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Abstract We investigate the propagation of probabilistic uncertainty through the ac-
tion potential mechanism in nerve cells. Using the Hodgkin—Huxley (H-H) model
and Stochastic Collocation on Sparse Grids, we obtain an accurate probabilistic in-
terpretation of the deterministic dynamics of the transmembrane potential and gating
variables. Using Sobol indices, out of the 11 uncertain parameters in the H-H model,
we unravel two main uncertainty sources, which account for more than 90 % of the
fluctuations in neuronal responses, and have a direct biophysical interpretation. We
discuss how this interesting feature of the H-H model allows one to reduce greatly the
probabilistic degrees of freedom in uncertainty quantification analyses, saving CPU
time in numerical simulations and opening possibilities for probabilistic generalisa-
tion of other deterministic models of great importance in physiology and mathemati-
cal neuroscience.

Keywords Neurodynamics - Uncertainty Quantification - Sparse grid quadrature -
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1 Findings

To provide sensible mechanistic models of neuronal circuits in the brain and to fa-
cilitate principled interpretations of data from experiments in vitro and in vivo, bio-
physical models of neurodynamic systems must incorporate variability as a defin-
ing feature [1-6]. Neuronal variability cannot be accounted for by dynamic models
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formulated as deterministic differential equations. However, such models can be ex-
tended to do so by incorporating probabilistic degrees of freedom. For this purpose,
the versatile technique of Stochastic Collocation on Sparse Grids (SCSG) [7-9], from
Uncertainty Quantification (UQ) theory [7, 10—13], has been recently suggested as a
computationally efficient strategy [14].

In this report, we deploy SCSG to investigate uncertainty propagation through the
action potential mechanism in the H-H model [15], namely
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with x(¢, &) = [v(t, &), m(t, &), n(t, &), h(t, &)]T, where v(z, §) is the electrical po-
tential across a neuron’s membrane, m(t, €), h(t, &) are the gating variables associ-
ated with the activation and inactivation of Na* ion currents, respectively, n(z, §) is
the gating variable associated with the activation of K* ions current and where [
represents current injected through the cell membrane.

The ODE system (1) exhibits a combination of excitability and highly nonlinear
dynamics. We will show how these features can render the model output extremely
sensitive to parameter fluctuations under realistic physiological conditions, demon-
strating that Uncertainty Quantification might be indispensable to provide sensible
biophysical models of nerve impulses. The H-H model [15] includes a vector of 11
parameters, which in state space form reads

E = [UOamOanOah()v gNZU gK7 gLaENEb EK?ELaC]v (2)

consisting of four initial conditions vg, mg, 1o, hg, three parameters describing the
maximum conductances gna, gK, gL, corresponding to Na®™, K™ and leakage ion
currents respectively, three parameters describing their equilibrium Nernst potentials
EnNa, Ex, EL, and the membrane capacitance C. These parameters are uncertain,
for they must be determined experimentally and are therefore subject to errors and
fluctuations. Their nominal values measured in squid axon preparations are listed in
Table 2 [15].

In the probabilistic generalisation of the H-H model, a Banach space describing
such 11 probabilistic degrees of freedom is required for uncertainty analysis. With-
out appropriate discretisation and dimensionality reduction procedures, the compu-
tational cost of such analysis depends exponentially on the number of parameters,
challenging the capacities of current hardware.

An efficient numerical strategy to deal with such a curse of dimensionality, is to
find a selection of points in probability space that yields a good approximation of
the model’s response surface. This can be achieved by constructing a Sparse Grid
in the multi-dimensional probability space for each time point following Smolyak’s
algorithm [8, 9, 16—18].

Using Sparse Grid quadrature in conjunction with Sobol indices, we unravelled
the parameters whose fluctuation causes most of the observed variability in neuronal
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Fig. 1 a The top panel shows the probabilistic membrane potential, distributions are indicated by
box-and-whiskers plots at each time instant. The middle panel shows the first order Sobol indices, re-
vealing the sources of the fluctuations in the membrane potential for each uncertain parameter. The black
line is the sum of all indices; deviation from one indicates variance due to parameter interactions. The
bottom panel shows the variance difference w.r.t. the model with 11 uncertain parameters for four parsi-
monious models. Only two parameters (gx and ENj,) are required to estimate a variability with less than
10 % error. b Average of the Sobol indices for all uncertain parameters during the time interval shown in
a for the membrane potential and gating variables

=

responses. Such an analysis hinted at a parsimonious H-H model with two proba-
bilistic degrees of freedom instead of 11, the use of which can achieve tremendous
savings in CPU time as discussed below.

