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Abstract The Wilson—Cowan neural field equations describe the dynamical behav-
ior of a 1-D continuum of excitatory and inhibitory cortical neural aggregates, using
a pair of coupled integro-differential equations. Here we use bifurcation theory and
small-noise linear stochastics to study the range of a phase transitions—sudden qual-
itative changes in the state of a dynamical system emerging from a bifurcation—
accessible to the Wilson—Cowan network. Specifically, we examine saddle-node,
Hopf, Turing, and Turing—Hopf instabilities. We introduce stochasticity by adding
small-amplitude spatio-temporal white noise, and analyze the resulting subthreshold
fluctuations using an Ornstein—Uhlenbeck linearization. This analysis predicts diver-
gent changes in correlation and spectral characteristics of neural activity during close
approach to bifurcation from below. We validate these theoretical predictions using
numerical simulations. The results demonstrate the role of noise in the emergence
of critically slowed precursors in both space and time, and suggest that these early-
warning signals are a universal feature of a neural system close to bifurcation. In
particular, these precursor signals are likely to have neurobiological significance as
early warnings of impending state change in the cortex. We support this claim with
an analysis of the in vitro local field potentials recorded from slices of mouse-brain
tissue. We show that in the period leading up to emergence of spontaneous seizure-
like events, the mouse field potentials show a characteristic spectral focusing toward
lower frequencies concomitant with a growth in fluctuation variance, consistent with
critical slowing near a bifurcation point. This observation of biological criticality has
clear implications regarding the feasibility of seizure prediction.
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1 Introduction

The underlying mechanism of an abrupt state transformation in a multi-stable dy-
namical system is well described using bifurcation theory. In a close vicinity to a
state change or tipping point, dynamical systems exhibit increased susceptibility and
fragility, which manifests as amplification and prolongation of the system response
to intrinsic or experimentally induced perturbations [1]. This phenomenon, known
as critical slowing down, is accompanied by increased variance [2] and higher auto-
correlations [3, 4] of state fluctuations, and growth in spectral power at characteris-
tic frequencies. Anticipation of an imminent tipping point mandates detection of its
early-warning signals to permit timely intervention, particularly when the transition
is unwelcome (e.g., species collapse) or pathological (e.g., seizure onset).

Identifying empirical indicators of an impending state transition is an area of ac-
tive research across many disciplines including population ecology [5, 6], climate
change [3], high-voltage engineering [7], and human behavior [8]. The notion of an
abrupt phase transition, and its attendant critical signatures, has also been applied to
in vivo and in vitro biological neural systems, and to simplified mathematical models
of these.

Researchers have reported increased fluctuation power and slowed time-scales
prior to the firing of action potentials in a squid giant axon [9], and in simplified
point models of resonator and integrator neuron types [10]. Similar fluctuation surges
in electrical activity have been observed in intra-cell recordings of the prelude to the
down-to-up state transition for a rat neuron emerging from anesthesia [11]; in ECoG
recordings during the period preceding emergence of synchronized epileptic seizure
events [12]; and in EEG recordings during the natural or drug-induced switching of
large-scale brain activity due to onset of sleep or anesthesia [13]. Although most work
has focused on the temporal properties of the fluctuations, some researchers have also
identified enhanced spatial correlations near a bifurcation point, for example near the
transition between slow-wave sleep and REM [14]; and in a 1-D mean-field model of
a cortex near the anesthetic critical point [15].

Our goal in the present paper is to examine critical slowing phenomena within the
context of the classic Wilson—Cowan (W—C) continuum model of neural population
dynamics [16, 17]. In recent work [18] we have examined the close approach to cor-
tical phase transitions in a mature mean-field model (containing synaptic response
functions, axonal wave equations, gap-junction diffusion, somatic integration) ex-
pressed as a moderately complicated set of coupled differential equations that require
a minimum of 8 to 14 system variables (depending on the assumed symmetries in the
couplings between the excitatory and inhibitory neural populations), making numeri-
cal and analytic manipulations unwieldy. The attraction of the W—C continuum model
is its simplicity: with only two system variables (rather than 8, or 14, or more), it is
possible to explore the close approach to bifurcation in a spatially extended neural
model at relatively little analytic or computational cost. It is our hope that the present
work might serve as a useful tutorial testbed that invites other researchers to begin
investigating criticality in a simplified neural context. Although we have made exten-
sive use of small-noise Ornstein—Uhlenbeck (O-U) theory in our previous studies, to
our knowledge this is the first time this predictive and quantitative technique has been
applied to the W—C model.
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Critical transitions are mediated by specific bifurcation classes, so we are moti-
vated to examine the signs of critical slowing exhibited by each class of bifurcation
that is accessible to the spatially extended Wilson-Cowan model. The specific bi-
furcations of interest are saddle-node, Hopf, Turing, and mixed-mode Turing—Hopf
interactions.

We must acknowledge the rich and extensive literature discussing temporal and
spatial bifurcations in Wilson—Cowan (and W—C-like) mean-field neural models. For
example, Ermentrout and Cowan [19], and more recently Bressloff [20], have ex-
plored diffusion-driven Turing instabilities in the W—C model supporting formation
of stationary activity patterns that have been likened to visual hallucinations. Laing
and Troy [21] derived stability conditions for so-called multi-bump neural activ-
ity patterns; Coombes and Laing [22] introduced delays into the W—C model and
demonstrated Hopf and saddle-node bifurcations as well as bursting behavior. Close
approach to the Hopf instability induces spectral growth in specific EEG frequency
bands, and this idea has been investigated in an anesthesia context recently by Hutt
[23] and by Hindriks and van Putten [24], with the latter work based on a thalamo-
cortical model by Robinson et al. [25]. Hutt et al. [26-28] have studied the impact of
noise on spatio-temporal instabilities in neural fields containing synaptic and trans-
mission delays, and has established conditions for emergence of Hopf and Turing
instabilities, identifying the growth of fluctuation variance on approach to bifurca-
tion with critical slowing, and showing that under certain conditions, noise can delay
Turing onset. We will revisit the latter point in the Discussion.

