit born at this point eventually gains stability through a fold bifurcation
of periodic orbits at I ≈ 6.3. When two neurons are synaptically coupled together,
the above-mentioned periodic orbits remain nearly unchanged, but the network ex-
hibits bistability around the fold bifurcation point; the formation of clusters and the
bistability itself has been well known [10]. Our study is focused on the parame-
ter regime corresponding to this two-neuron bistability, but it addresses the case
of many neurons, heterogeneously coupled together (which exhibit further multi-
stability).

In this regime, the network can realize several types of stable periodic behav-
ior: The entire network may oscillate synchronously (Fig. 1(a); single-cluster state),
or may break up into two or more sub-networks (or clusters), each of them syn-
chronously oscillating with a phase lag between the clusters (Fig. 1(b); double-cluster
state). In each cluster, the trajectories of the constituting neurons get slightly “dis-
persed” as a consequence of the heterogeneity. The period of the double-cluster state
is almost twice of that of the single cluster state (comparing Fig. 1(a) and (b)), and the
transition between the single- and double-cluster states is related to the two-neuron
period-doubling (PD) bifurcation (refer to Sect. 4 for further details). Such cluster
states are observed for any network size.

The projection of a double-cluster state onto a certain phase plane of dynamical
variables (right panels of Fig. 2) sheds light on an important aspect of the clustering
dynamics; it reveals that (i) a strong correlation between the heterogeneity parameter
ω and the dynamical variables separately develops for each cluster and (ii) that the
neurons break up almost evenly in ω to form two clusters. The same type of cor-
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Fig. 1 Time series of the membrane potentials (Vi ’s) of 10 heterogeneous neurons characterized
by slightly different synaptic relaxation time constants τi in Eq. (3); ω is uniformly distributed in
[−0.3,0.3] and g = 3.0. a Single-cluster state where the entire network oscillates synchronously (I = 6.7).
b Double-cluster state (I = 6.5), whose period is approximately twice that of the orbit in panel a, where
sub-networks of four and six neurons form two synchronously oscillating clusters, with a phase lag be-
tween them. Insets are blow-ups of the region at the peak of the action potential oscillations, marked by
dashed boxes. In the double-cluster state in b, the cluster which “spikes first” on one cycle (denoted by A;
consisting of six neurons) “spikes second” on the following cycle (A*), giving the solution its “period-2”
nature (B and B* are the same group of four neurons at different time)

Fig. 2 Left panels: Different
snapshots of a double-cluster
state of 40 neurons during a
cycle, projected onto the n–V

phase plane (I = 6.7), where
solid lines are the limit cycles of
a representative neuron; ωi ’s are
drawn from the uniform
distribution. The arrow in a
indicates the direction of the
trajectories on the limit cycle.
Right panels: The dots show the
membrane potentials of all the
neurons at the same time as in
the left panel, plotted against
their ωi values. In d and f, the
naked eye can easily
differentiate the two clusters.
While the dynamic variables
evolve, the correlations between
the Vi and the ωi remain smooth
throughout a cycle

relation develops for the entire population of single-cluster states in a few different
coupled oscillator models, which have been studied with a PC coarse-grained descrip-
tion and a subsequent equation-free analysis [24, 27–29]. Here, we attempt to extend
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Fig. 3 The same type of snapshot during a cycle as in Fig. 2, exhibiting a double-cluster state of 40
neurons, when the heterogeneity exists in a different parameter, the coupling strength: The coupling pa-
rameter is given as g × (1 + ω), where g = 3.0 and ωi ’s are uniformly drawn from [−0.3,0.3], while
τ = 1.0 and I = 6.5 throughout the neurons. As in the case of the heterogeneous time constant, the same
type of bistability of the single- and double-cluster states is observed in the regime of the same parameter
values considered here

this framework to apply to multiple-cluster states as well. Similar single- and double-
cluster states exist also in homogeneous networks of identical HH neurons [10]; in
the absence of heterogeneity, however, the constituting neurons of each cluster get
synchronized completely, which naturally reduces the population-level dynamical di-
mension. In that case, each of the clusters can be treated as a fictitious neuron of
appropriate weight or rescaling factor being assigned [31, 32], and the overall dy-
namics is effectively the same as that of a few/several neurons.