The uncertain dynamics of the membrane potential during neuronal discharge is
shown in Fig. 1(a). The probability distribution at each time point was obtained by
Monte Carlo sampling of a third level Sparse Grid piecewise linear interpolant [8, 19]
of the response surface for the H-H model, using 1000 samples per time point from
a uniform probability distribution and assuming 20 % of variability in the nominal
values of the parameters listed in Table 2. The mean and deterministic solutions are
also shown. Notice that they differ when the membrane depolarisation reaches its
acme, which is often a signature of high nonlinearity.

In Fig. 1, the mean was obtained at the fourth level of a Sparse Grid constructed
using the Gauss—Patterson (GP) quadrature rule, which requires 18591 function calls.
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These deterministic sequences are nested by construction, and for smooth integrands
they can achieve the maximum degree of exactness from all nested rules [9, 18, 20].

In Fig. 1 neuronal variability is reported on the top panel by box-and-whisker
plots, with one box per time point. On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles and the whiskers extend to the most
extreme membrane potentials observed.

The middle panel of Fig. 1(a) shows the dynamics of the first order Sobol indices
[18, 21-24], computed by Sparse Grid quadrature. The Sobol indices in Fig. 1(a)
allow one to determine the relative contribution of each uncertain parameter to the
variability of the model output observed in the top panel at each instant in time. The
black line shows the sum of all indices; deviation from one indicates fluctuations in
the model output due to parameter interactions not accounted for by the first order
indices.

The variance and Sobol indices were obtained at the third level of a GP Sparse Grid
in 22 dimensions, requiring 17249 function calls. Notice that only 21 dimensions are
needed to obtain the first order Sobol indices via the conditional variance. However,
adding one extra dimension allows one to estimate the total variance with the same
Sparse Grid, which often increases accuracy [18].

The RMS errors for the mean, variance and Sobol indices shown in Fig. 1 are sum-
marised in Table 1. The most accurate numerical solution is taken as a reference for
error analysis, thus the error estimates listed in the table are conservative, since they
approximate the numerical error at the last but one quadrature level. Table 1 shows
that the numerical errors are sufficiently small, validating the choice of quadrature
level for further analysis.

In Fig. 1(b) all uncertainty sources are represented in a colour map, showing the
average value of all Sobol indices during the time interval shown in Fig. 1(a). All
outputs of the model, namely the membrane potential and the three gating variables
are shown.

Interestingly, this colour map reveals that only a small subset of parameters causes
most of the uncertainty in the model outputs. Therefore, all other parameters can be
fixed to their nominal values preserving the probabilistic interpretation of the model.
This is illustrated in the bottom panel of Fig. 1(a), which shows the difference in
standard deviation of four effective models with respect to that of the model with the
11 uncertain parameters listed in Table 2. Notice that only two parameters, gg and
ENa, are required to estimate a variability with less than 10 % difference w.r.t. the
original model for all time points.

The singular value decomposition (SVD) of the (11 x 4) data matrix M displayed
in Fig. 1(b) as a colour map, namely M = U SV, provides a quantitative ranking of
the average Sobol indices. The first four columns of U after normalising the patterns
so that each column has maximum entry 1 are shown in Table 2. Notice that the
first mode (first column of U) contains more than 90 % of the energy, given by the
square of the singular values. Notice also that in this maximum energy mode, two
probabilistic degrees of freedom are dominant, namely gg and En,. The influence
of all the other parameters in the variability of the model output is small. Therefore,
they can be fixed to their nominal values. This greatly reduces the dimensionality of
the model retaining most of its probabilistic features.
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Table 1 RMS error of the Sobol indices show in Fig. 1(a) for all model outputs