The paper is organized as follows: Sect. 2 describes the spatially extended Wilson—
Cowan model. We locate its homogeneous stationary state and identify parameter set-
tings that cause the state to lose stability via distinct bifurcations: saddle-node, Hopf,
or Turing. We introduce additive noise, and detail a theoretical technique (Ornstein—
Uhlenbeck linearization), based on the subthreshold eigenvalue structure of the steady
state, that accurately predicts the statistical properties of the noise-induced fluctua-
tions. The results of a series of stochastic numerical experiments are presented in
Sect. 3 where we demonstrate critically slowed fluctuations—emerging as patterns
in time and space—for close approach to bifurcation; these emergent patterns are
concordant with O-U theoretical projections. To confirm relevance of critical slow-
ing to neuroscience, we describe electrophysiological recordings taken from slices
of mouse-brain tissue that have been chemically conditioned to intermittently reen-
ter a seizure-like state. Section 4 concludes with a discussion of the apparent uni-
versality of critical slowing prior to bifurcation, and its potential usefulness as an
early-warning biosignal of impending state change in neural systems.

2 Mathematical Model

The Wilson—-Cowan (W—C) model describes the average spike frequency of a neu-
ral population as a function of continuous time. The fundamental assumption is that
brain activity can be described in terms of interactions between excitatory and in-
hibitory populations, so the state variables for the model are E and I, the excitatory
and inhibitory spike-rates, respectively. Based on known neuroanatomy, Wilson and
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Cowan assumed a random, dense connectivity between individual cells, allowing at
least one connection between any two cells in the network.

Wilson and Cowan neglected spatial interactions in their original 1972 paper [16]
in order to investigate temporal dynamics of a localized cortical column; they then
extended their model to spatially distributed neural populations in their 1973 paper
[17], and modeled 1-D rods and 2-D sheets of cortical and thalamic tissue.

In this section we introduce the W—C model equations in both their spatially ho-
mogeneous and their spatially varying 1-D forms, define their stationary states, and
perform a linear stability analysis about these stationary states in Fourier (wavenum-
ber ¢) domain to extract the eigenvalue-vs.-g dispersion curves, enabling us to iden-
tify potential bifurcations points at which stability of a given stationary state is
predicted to disappear. We then introduce stochasticity into the model by adding
small-amplitude spatio-temporal white noises, and compute a set of subthreshold
fluctuation statistics (autocorrelations, temporal and spatial spectral densities) that
allow us to quantify the expected alterations in fluctuation properties as the W—C
model closely approaches a given critical point. We then detail the algorithm used to
numerically integrate the stochastic W—C equations in one spatial dimension.

2.1 Simplified Wilson—-Cowan Equations

In 1999 Wilson presented a simplified form of neural equations [29] describing the
collective behavior of cortical tissue in terms of a discrete network of laterally con-
nected localized aggregates of E and I populations representing cortical columns.
The simplified equations are

D g
+SE<Z wep(x —NEQ) =Y wiglx — I+ P)»
y y
(1
T 1) =—1(x)
Tar T

+8 (Z wer(x = YEQ) — Y wirx = »I0) + Q>,
y y

where the wj; are synaptic strengths from population j fo population k (e.g., wyg
is the I — E connection strength). Note that the discrete summations actually repre-
sent spatial convolutions. For our theoretical work we choose to return these network
equations to continuum form,

‘L’E%E(X,l) =—E@, 1)+ Sp[wee(x) @ E(x,1) —wip(x) ® I (x,1) + P],
@)
r[%l(x, D=—I10x,0)+S[werx) @ I(x, 1) —w;(x)®I(x,1)+ 0],

where E(x) and I(x) are the mean firing rate of neurons at position x in (ms)~ !,
tg and 77 are the relaxation time-constants of each population (in ms), and P, Q
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(in mV) are the external voltage inputs entering each population. Here ® represents
a 1-D spatial convolution defined as

[l ® for) = / A1) - folx =) dx. 3

The four w;; (j,k € {E,I}) in Egs. (2) are connectivity functions that define the
density (strength per unit length; units mV-ms/um) of the synaptic coupling between
and within populations. The coupling strength is assumed to decay exponentially with
distance:

wk(x) = 2% exp(—xl/ojk), )
where b (in mV-ms) is the maximum synaptic coupling strength between popula-
tions j and k, and o, (in pm) is the space constant that defines the spatial extent of
connectivity. (This form of normalization ensures that f_oooc Wk (x)dx = bj; and is
particularly useful when simplifying Eq. (2) to its spatially homogeneous limit (see
Sect. 2.2).) Wilson [29] used a Naka—Rushton function to map from voltage to firing
rate, but we elect to use the sigmoidal function,

max

. — J ;
SO = aeea, gy S ED ®

where 6 (in mV) is the threshold voltage for half-maximum firing, @ (in (mV)™!) sets
the sigmoid slope at threshold, and S}“a" (in (ms)~!) is the maximum firing rate.