The splitting into two clusters can occur in a number of different ways (i.e., differ-
ent permutations) at the individual neuron level, resulting in various distinguishable
double-cluster states. For a given realization of ω, depending on the initial config-
uration, each cluster in a double-cluster state consists of different neurons; in other
words, the value of ωi does not completely specify which cluster the ith neuron
will join. Repeated simulations of various numbers of neurons with different initial
configurations and/or independent random draws of ω, suggest that the sub-network
sizes of the final stable double-cluster states tend to be almost the same (N/2 + ε

neurons in one cluster and N/2 − ε in the other, where ε is a small integer satisfying
ε/N � 1). We note that an apparently different type of, or an extreme permutation of,
stable double-cluster state, where the neurons split at the “middle” value of ωi ∼ 0,
is still possible. This is indeed a legitimate permutation; however, such a state is—we
believe—highly unlikely to occur spontaneously.

We consider the cases where the heterogeneity exists in other model parameters as
well. For instance, when g is given as g0(1 + ω), where g0 = 3.0 and ω is a uniform
random variable, while τ is given as a fixed value of 1.0 throughout the neurons,
we see almost the same behavior as in the case of a heterogeneous time constant
presented above (Fig. 3). In case I is heterogeneous, in addition to the same type
of single-cluster states, a slightly different type of double-cluster states are observed
(Fig. 4); while the “identity-state” correlation still exists, only a specific range of
ω breaks up to form double-cluster states. In this case, the coarse-graining method
discussed in this study will have to be further extended; we will leave this as a topic
for future study.
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Fig. 4 The same type of snapshot for 40 neurons as in Fig. 2, but when the heterogeneity exists in the
current, I × (1 + ω), where I = 6.3 and ωi ’s are uniformly drawn from [−0.1,0.1]. The other parameters
that were heterogeneous in the previous figures, g and τ are kept at 3.0 and 1.0 throughout the neurons,
respectively. In this case, a slightly different type of double-cluster states form, as well as the single cluster
states. While the correlation still exists, only a specific portion of ω (of positive values) breaks up to form
double clusters

Fig. 5 Bifurcation diagram for
four heterogeneous neurons.
Stable branches are represented
by solid (blue) lines, while the
unstable ones are dotted (black)
lines. Filled (red) stars and filled
(red) circles denote the
period-doubling and fold
bifurcation points, respectively

4 Background: Detailed Dynamics of a Few Neurons

The complete dynamical analysis of even a relatively small number of, say ten, neu-
rons is highly complicated because the number of possible clustering states rapidly
increases with O(N !) (scaling with the possible identity permutations). We obtain
some initial insight into the generic dynamical features by analyzing small networks
of neurons in detail.

We start with four neurons, where ωi ’s are distributed evenly in [−0.1,0.1], i.e.,
{−0.1,−0.03̄,0.03̄,0.1}; at this population size, the characterization of the distri-
bution function does not have statistical significance. The detailed bifurcation dia-
grams in this section are obtained using AUTO [33]. When the stable single-cluster
(period-1) solution branch is continued in the decreasing direction of I , it loses the
stability through a Period Doubling (PD) bifurcation, which is denoted by P1 in
Fig. 5. As the current I decreases even further, there arise two more PD bifurcations
(P2 and P3 in Fig. 5). Continuation of the bifurcated branch emanating from the first
PD point P1 exhibits unstable period-2 double-cluster states, consisting of two clus-
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Fig. 6 Bifurcation diagram for
four heterogeneous neurons.
Two isolas in the bifurcation
diagram for the same four
heterogeneous neurons as in
Fig. 5. Each of the isolas
corresponds to the splits of
(12,34) and (13,24). Stable
branches are represented by
solid (blue) lines, while the
unstable ones are represented by
dotted (black) lines. Filled (red)
stars and filled (red) circles
denote the period-doubling and
the fold bifurcation points,
respectively