E o Sno Smy Sho v Sex Sena Ser. SEx SENa SgL Sc
n(t,€) 0.000163 0.000350 0.016969 0.016969 0.016710 0.016970  0.012563  0.009419 0.016891 0.015160 0.011181 0.016949  0.015736
m(t,§) 0.001494 0.004814 0.090669 0.090668 0.089543 0.090673 0.097756 0.057230 0.090059 0.078554 0.062516  0.090535  0.082084
h(t,&) 0.000112 0.000271 0.046205 0.046205 0.045488 0.046202 0.035574 0.027616  0.045989 0.042473  0.017223  0.046155  0.042037
v(t, &) 0.004669 0.052106 0.087004 0.087002 0.084896 0.086993 0.079195 0.055766  0.086538 0.073698 0.060872 0.086917 0.078468
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Table 2 Normalised ranking of the average Sobol indices displayed in the colour map in Fig. 1(b) using
SVD

Mode 1 Mode 2 Mode 3 Mode 4
Mode energy: 0.944690 0.042433 0.011498 0.001379
Nominal values
no = 0.0003; 0.297* 0.001064 0.000372 0.012061 0.034643
mg =0.0011; 0.00616* 0.001064 0.000372 0.012060 0.034648
ho =0.9998; 0.12* 0.140569 0.436071 0.555783 1.000000
vy = —10 mV; 0.001* 0.001206 —0.000072 0.013534 —0.059476
gK = 36 pS/cm? 1.000000 —0.627724 —0.197631 0.384254
gNa = 120 uS/cm? 0.172271 0.300390 —0.305118 0.084833
g1, =0.3 uS/cm? 0.001741 0.001124 0.016312 —0.091209
Ex =—-12mV 0.232445 —0.225011 1.000000 —0.978672
ENa = 115 mV 0.532895 1.000000 —0.190240 —0.759104
Ep, =10.613 mV 0.001293 —0.000515 0.013721 —0.048586
c=1 pF/cm2 0.099635 0.342083 0.410624 0.931327

The symbol * indicates the initial values used in Fig. 2.

This feature of the H-H model is important, since it shows that probabilistic neu-
rodynamic simulations can be performed parsimoniously, in an effective probability
subspace of dimension far smaller than that of the original model. This greatly re-
duces the computational cost and facilitates the analysis of neuronal systems beyond
individual cells.

As a non-trivial illustrative application of our parsimonious model Fig. 2 shows
the impact of parameter fluctuations on two relevant neurocomputational properties,
namely, neural response to current input and membrane refractoriness.

In Fig. 2(a) two 1 ms current pulses are applied to a deterministic H-H neuron
whose membrane potential is initially at the resting potential. The first pulse of
8.5 uA/cm? increases the membrane potential, but it does not elicit neuronal dis-
charge. A second stronger pulse of 20 pA/cm? applied later, immediately triggers a
spike. The probabilistic counterpart of this experiment is shown in (c). The large error
bars in response to the first pulse show that a small current pulse can indeed trigger
action potentials contrary to deterministic predictions.

In panels (b) and (d) the strong current pulse of 20 pA/cm? is applied first, imme-
diately eliciting a spike. In the deterministic model shown in panel (b), a second small
pulse of 10.5 pA/cm? fails to ignite an action potential due to membrane refractori-
ness. Under parameter uncertainty, panel (d) shows large variability in the neuronal
response, indicating a second action potential, which is impossible on deterministic
grounds.

Synaptic input responses and membrane refractoriness are neurocomputational
properties of realistic nerve cells, which directly influence collective neuronal be-
haviour as well as the efficiency of neural codes. Thus, the examples above illustrate
how incorporating variability in neurodynamic models might be crucial to our under-
standing of the nervous system and the behaving brain.
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Fig. 2 In panel a two current pulses are applied to a deterministic neuron with the nominal values for the
parameters listed in Table 2. The first pulse is not strong enough to elicit a spike, the second stronger pulse
immediately triggers a spike. Panel ¢ shows the probabilistic counterpart of this experiment assuming
20 % of variability in the nominal parameters gg and ENg. Large error bars show that the first small
current pulse can trigger action potentials in this instance. In panels b and d the stronger current pulse
is applied first, immediately eliciting a spike. In the deterministic model shown in panel b, the second
small pulse fails to trigger a spike when applied during the refractory period. In the probabilistic model
d, large variability in the output indicates a second action potential, which would not be expected from
deterministic predictions

Probabilistic generalisation of other deterministic models of great importance in
mathematical neuroscience might be possible using the methods and results in this re-
port, such as those describing neuronal interactions and signal transmission in active
neural media, at a feasible computational cost.
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