2.2 Homogeneous Wilson—Cowan Limit

As the simplest reference case, we investigate a homogeneous cortex in which
the population firing rates are independent of position, so that E(x,t) — E(t),
I(x,t) — I(t), and the convolution integrals in Egs. (2) collapse to simple scaling of
the population activities:

dE
= —E+Sg(bppE —bigl + P),
(6)

dl
‘”E =—1+S;(bgiE —bii1+ Q).

While keeping the parameter values biologically plausible and broadly similar to
those used in ref [30], we fine-tuned the sigmoidal parameters (Sg}alx, ag.1, Oe.1)
to generate at least one non-monotone nullcline; and the P, Q voltdge inputs were
selected to give a multi-root region in the steady-state distribution curve. See Table 1
for parameter values, and Sect. 2.4 for the definition of nullclines and steady-state

diagram.
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Table 1 Symbol definitions and parameter values for 1-D Wilson—-Cowan model

Symbol Description Value Value Unit
(homogeneous)  (space dependent)

E, I Excitatory and inhibitory firing rates (ms)~!
SE, St Sigmoid functions (ms)~!
TE,I E and I time constants 10, 8 10, 8 ms
bgg EI1E.11 Synaptic coupling strength 18, 10, 10, 0 18,10, 19,0 mV-ms
OFEE E — E space constant 50 43,50 um
OE] E — I space constant 110 [42-148.5] um
oIE I — E space constant 110 [42-148.5] um
ory I — [ space constant 20 20 um
ng‘l" Maximum firing rate 0.1,0.15 0.1,0.15 (ms)~!
ag.| Sigmoid slope at threshold 9 9 (mv)~!
OE.1 Half-maximum firing threshold 22 22 mV
P, Q Exogenous voltage inputs [0.9-3.3], 1.35 [0.9-3.3], 1.35 mV

2.3 Space-Dependent Wilson—-Cowan Model of 1-D Cortical Rod

The space-dependent integro-differential form of the Wilson—Cowan model of a 1-D
“cortical rod” of length L can be directly derived from Egs. (2),

P L2
tg—E(x,t)=—E(x,t)+ Sg |:bEE/ E(x',0)ngg(x —x')dx’
ot —L)2
L)2
—bIE/ I(x’,t)nlE(x—x’)dx’+P:|,
)
@)
P L/2
—I(x,0)=—1(x, 1)+ S; |:bEI / E(x',t)ngr(x —x')dx’
at —L/2
L/2
_b”/ I(x’,t)n”(x—x’)dx’—i— Qi|,
—L/2
where L is the length of integration domain, and 7 j; is defined as
/ 1 / .
njk(x—x)zrexp(—|x—x|/ajk), (j, k) e{E,I}. (8)

O jk
Assuming that L is much greater than the length of spatial spread of excitatory and
inhibitory connections (i.e., L > 0;j, 1, j € {E, I}) the range of integration in (7) can

be extended to oo with negligible error. We define ¢ and ¢ as excitatory and
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inhibitory input fluxes in (ms)~! to population of type k as,

¢Ek(x,l)=/ E(x', t)npr(x —x") dx,

—00

00 )]
O1i(x, 1) :/ 1(x' O)npe(x —x")dx', ke(E,I}.
—0o0
Then ¢gi(x,t), ¢rr(x, t) obey (see the Appendix for a proof):
2 9 2
(10)

32
(A%k - W)d’lk(?ﬁ 1) =A%1(x,1),

where A j; = 1/0j is the inverse length-scale for connections. These wave equations
for ¢k, 1k describe propagation of flux activity from distant excitatory and inhibitory
populations into type-k synaptic inputs of the cortical rod. We introduce the flux
variables here in order to compute a wavenumber-dependent Jacobian matrix J (9)
(see Eq. (15)), and hence extract the eigenvalue-vs.-g dispersion curves for the space-
dependent W-C cortex from which we can identify potential instability bifurcation
points. (However, for our numerical simulations, we solve the integro-differential
equations (2) directly; see Sect. 2.8 for further details.)

The equations for the 1-D space-dependent Wilson—Cowan neural continuum can
be written,

d
5 EGi = [-E(x, 1)+ Sg(beedee(x,1) —bipgrp(x, 1) + P)]/te

= Bi(E,¢cE. bI1E), (11)

d
oI = [—1Cx,0) + S1(berder(x. 1) —bridri(x, 1) + Q)]/7;
=By(I, 91, ¢11),

with the four long-range ¢ ;. fluxes obeying the partial differential equations (10).
2.4 Steady States of Deterministic System

Following [15], we assume that the cortical rod normally operates close to a homo-
geneous equilibrium state with uniform firing rates (E°, I°). For the deterministic
model of Eq. (11), the equilibrium points are defined by setting all space- and time-
derivatives to zero, and replacing the E (x, t) and I (x, t) firing rates with their fixed-
point values, independent of time and space,

E°=Sg(bppre(x.t) —bregie(x, 1) + P),

(12)
1°=S1(bgr¢er(x.1) —brrr(x, 1) + Q).
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Fig. 1 Steady-state distribution and eigenvalues of homogeneous Wilson—Cowan cortex. (a) Steady-state
excitatory firing rate (E°) as a function of external excitatory input voltage P. (b) The real part of the
eigenvalues corresponding to steady-state diagram of the model, determining stability and type of steady
states. (¢) The scaled imaginary part of eigenvalues, specifying the stationary oscillatory behavior of the
system in Hz. Saddle-node (SN) and Hopf (HB) bifurcations switch the stability of the steady state near
P ~1.7892426576 and 2.1971513755 mV, respectively

Noting that at steady state, excitatory and inhibitory fluxes (¢ g and ¢y ) are equal to
steady-state excitatory and inhibitory firing rates E° and 7°, we obtain the nullcline
equations:

EOZSE(bEEEO—bIEIO-I—P), E-nullcline,
(13)
I°:SI(bEIE°—b1110+Q), I-nullcline

whose intersections locate the (E°, I°) steady state. Figure 1(a) shows the distribution
of steady states as a function of excitatory drive P for the parameter values of Table 1.
We observe both single- and multi-root regions, with bifurcation points predicted
when the steady states lose stability.