ters having two neurons in each cluster (referred to as a 2/2 split, where the notation
m/n means m neurons belong to one cluster and the remaining n (= N −m) neurons
belong to the other). After a sequence of fold bifurcations (saddle-nodes of limit cy-
cles, filled circles in Fig. 5), this unstable period-2 branch eventually becomes stable,
giving rise to a stable double-cluster state of 2/2 split with a grouping of (14,23), i.e.,
neurons 1 and 4 form one cluster synchronously oscillating together, while neurons
2 and 3 form the other. For convenience, the neurons are labeled from 1 to N in the
increasing order of the value for ωi . Continuation of the solution branches bifurcated
from P2 and P3 results in unstable three-cluster states with a 1/1/2 split, i.e., states
for which two neurons oscillate in synchrony and the remaining two “clusters” con-
tain one neuron each. These two branches also undergo numerous fold bifurcations,
but they never gain stability.

Starting from a stable (14,23) state, we obtain similar double-cluster states by
swapping the dynamical variables among the neurons (while keeping ωi ’s and all the
other parameters unchanged) and directly integrating the model from this initial con-
dition. We find that the solution branches for the other two combinations of evenly
split double-cluster states of 2/2, (12,34) and (13,24) states, are stable over a finite
parameter range, forming isolas (Fig. 6; the single cluster state branch in Fig. 5 is in-
cluded for comparison). The isolas have both stable (solid line) and unstable (dashed
line) segments separated by fold bifurcation points (filled circles).

In the case of four neurons with homogeneous coupling (i.e., identical τi ), the
above-mentioned three PD points (P1 through P3 in Fig. 5) collapse to a single point
and the network exhibits a degenerate period-doubling bifurcation. Three Floquet
multipliers simultaneously cross the unit circle at −1. All the cluster states of the
same population size ratio then become indistinguishable, and for instance, the long
term dynamics of single (double) cluster state is not different from that of a single
(two) neuron(s).

The full bifurcation diagram for larger populations contains many more branches
and bifurcation points, which rapidly becomes too complicated (and probably point-
less) to analyze. It would help to consider the clustering dynamics of a few different
progressively increasing network sizes, which would allow us to induce the dynam-
ics of a larger network. Our analysis of four and ten neurons (see below) indicates
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Fig. 7 Bifurcation diagram for
10 heterogeneous neurons.
Stable branches are represented
by solid (blue) lines, while the
unstable ones are represented by
dotted (black) lines. Filled (red)
stars and filled (red) circles
denote the period-doubling and
fold bifurcation points,
respectively

that the essential features appear to remain the same. A bifurcation diagram for ten
heterogeneous neurons including some of the relevant branches discussed above, is
again obtained using AUTO. The ωi ’s are again uniformly distributed in [−0.1,0.1]
for simplicity. The period-1 single-cluster state has nine PD bifurcations, P1 through
P9 in Fig. 7; in general, there exist N − 1 PD bifurcations on the single-cluster so-
lution branch of a network of N neurons. As in smaller networks, continuing the
branch bifurcating from P1 leads to a double-cluster state with an equal-sized (5/5)
split which eventually gains stability through a fold bifurcation. The continuation of
branches bifurcating from P2 and P3 gives rise to unstable three-cluster states, 1/4/5
and 2/3/5, respectively, which never become stable. As was done with four neurons,
we combinatorially swap the dynamical states of the neurons comprising a stable
double-cluster, in order to obtain other stable double-cluster states. The original 5/5
split state has the grouping of (12689,34570) in the case of our random initial condi-
tion, where 0 represents the tenth neuron (ω10 = 0.1). We obtained several other sta-
ble 5/5 splits, including (12390,45678), (12360,45789), (15780,23469), and even
a stable 6/4 split, (123458,6790), all of which lie on solution branches forming iso-
las. These five stable branches are located very close to one another in phase and
parameter space (Fig. 7). We expect that, in this version of “attractor crowding” [11,
12], small stochastic or deterministic perturbations may cause the dynamics to eas-
ily “flip” basins of attraction and approach nearby “coarsely indistinguishable” limit
cycles. We checked other network sizes and found that, regardless of the population
size, there exists a range of parameters for which multi-stability between single- and
double-cluster states is observed, and the stable double-cluster states consist of nearly
equal-sized clusters.