2.5 Linear Stability Analysis of Deterministic Model

Linear stability analysis of the deterministic space-independent cortex allows us to
predict the conditions under which temporal and spatial instabilities might emerge.
We linearize Egs. (11) by imposing a small perturbation 7 around homogeneous
stationary state Z°,

Z(x,t) —> Z°+ Z(x,1), Ze{E, I, ek, k). (14)
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Here Z(x, 1) = 8.e*e/?* has amplitude &, temporal evolution e*', and spatial mode
e'?* at wavenumber ¢g. Substituting (14) in Eqgs. (11) and Taylor-expanding to first-
order, we obtain the linearized Wilson—Cowan model,

d . ~ -
7,00 =) -u@),

where

g spet
i) = [ afem}

is the perturbation vector, and

9B, , 0B _ App 9B, Afp
Jgy=|"F T ekt OOIE (Ajpte?) (15)
By A 9By | 0By Al
OPEI (A%, +¢?) oI 011 (A2,+4?)

is the Jacobian matrix that is to be evaluated at stationary states (E°, I°); the g-
dependent eigenvalues of this matrix determine system stability.

We analyze the space-independent case by setting g = 0, and plotting the eigen-
value spectrum as a function of excitatory voltage drive P; see Fig. 1(b), (c). Two
bifurcation types are evident: emergence of multiple states via saddle-node (SN) bi-
furcation, and loss of stability of the top branch via Hopf bifurcation (HB).

2.6 Dispersion Curves of Space-Dependent Model

To explore the stability characteristics of the spatially extended 1-D model, we plot
the distribution of g-dependent eigenvalues of the J (g) matrix. In Figs. 2(a) and 3(b)
we plot the real and imaginary parts of eigenvalues at a selected steady state as a
function of scaled wavenumber g /27 to define the dispersion curve. Expressing the
dominant eigenvalue as A = o &+ jw, we identify the real part Re(A) = « as the damp-
ing rate, and Im(A) = w as the oscillatory component. Thus instability at a particular

(@)
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w
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Fig. 2 Prediction of Turing pattern formation in 1-D Wilson—Cowan cortex. (a) Dispersion curves cor-
responding to P = 2.34 mV. The real and imaginary (scaled by 2m) parts of dominant eigenvalues are
plotted versus wavenumber ¢ for three different values of inhibitory synaptic range constants oy jE.-
Turing pattern is formed when the «-curve has positive excursions. (b) Corresponding color-coded spa-
tio-temporal plot of 1-D cortex displaying the emergence of Turing pattern evolving from initial state of
E ~0.0859 1/ms corresponding to P =2.34 mV and og ;g =200 um
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Fig. 3 Emergence of Turing—Hopf mixed-mode oscillations in 1-D Wilson—Cowan cortex. (a) Steady
state distribution with a selected point at P =2 mV indicated by green circle. The system has a Hopf
instability here. (b) Dispersion curve with synaptic range constant set to o jg = 112 um (see Table 1
for other parameter values) predicts a Turing instability at spatial frequency g ~ 2.62 waves/mm and a
temporal instability of frequency f ~ 47 Hz (see the w/2m value at ¢ = 0 axis on dispersion curve).
(¢) Bird’s-eye view and (d) 3-D spatio-temporal graphs demonstrate spatio-temporal evolution of 1-D
network and emergence of mixed-mode Turing—Hopf oscillations in space and time

wavenumber ¢ is predicted if «(g) goes positive, in which case the oscillatory com-
ponent will have spatial frequency w(q)/2m.

2.7 Stochastic Model and Subthreshold Fluctuation Statistics

We can formulate a stochastic version of the Wilson—Cowan 1-D cortex by adding
white-noise perturbations to the right hand side of Egs. (11):

ad
TEEE(X, 1)=—E(x,1)+ Sg(beedee(x,1) —bip¢re(x, 1) + P)

+cidi(x, 1),
(16)

d
T El(x’ 1)=—I(x,0)+ Si(berder(x, 1) —brrpr1(x, 1) + Q)
+ c262(x, 1),

where ¢ » are scaling constants that ensure that the fluctuations are small, and &; > are
a pair of independent zero-mean, Gaussian-distributed spatio-temporal white-noise
sources [15],

(£, 0)=0, (m(x, 0D (x", 1)) =8mnd(x —x")8(t = 1'), (17)

where §,,,,, is the dimensionless Kronecker delta, §(-) is the Dirac delta with a dimen-
sionless total area under its curve, and the (- - -) represents the ensemble average over
space and time. The noise terms represent naturally occurring stochasticity in neural
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systems arising from (i) random spatio-temporal changes of neuron properties, and
(i1) continuous random bombardments of neural membrane and ion channels origi-
nating from other neural populations.

Following a method similar to that presented in Sect. 2.5 for the deterministic
model, linearization of the stochastic form results in

9 E:(x,t)]_~ [E:(x,t)] |:(C1/TE)~§1(XJ)i| 18
at[l(x,t) VD0 | [@/meen ] (1%

with J (g) defined as in Eq. (15) with assumption that A;; =0, i.e., there is no self-
inhibition in the system. We make Eq. (18) amenable to theoretical analysis by refor-
mulating it into a two-variable Ornstein—Uhlenbeck (O-U) system of equations using
stochastic techniques described by Chaturvedi et al. [31] and Gardiner [32],

d[EC,n] 5, [E@D E1(x,0)
E[f(x,t)}_ A(q)[f(x,t)]Jﬂ/ﬁ[éz(x,t)] 4

where A = —J is the g-dependent drift matrix and D is a diagonal 2 x 2 diffusion
matrix,

_[ter/te)? 0
D‘[ 0 (cz/mz] 20)

Ornstein—Uhlenbeck stationary statistics is well documented [31, 32], allowing us to
immediately write down expressions for spatial power spectral density, autocorrela-
tion, and variance of noise-induced fluctuations in cortical firing rates.

2.7.1 Spatial Power Spectral Density

The covariance matrix for our two-dimensional system is defined

~ N 1; (E(q’t)E(C],’t» <E(C]»t)l(q/,f)>
Gl.4') = lim, I:(I(q,t)E(q/,t)) <1<q,r>1(qct>>}

=278(q +4')G(q).

21

where (-) signifies the expected value, and é(q) is the spatial power spectrum com-
puted as [31, 32]

det(A)D + [A — tr(A)IID[A — tr(A)I]T
2tr(A) det(A)

G(g) = , (22)

in which I is the 2x2 identity matrix; det(-) and tr(-) are the determinant and trace
operators, respectively. To determine é(q) at a nominated subthreshold steady state
and wavenumber ¢, we evaluate the Jacobian j of Eq. (15) at that fixed point, then
substitute A = —J into Eq. (22). The spatial power spectral density of the excitatory
firing rate E at wavenumber ¢ is then given by [(}(q)]u, the (1, 1) entry of the 2 x 2
spectrum matrix.
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The spatial variance of the E~FE fluctuations is estimated by evaluating the inte-
gral ffooo [G(g)]11 dg; meanwhile the spatial autocorrelation of these fluctuations is

extracted from the inverse Fourier transform, [G(x)]; = F -1 [G(q)] 11-
2.7.2 Temporal Autocorrelation and Variance

Following [31] and [32], one can express the temporal correlation matrix T as the
product of matrix exponential exp(—A(q) - 7), evaluated at lag 7, with spatial spectral
density G(g):

T(q,7) =exp(—A(g) - 1)G(g), ©>0, (23)

with symmetry property 'i‘(q, —7) = [T(q, )17, The ['i‘(q, 7)]11 element gives the
theoretical expression for ¢ and t dependent autocorrelation function. We calculate
the theoretical temporal autocorrelation at discrete T = t; values as

gmax _
f T(q.7 = ) dg = C(x). (24)
0

to produce the temporal autocorrelation function C(t). In order to compare theoret-
ical predictions with numerical results, we build a ¢ vector based on spatial charac-
teristics of 1-D network. The maximum spatial frequency is gmax = Nx/L = 1/Ax
where N, is the number of grid points, Ax is the spatial resolution of the 1-D rod and
L is its length, setting the spacing in the g-domain as Ag = 1/L.

The temporal variance is the value of temporal autocorrelation at T = 0 ms.

2.8 Numerical Solution of the Stochastic W—C Equations

The stochastic differential equations were expressed as integro-differential equations
(2) with the addition of the small spatio-temporal white noises of Egs. (16). The four
spatial convolutions (two per equation) were computed directly using MATLAB’s
cconv (circular convolution) function to implement periodic boundaries. For ex-
ample, the convolution of the E—FE connectivity kernel wgg(x) with E(x,t), the
excitatory activity along the cortical rod at time 7,

L2

wEE(x)®E(x»t)E/ wge(X') - E(x —x',1)dx',
L2

can be coded in vectorized MATLAB form as
ifftshift(cconv(Wgg, E, Ny) * Ax),

where L = N, Ax is the length of the cortical rod sampled with resolution Ax at
Ny points from —L/2 to L/2, wEgE is the vector of E—E kernel weights (Eq. (4)),
and E is the vector of E-activity at time ¢ along the rod; both vectors contain Ny
elements. The cconv output requires an 1 £ ftshift adjustment (swapping of left
and right halves) to ensure that the location of the rod center at x = 0 is conserved by
the circular convolution.
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A fixed time-step Euler algorithm was used to integrate the equations: we used
At = 0.1 ms for saddle-node analysis; 0.005 ms for other instabilities. Initial values
of the £ and [ firing activity were set to the steady states values computed numer-
ically from the intersection of the excitatory and inhibitory nullclines. Simulation
durations were 10, 1.0, 5.0, and 0.5 s for saddle-node, Hopf, Turing and Turing—Hopf
bifurcations, respectively. Spatial resolution was Ax = 1.5 pm for all simulations.
Field lengths of L =3, 1,6,6 mm were used for simulation of saddle-node, Hopf,
Turing, and Turing-Hopf bifurcations respectively. Appendix B contains demonstra-
tion code.

3 Results

In this section we describe the variety of distinct bifurcations accessible to a de-
terministic Wilson—Cowan model, then run a series of numerical simulations of the
stochastic W—C model placed close to bifurcation. We analyze the noise-induced
subthreshold fluctuation statistics, and compare the numerical results with lin-
ear Ornstein—Uhlenbeck theoretical predictions, showing excellent agreement. To
demonstrate relevance to real neuroscience, we report some new results from our
electrophysiology laboratory showing precursor electrical activity in slices of rodent
brain-tissue that have been chemically treated to generate infrequent spontaneous
seizures.