We now compare our results with the predictions by Aronson et al., regarding the
equivariant system of a population with homogeneous coupling [5]. In the presence of
SN symmetry, the equivariant branching lemma [34] leads to N − 1 PD bifurcations
on the single-cluster branch. The branches bifurcating off of the single cluster state
branch are predicted to be of the form Sp ×Sq (corresponding to p/q in our notation)
with p+q = N , where p and q are positive numbers representing the number of neu-
rons in each cluster. Those authors showed that the double-cluster states may be stable
for N/3 ≤ p ≤ N/2, and that the exact results for stability depend on the coefficients
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in the normal form at the bifurcations, which we do not attempt to obtain for the HH
neuron model here. Other branches associated with other isotropy subgroups, the so-
called “support solutions”, such as Sp × Sq × Sr with p + q + r = N for non-zero p,
q and r , are predicted to emanate from the double-cluster state branches. Translating
this prediction to the network of ten HH neurons, the 5/5 or 4/6 state is predicted
to branch off from the single-cluster state, but 1/4/5 and 2/3/5 states may not di-
rectly branch off from there; rather, they may form as a consequence of subsequent
bifurcations from the 5/5 or 4/6 double-cluster state. Our observations of the net-
work with heterogeneous coupling are overall consistent with the above-mentioned
predictions by Aronson et al. One non-trivial difference is that in our heterogeneously
coupled HH neuron case, even three-cluster states with 1/4/5 and 2/3/5 groupings
may branch directly off from the single-cluster branch (see Figs. 5 and 7).

5 A Coarse-Grained Description

5.1 Background: The Polynomial Chaos Expansion

In this subsection, we briefly review the polynomial chaos expansion method, which
underpins the coarse-graining of the single- and double-cluster state dynamics in the
following subsection. Wiener’s polynomial chaos expansion method [25], which has
been widely used in the context of uncertainty quantification, allows one to obtain
useful solutions to certain stochastic dynamical systems [26]. Consider a system de-
scribed by a set of stochastic ODEs

dX
dt

= f(X,ω), (4)

where X = (x1, x2, . . . , xn) is the n-dimensional model variable, ω = (ω1,ω2, . . . ,

ωm) is the stochastic variable or parameter, an m-dimensional prescribed i.i.d. ran-
dom variable each of which is drawn from the probability space (Ω,F ,μ). Here Ω

is the sampling space, F the σ field expanded by subsets of Ω , and μ the proba-
bility measure defined on F . More complicated cases, e.g., where the dynamics is
described by PDEs, can be formulated as well, however, such cases are not relevant
to the current study.

Given a prescribed i.i.d. random variable ω, this method suggests the decomposi-
tion of the solution X(ω) in the Hilbert space of the appropriately chosen polynomials
of the random variable:

X(ω) =
∑

i

αiΦi(ω), (5)

where Φi is the member function or the basis function in the Hilbert space, and αi

is called the ith order PC coefficient. Here, a one-dimensional relation is consid-
ered for simplicity; however, the concept itself can be readily extended to cases of
higher dimension for the functionals and/or the random variables. The basis polyno-
mial functions are orthonormal in the sense that

〈Φi,Φj 〉 =
∫

Ω

Φi(ω)Φ̄j (ω)dμ(ω) = δij , (6)
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where Φ̄j (ω) is the complex conjugate of Φj(ω) and δij is the Kronecker delta. From
this orthonormality condition, αi can be computed by

αi = 〈
X(ω),Φi(ω)

〉
. (7)

In practice, the above expansion gets truncated at a certain order. Previous studies [35,
36] confirm that the orthonormal polynomials chosen from the Askey scheme for a
given probability measure μ make the PC expansion converge exponentially with
the rate of O(e−κP ), where κ is a constant. However, the number of PC coefficients
may rapidly increase as the random variable dimension m becomes larger, posing a
computational challenge.

For low-dimensional random dynamical systems, where faster convergence arises
through the PC expansion, one can substitute the truncated expansion Eq. (7) into
Eq. (4),

∑
i

dαi

dt
Φi(ω) = f

(∑
i

αiΦi(ω),ω

)
. (8)

Taking the Galerkin projection on both sides using the basis Φi(ω), the following
weak form [26, 36] is obtained:

dαj

dt
=

〈
f
(∑

i

αiΦi(ω),ω

)
,Φj (ω)

〉
, (9)

consisting of a set of coupled ODEs for the PC coefficients αj , which provide an
alternative description of the system dynamics to the original model, once such a
description is confirmed to exist.

5.2 Coarse-Graining of the Clustering Dynamics

A computational dynamical analysis at the individual neuron level, such as the one
presented in the previous section, is too complicated to perform for any realistic pop-
ulation size; a coarse-grained, population-level dynamical description and analysis
become not only preferred, but necessary. Instead of keeping track of the state of ev-
ery single neuron, we need to keep only a few collective descriptors of these states;
yet, since the neurons are not homogeneous in their synaptic dynamics, a few mo-
ments of the distribution of the states are not sufficient: We need to not only know
what the average and standard deviation of the states are, we also need to know which
neurons (e.g. the low-τ or the high-τ ones) have low or high state values. In this joint
distribution of neuron identities and neuron states, the marginal distribution of neuron
states is not informative enough. That is why we turn to PC coefficients quantifying
the correlation between the neuron identities and the neuron states. As was observed
in the single cluster formation in a few different networks of oscillators [24, 27–29],
a similar type of correlation between the dynamical variables (Vi , mi , hi , ni ) of the
ith oscillator and its heterogeneity parameter ωi rapidly develops in each of the clus-
ters separately, during the initial transient (Fig. 2). The PC approach introduced to
study the single cluster states [24] thus needs to be extended for the coarse-grained
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description of the double- and multiple-cluster states. In order to examine the pos-
sibility of applying the PC expansion to the double-cluster states, we first need to
identify the distribution characteristics of the random (i.e., heterogeneity) parameters
for each cluster, after the split.

When the network breaks up into two sub-networks, the original random parame-
ters, ωi ’s, are divided into two sets in a number of seemingly random ways, depending
on the initial conditions of the neurons. Repeated numerical simulations from random
initial configurations reveal that the random parameters for each cluster consistently
span more or less the same range as the original random parameters (Fig. 2), and that
the breaking of the original random parameter set into two subsets occurs in various
permutations of the neuron identities. We quantitatively examine the statistical char-
acteristics of the divided random parameters subsets using the Kolmogorov–Smirnov
(KS) and the Wilk–Shapiro (WS) statistical tests [37], which compare the proper-
ties of an observed sample with those of the known distribution. As an illustrative
example, we consider the case of a normal heterogeneity distribution.

The KS test compares the quartiles, or the cumulative distribution functions
(CDFs). Denoting the sample CDF and the CDF of a known distribution as FN and
F , respectively, let the largest difference between the two be

DN = sup
∣∣FN(ω) − F(ω)

∣∣, (10)

where ω is an i.i.d. random variable. For test statistics such as DN , the correspond-
ing p value is the probability of obtaining a value of DN at least as extreme as that
observed. For a given p value, the threshold value of DN can be computed. If DN

exceeds the threshold, then the distribution of the sample is said to be inconsistent
with the assumed distribution with significance level p. For DN below the threshold,
all that can be said is that the distribution of the sample is not inconsistent with the
assumed distribution characteristics, with significance level 1 − p. The KS test is ex-
amined for the double-cluster states formed from a variety of initial configurations, in
the case of the normal distribution of ω. When the population size exceeds hundreds
of neurons, we find that the p value becomes very small, of the order of or even less
than 0.01. The CDFs for varying network sizes are shown in Fig. 8. In addition to
this, the WS test, comparing the ordered sample data with the expected value of the
rank scores, or the normal scores or “rankits” [38], leads to the same conclusion.