3.1 Bifurcations Accessible to the Deterministic 1-D Wilson—-Cowan Model

Four instability bifurcations of the deterministic Wilson—Cowan cortex are demon-
strated here: saddle-node, Hopf, Turing, and interacting Turing—Hopf; and in the sec-
tion following, we will explore and quantify the noise-induced fluctuation responses
of the cortex during close approach to each bifurcation point. Note that the oscillatory
Turing instability (also known as a wave instability) is missing from this list of ac-
cessible bifurcations; this is because our implementation of the W—C model contains
only two interacting components (E and 7), while a minimum of three components
are needed to support emergence of traveling or standing waves [33—35]. We return
to this point briefly in the Discussion.

3.1.1 Saddle-Node

A saddle-node bifurcation occurs when the midbranch of the S-bend curve of steady
states collides with the bottom branch and annihilates at Psn >~ 1.7892426576 mV:
see Fig. 1(a). This bifurcation results in the disappearance of a pair of steady states,
forcing the system to move to an alternate state resulting in a qualitative change in
system dynamics.

3.1.2 Hopf

A Hopf bifurcation occurs when the real part of the complex eigenvalue pair changes
sign at Pyp ~ 2.1971513755 mV as indicated in Fig. 1(b), (c). This bifurcation also
changes the qualitative behavior of the cortex, leading to emergence of temporal os-
cillations.
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3.1.3 Turing

The dispersion curves for P = 2.34 mV are plotted in Fig. 2(a). Boosting the in-
hibitory synaptic range constants og; and o g elevates the dispersion curves. When
oke1,1E = 200 pum, parts of the a-curve exhibit positive excursions predicting the for-
mation of spatial Turing structures with spatial frequency ¢g/2m ~ 1.6 waves/mm.
The time—space graph of Fig. 2(b) shows the simulation results from the correspond-
ing stochastic model. Initialized at the homogeneous deterministic steady state, the
network spontaneously evolves into a spatially periodic structure. Although the pat-
tern first emerges as a small sinusoidal oscillation in space whose frequency matches
that of the dominant mode, the pattern rapidly becomes strongly non-sinusoidal as
it grows, with nonlinear contributions from a broad range of wavenumbers (1.1 <
g/27 < 3mm~!). We note that linear eigenvalue analysis is only valid while the
fluctuations remain small and sinusoidal, and it cannot predict the form of the fully
evolved nonlinear spatial structure.

3.1.4 Turing—Hopf

The Turing—Hopf spatio-temporal instability results from the interaction between
Turing and Hopf bifurcations, so requires that the conditions for both bifurcations
be met simultaneously—i.e., the system should be close to an HB point, and the
corresponding « dispersion curve should have a positive excursion at some nonzero
g-value. We select P =2 mV to put the system in an unstable Hopf mode (green cir-
cle in Fig. 3(a)), and we set oy 1 = 112 um to induce a Turing instability (positive
o for g # 0). The red curve of Fig. 3(b) predicts a global (¢ = 0) mode of temporal
frequency f ~ 47 HZ. We simulate the corresponding stochastic model and plot the
spatio-temporal graphs of the 1-D cortex in Fig. 3(c) (bird’s-eye view) and (d) (3-D
view) showing the Turing—Hopf interaction. The temporal Hopf oscillations domi-
nate first, then the Turing pattern emerges, leading to development of mixed-mode
oscillations.

In the following sections we drive the subthreshold system toward distinct bifur-
cation points, limiting ourselves to small noise-induced subthreshold fluctuations that
approach, but do not cross, bifurcation threshold. We focus on the altering spectral
characteristics of these fluctuations, looking for evidence of critical slowing.

3.2 Close Approach to State Transition in the Stochastic W—C Model

The results of theoretical and numerical examination of the stochastic 1-D Wilson—
Cowan model prior to onset of its four bifurcation types are presented in this section.
We sample the fluctuation characteristics of the model at three distinct steady-state
coordinates, labeled I, II, IIT in Figs. 4-6, representing a closer and closer approach
to instability threshold.

3.2.1 Homogeneous Steady States and Dispersion Curves

The steady state diagrams and dispersion curves of the 1-D cortex prior to bifurcation
are displayed in Fig. 4. The subthreshold progress toward instability is indicated by
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Fig. 4 Approach to state transition in 1-D Wilson-Cowan cortex. The cortex is placed in subthreshold
mode I, close to one of four bifurcation types, then driven toward instability in two steps (IL, IIT) using one
of two control parameters or a combination of both (red arrows). The resulting dispersion curves predict
the spatial or temporal frequency of upcoming instabilities, determined by value of ¢/27 at the peak of
a-curve (blue) and the /2 value (green) at the g = 0 axis, respectively

the «-curves approaching zero from below. For the different bifurcation types, either
one or two a-curve peaks are observed:

e A peak at the ¢ = 0 axis can be predictive of saddle-node or Hopf, with expected
temporal frequency that can be read from the w /2 -curve.

e Apeakatq/2mw # 0 suggests a Turing bifurcation at this nonzero spatial frequency.

e The presence of two peaks, one at ¢g/27 = 0 and the other at g /27 # 0, predicts a
mixed-mode Turing—Hopf spatio-temporal pattern.