Based on the above statistical tests, we conclude that the heterogeneity distribution
within each of the two sub-populations is not inconsistent with the heterogeneity
distribution of the entire population; and therefore, the same type of PC expansion
used to coarse-grain the single-cluster state [24] can be applied to each of the double
clusters independently, using the same basis functions and range. The PC expansion
of the dynamical variables for each cluster reads

Y [i](t;ω) =
l∑

j=0

α
[i]
j (t)Hj (ω), (11)

where Y [i] is the dynamical variable (e.g., V , m, n, or h) of the ith neuronal cluster,
which is expanded up to the lth order in the basis polynomials H(ω). Hj is the
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Fig. 8 Kolmogorov–Smirnov test of the hypothesis that the heterogeneity distribution of one of the dou-
ble-cluster states is consistent with the full heterogeneity distribution; this test is necessary in order to
identify the characteristics of the random variable of each of the sub-networks, for possible PC expansion.
The cumulative distribution function (CDF) of the normal distribution (thin solid line) is compared with the
CDFs of ξ = ω/σω (thick lines) of sub-networks formed with 25, 50, 100, and 500 neurons, respectively.
The original distribution for the entire population is a standard normal distribution

Fig. 9 Time series of the first
four PC coefficients (α’s) during
a cycle for the variables of a V

and b n (N = 100, I = 6.7).
A normal distribution of the
standard deviation of 0.01 is
used for ω, and the coefficients
are expanded in Hermite
polynomials. Only a
single-cluster state case is
shown, and the magnitudes of
the corresponding coefficients in
double-cluster states are
comparable to single-cluster
case. The insets are blow-ups of
the region where the higher
order coefficients have their
maximum values; α3’s in both
cases are already practically
negligible

j th order basis polynomial, which is chosen according to the characteristics of the
random variable ω, following the generalized PC framework of the Askey scheme
[36]. For instance, for a uniform random variable of ω, Legendre polynomials are
the appropriate choice that leads to fast convergence. Likewise, Hermite polynomials
[H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, . . .] are appropriate for
a normal random variable (Fig. 9) as in Wiener’s original work [25]. In the end,
the states of 100 neurons in two clusters can be summarized in terms of a few PC
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coefficients per state variable per cluster; in our case 100 neurons (400 total variables,
excluding synaptic variable) will be seen to usefully reduce to three coefficients per
state variable (and thus 12 variables) for each cluster, for a total of 24 variables, a
reduction by a factor of 16.7; 200 or even 2000 total neurons would still reduce to 24
coarse variables!

In an infinitely large network where the distribution of the random variable can
be treated as continuous, the coefficients α

[i]
j can be determined by the orthogonality

relationship among the basis functions (Eq. (7)). However, in a finite-size network,
as is often the case in practice, or when a truncated distribution is considered (e.g.,
the normal distribution for the current system, with the constraint of τi > 0), the
orthogonality no longer holds exactly, and regression, such as a least squares fitting,
determines the PC coefficients better. The j th PC coefficient for a particular variable
y at a given time t is obtained by minimizing the residual R

[i]
j of the ith cluster

R
[i]
j =

N [i]∑
k=1

[
yk(t) − α

[i]
j (t)Hj (ωk)

]2
, (12)

where yk is a variable associated with the kth neuron belonging to the ith cluster,
which consists of N [i] neurons. The first two coefficients have the following geomet-
rical meaning on the coarse-grained level: α

[i]
0 is the average value, and α

[i]
1 measures

the level of linear spread of the variable among the neurons around the average value
α

[i]
0 , as a consequence of the heterogeneity. For the case of the membrane potential

(when Vk(t) is yk(t)), α
[i]
0 measures the average potential, and α

[i]
1 roughly measures

the instantaneous spread of the potential among the neurons in the ith cluster. The
higher order PC coefficients are related to higher order moments of the spread of the
individual neuron’s variables in each cluster.

The individual-level details, such as the exact composition of the neurons in each
cluster, vary among different initial conditions and different draws of the random
variable ω. However, the temporal trajectories of the PC coefficients remain robust
over such microscopically distinguishable states, with a small level of statistical fluc-
tuation. The PC expansion Eq. (11) converges rapidly; the magnitudes of α

[i]
j rapidly

decrease with increasing j (Fig. 9), as expected from the Askey scheme. Upon ensem-
ble averaging, the PC description provides an appropriate statistical representation of
the coarse-grained state.