The dispersion curves predict a “dc-resonant” frequency in space and time for
saddle-node mode (Fig. 4(a)), while the approach to Hopf bifurcation is accompanied
with temporal oscillations of frequencies w /2w = 44.04,45.45,46.11 Hz (Fig. 4(b)).
Spatial frequencies of ¢ /2w = 2.27,2.18,2.18 waves/mm are predicted for neural
activity along the cortical rod when Turing instability is approached (Fig. 4(c)).
Note that the strong dominance of Turing over Hopf instability (compare peak val-
ues of a-curve at ¢ = 0 axis and at g/2mw ~ 2.7 waves/mm) suppresses the forma-
tion of temporal oscillations in Turing mode. In contrast, the dispersion curves in
Fig. 4(d) feature dual o-curve peaks of comparable heights, suggesting the emergence
of mixed-mode oscillations with frequencies of w/2m = 44.02,45.145, 46.08 Hz and
q/2m ~2.64,2.64,2.61 waves/mm in time and space, respectively.
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Fig. 5 Growth of correlated fluctuations in time and/or space prior to state transition. The approach to the
four distinct bifurcation classes is controlled via the parameters listed in Fig. 4. The results for each of the
four subthreshold experiments are displayed in three layers /-II1, with the topmost layer being closest to
instability

3.2.2 Numerical Study and Ornstein—Uhlenbeck Predictions

Using the values for control parameters of Fig. 4, we performed three sets of stochas-
tic simulations for each of the four bifurcations. Results are summarized in Fig. 5(a—
d), showing the spatio-temporal evolution of excitatory firing rate (E) of cortical
neurons as a function of time and space. The emergent patterns are distinctive to
each bifurcation class. Proximity to saddle-node is characterized by low-frequency
(asymptotically zero frequency) fluctuations in both time and space (Fig. 5(a)), while
temporal oscillations in the form of vertical stripes in Fig. 5(b) are indicative of an up-
coming Hopf instability. The noise-induced fluctuations of the system arrange them-
selves in space as horizontal strips in Fig. 5(c) when the system is advanced toward
the Turing threshold. Placing the system in the vicinity of simultaneous Hopf and
Turing instabilities results in mixed-mode oscillations in time and space (Fig. 5(d)).
In all cases, the patterns strengthen and become more distinct on close approach to
the bifurcation point.

A quantitative analysis of simulation results is performed by computing the tem-
poral autocorrelations (tACC) (for saddle-node, Hopf, and mixed-mode instabilities)
and spatial power spectral density (SPSD) (for Turing and mixed-mode instabilities).
In Fig. 6 we compare stochastic simulations with linear Ornstein—Uhlenbeck statis-
tical projections for both tACC and sPSD, expressing the results as ratios relative to
the variance and spectral density of the white noise stimulus. For each bifurcation
type, the three graphs correspond to the three layers of Fig. 5.
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Fig. 6 Temporal and spectral precursors of a phase transition. Noise-induced fluctuations of Wilson—
Cowan 1-D cortex is studied via the temporal autocorrelation (tACC) and the spatial power spectral den-
sity (sPSD). Numerical simulation results (black) are compared with theoretical predictions (red) assum-
ing Ornstein—Uhlenbeck stochastics following Gardiner [32]. Approach to (a) saddle-node bifurcation;
(b) Hopf instability; (¢) Turing instability; (d) mixed-mode oscillations
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For a saddle-node, the experimental tACC is the average of temporal autocorrela-
tions of noise-induced E fluctuations obtained from 300 elements evenly distributed
along the cortical rod (some of these traces are superimposed in Fig. 6(a)). The the-
oretical tACC (thick red curve) shows good agreement with experiment. We observe
a pronounced widening of the autocorrelation curve, indicating a strong increase in
correlation time, as the saddle-node annihilation point is approached. The unexpected
appearance of side-lobe oscillations in the experimental tACC curves is an artifact
caused by the finite length of the rod and the finite duration of the simulations: these
“oscillations” damp out for longer rod lengths and simulation durations. A small
growth in temporal variance (equal to tACC value at the origin) is also evident.

Theoretical and experimental temporal autocorrelations of E-fluctuations close to
the Hopf bifurcation are displayed in Fig. 6(b). Growth in the amplitude of tACC
at the origin and the side lobes is evident as the system is driven toward the Hopf
instability. The experimental autocorrelation function is computed as the average of
individual tACCs (thin blue traces) from 100 sample points evenly distributed along
the cortical rod. The experiments confirm the emergence and amplification of tempo-
ral oscillations of frequency f ~ 46 Hz.

We analyze the spatial patterns of Turing and mixed-mode oscillations in terms
of the spatial spectral density of the E-fluctuations. The sPSD (theoretical and ex-
perimental) for the Turing instability is plotted in Fig. 6(c). Here we have used the
E-values of the entire 1-D rod at 10,000 instants evenly distributed between t = 0
and r = 5 s to compute an average experimental sSPSD. We see that approach to the
Turing threshold is accompanied by a significant increase in the peak value of sPSD
at spatial frequency g /2m ~ 2.2 waves/mm, as predicted in the dispersion curves of
Fig. 4(c).

We plot the theoretical and experimental SPSD for mixed-mode oscillations in
Fig. 6(d). As expected from Fig. 4(d), twin peaks emerge at ¢ = 0 and g /27 ~
2.6 waves/mm, and these grow on approach to the threshold of the Turing—Hopf insta-
bility. The temporal dynamics prior to the mixed-mode instability is also quantified in
this figure using tACC of the E-fluctuations. The results are similar to the Hopf case,
showing an increased amplitude of tACC at the origin and the side lobes with tempo-
ral frequency f =~ 45 Hz. Note the discrepancy between theoretical and experimental
results when the state is very close to the threshold of the mixed-mode instability.
We propose that this discrepancy arises from nonlinear interactions between the two
types of bifurcation, making linear stability predictions less accurate.