So far, the random parameters in the divided clusters are assumed to be described
by the same distribution as the original one for the entire network based on the find-
ings of the statistical tests. However, even if statistically unlikely, the previously men-
tioned extreme case of “split-in-the-middle” state where one cluster is formed by the
neurons of ω < ωm (ωm is a specific value around the middle value of 0) while the
other cluster consists of neurons with the remaining values of ω, does exist; an arti-
ficially prepared double cluster state conforming to this grouping (whether ω < ωm

or not) is indeed found to be stable. There exist only few limit cycle solutions of this
type, and such states would be statistically insignificant in the coarse-grained descrip-
tion. Should such a split arise, the heterogeneity characteristics of each sub-network
is clearly inconsistent with the full heterogeneity distribution. In this case, the het-
erogeneity sub-domain corresponding to each cluster should be treated separately to



Page 16 of 20 S.J. Moon et al.

account for the split at ωm. A variant or extension of the multi-element PC method
developed for stochastic differential equations [39] should be considered in this case.

6 Coarse-Grained Computations

In this section, we perform equation-free coarse-grained computations for double
cluster states, treating each of them separately. By doing this, we circumvent the
steps deriving the model equations for the PC coefficients (Eq. (9)) for the current
system. We do not identify the coarse-grained model equations; however, we analyze
the dynamics by computationally obtaining the solutions to those equations. This ap-
proach does not rely on any simplifying assumptions, such as weak coupling, as long
as synchronization occurs. It is not limited to a particular choice of the distribution
for the random parameters and, in principle, it works equally well both for “large”
finite and infinite network sizes. The success of this method attests to the accurate
and sufficient description of the network by the chosen few coarse-grained variables.

In order for a coarse-grained calculation of double-clusters to be feasible, the neu-
rons belonging to different clusters need to be systematically identified and grouped
together. This can be done in the following way: As the variation of the dynamical
variables within a cluster is much less than that between two clusters most of the time
during a cycle (Fig. 2), the neurons belonging to different clusters can be differen-
tiated by measuring the temporal correlation of their dynamical variables. The time
series of the neuron variables observed over a length of time Tob (still a fraction of
the period) is sampled at a set of intervals, say at every time interval of Δt = Tob/10;
then the correlation of the sampled time series is calculated. A threshold is applied to
the correlation matrix; matrix entries are set to 1 if above the threshold and 0 other-
wise. The thresholded correlation matrix can be interpreted as the adjacency matrix
of the network of neurons. The first non-trivial eigenvector of the adjacency matrix
reveals clustering of the neurons. The entries of this eigenvector are clearly clustered
around two distinct values. Projections of the eigenvector onto the different neurons
are sorted by these values, thereby identifying two clusters.

We start the equation-free coarse-grained analysis by integrating the double-
cluster states in time, using a forward Euler coarse projective integration method
[40] (which does not differ conceptually from the coarse integration of single-cluster
states). The first three PC coefficients for each dynamical variable are retained as
the coarse-grained variables (truncating at α2 is enough for general purposes, per the
convergence results seen in Fig. 9). This method, in which a forward Euler—or other
choice—projection algorithm is directly applied to the time evolution of the coarse-
grained variables, is the simplest demonstration of the applicability of equation-free
computations. Each iteration in this algorithm consists of a few steps; healing, mi-
croscopic evolution (direct integration of the full model), and the projection of the
coarse-grained variables. The number of time steps in each of the healing, direct in-
tegration, and jump steps can be fixed for the entire time evolution or be adaptively
changed for better efficiency [41].

We implement the coarse projective integration algorithm with fixed time-step
sizes for each of the healing, evaluation, and jump steps, selected to accommodate
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Fig. 10 Coarse projective integration of double-cluster states (dotted lines in blue and black colors),
compared against the direct full integration (solid lines in the same colors). Both projective integrations
are performed with a fixed step size of 0.001; after five healing steps, three such steps during a short direct
integration are used to estimate time derivatives, with a forward Euler jump of 20 steps. a The blow-up
of the temporal trajectory of α0 for V (the average membrane potential) of two clusters, during a fraction
of the period, where the two clusters reach the peak potential successively. b The α0 for V of one cluster
against that of the other cluster, during a cycle of a double-cluster state (I = 6.5612, with the standard
deviation ωi is 0.05). Arrows indicate the direction of the evolution over time

accuracy and stability even when the variables rapidly change around a spike; these
step sizes are almost certainly “overly cautious” during the slow recovery phase of
the neuron. The small errors between coarse projective integration and direct full in-
tegration (which depend on the projection step size and the projection method) can be
seen in Fig. 10. Projective integration for the cluster states needs to be implemented
with caution because of the network’s multi-stability.

A more sophisticated algorithm can be used to compute the coarse-grained peri-
odic solution of the double clusters, utilizing an equation-free fixed point algorithm
[40] and the PC expansion. Standard Newton–Raphson-like fixed point algorithms
require evaluation of both the coarse residual and the coarse Jacobian. The coarse-
grained level equations are evaluated with the coarse time-stepper, and the evalua-
tion of the coarse Jacobian is circumvented using a Krylov subspace method, which
requires only evaluating the action of this Jacobian on specified vectors [42]. The
coarse-grained representation of a typical solution is found this way. The individual
and coarse solutions can deviate slightly, as only a finite number of PC coefficients
are used during the computations, but the difference is practically unnoticeable in the
“eye norm” (Fig. 11).

Both of the demonstrated equation-free algorithms successfully compute the cor-
rect dynamical states, confirming that a few PC expansion coefficients are appropriate
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Fig. 11 Limit cycles of a double-cluster state calculated with a coarse-grained fixed point algorithm for

100 neurons, plotted in terms of the first order PC coefficient α
[1]
0 (for V ) of one cluster against that of

the other cluster (α[2]
0 ). A normal distribution of ω is considered, with a standard deviation of 0.01 and

I = 6.5612. The solid line (blue) corresponds to the full integration, and the dashed line (red), which
overlays the solid one, corresponds to what is obtained by the coarse fixed point algorithm. Note that these
two solutions are visually indistinguishable

coarse-grained dynamical variables, enabling the description and the dynamical anal-
ysis of the large ensemble of neurons at that level.

7 Conclusion

Any “system of systems” in practice, including a network of neurons studied here, is
unlikely to consist of homogeneously coupled identical entities, and the consideration
of heterogeneity among the constituent entities is often necessary. The heterogeneity
may introduce fundamental differences into the dynamics, compared to the homo-
geneous case. The oscillating entities in each cluster are now no longer completely
synchronized, the dynamical dimension of the network increases tremendously, and
the individual-level dynamics and the corresponding dynamical analysis in a tradi-
tional way could be much more complicated. Even though some of the qualitative
features may remain the same as in the homogeneous case, the detailed dynamics
often cannot easily be deduced from that of the homogeneous limit. Furthermore, the
system size is often finite, and an analysis treating it as an infinitely large system,
where the heterogeneity parameter is assumed to be continuous, might not be appro-
priate. The equation-free coarse-grained computational method presented here is well
suited to such cases, without requiring any of simplifying assumptions.

In a heterogeneously coupled network of Hodgkin–Huxley neurons, as studied
here, all the combinatorially different ways of transitioning between the single- and
the double-cluster states are distinguishable at the individual neuron level. The com-
position of the neurons in each of the double-cluster states is apparently “randomly”
decided, depending on the initial configuration. We see that the random variables in
each sub-network are statistically not inconsistent with those of the original, entire
network. This enables each of the double clusters to be described and analyzed in
the equation-free polynomial chaos framework that has already successfully been ap-
plied to single-cluster states in several other examples. Our approach, based on the
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strong correlations among the variables which rapidly develop in each of the clusters
separately during the initial transient, gives rise to a low-dimensional description of
a large heterogeneous network. The approach is applicable to a range of oscillator
models exhibiting the same type of splitting of random parameters in the formation
of double clusters. Though this work focuses on neurons splitting into two groups
(in networks of Hodgkin–Huxley neurons), the techniques used here constitute a first
step that can be extended for different types of oscillators and different number of
groups or clusters, as long as the correlation remains valid. For instance, in the case
of slightly different types of double clusters (when I is heterogeneous; refer to Fig. 4),
our method should be extended, in line with some variant of the multi-element PC
method developed for stochastic differential equations [39].
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