To quantify the growth in correlation times, we fitted biexponential expressions to
the envelope of temporal autocorrelation functions of Fig. 6,

ci1exp(—m1t) + crexp(—myt), withmy >my >0,

representing the sum of fast (m) and slow (m3) exponential decays. The sum (c] +
cp) estimates the fluctuation variance (zero-lag autocorrelation), and mo gives the
slow decay-rate (inverse correlation time). Plotted in the top and bottom panels of
Fig. 7, respectively, these graphs show the expected indicators of critical slowing:
growth of fluctuation variance and duration as bifurcation is approached.

We also plotted the peaks of the theoretical spatial power spectral density functions
of Fig. 6 for the Turing (see Fig. 8(a)) and the Turing—Hopf (Fig. 8(b)) cases. The
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Fig. 7 Growth of zero-lag temporal autocorrelation and slowing of decay-rate prior to phase transition.
Biexponential expressions of the form cj exp(—m 1) + ¢ exp(—m ) were fitted to the decay envelopes
of the temporal autocorrelations of Fig. 6. Top panels display predicted and measured normalized variance
c1 + ¢ of the fitted curve; bottom panels are the m, slow exponential decay-rates (in (ms)~ 1)
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increased power on approaching to bifurcation indicates a concentration of spectral
content in an increasingly focused frequency range.

3.3 In Vitro Evidence for Critical Slowing Near Bifurcation in a Brain Slice

The stochastic Wilson—Cowan model runs, supported by linear Ornstein—Uhlenbeck
analysis, are unambiguous in their predictions: irrespective of bifurcation type, noise-
induced fluctuations are expected to increase in intensity while becoming more pro-
longed in space and time (i.e., become critically slowed) during close approach to
the bifurcation point. Thus, near a given critical point, we can expect specific uni-
versal characteristics to emerge in the statistical properties of the fluctuations. But
these mathematical predictions are based on an idealized cortex—does the notion
of criticality have any significance for real biological organisms in general and for
neuroscience in particular?

To address this question, we have closely examined the spontaneous electrical ac-
tivity in slices of mouse-brain tissue (from the hippocampus) perfused by an artificial
cerebral spinal fluid containing zero concentration of magnesium ions (this causes
NMDA channels to open) to which is added a low concentration of carbachol (to
activate acetylcholine receptors) (see Ch. 7 of [36] for details). This preparation en-
courages spontaneous formation of transient avalanches of electrical activity in the
slice, which have been likened to epileptic seizures, so they are referred to as seizure-
like events (SLEs). If the emergence of an SLE represents a transition through a

@ Springer



Page 20 of 27 E Negahbani et al.

Mean variance [ mV2]
N

Frequency (Hz)

oSes. . B

J 4 & (e _____
0 20 40 60 80 100 120 140 160 180 200 1 1T i
Time(s) Pre-event phase

Fig.9 Invitro evidence of critical slowing near onset of a phase transition. (a) Local field potential record-
ings showing three spontaneous seizure-like events (SLEs) in a slice of mouse-brain tissue. (b) Spectro-
grams show characteristic “down-chirp” (drift to lower frequencies) in spectral activity as SLE onset is
approached (white arrows). Note that the frequency scale increases vertically downwards. (¢) The qui-
escent interval between consecutive events is sampled for 1 s at three representative times (labeled 7, 11,
IIT) for variance analysis. Bars show the variance distribution across 40 inter-SLE periods. Note the pro-
nounced growth in variance as the moment of seizure onset is approached

neural bifurcation point, then one would expect to see evidence of criticality in the
local field potentials in the period leading up to the event.

Figure 9(a) shows three consecutive SLEs that are well separated in time: each
avalanche lasts ~20 s, with about 60 s of electrical quiescence between events. Close
examination of each quiescent interval reveals a subtle growth in background activ-
ity that commences about 30 s prior to avalanche, and that this activity has spectral
energy that initially extends to ~20 Hz, but drops to lower frequencies as onset ap-
proaches, forming a characteristic “down-chirp” in the spectrogram of Fig. 9(b). The
1-s fluctuation variances at three representative times (labeled I, II, III in panel (a))
show pronounced growth in background activity as the transition point is approached.

These observations provide pleasing qualitative support for the conjecture that
seizure can be modeled as a neural bifurcation showing precursive characteristics of
critical slowing and growing of fluctuation activity.

4 Discussion

This paper adopts a lightly modified form of the one-dimensional E—I Wilson—
Cowan network equations as an ideal testbed for investigating subthreshold dynam-
ics prior to state transition. We used linear stability analysis to predict activity pat-
terns emerging from the stationary homogeneous state of the W—C cortex. With ap-
propriate selection of parameters, we obtain different patterns associated with the
different bifurcations: bistability (saddle-node), bulk oscillations (Hopf), stationary
patterns (Turing), and drifting patterns (Turing—Hopf). We quantified the impact of
spatio-temporal noise on the homogeneous steady state by performing a lineariza-
tion to derive an effective spatially extended Ornstein—Uhlenbeck process, allowing
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us to approximate the spatial power spectral density and correlation functions for the
stochastic system. Near the saddle-node, the autocorrelation curve widens, indicating
an increase in correlation time. Near the Hopf case, the autocorrelation grows at the
origin and side lobes associated with the oscillation frequency. Near the Turing bifur-
cation, the power spectrum grows at the bifurcation pattern frequency. Finally, near
the Turing—Hopf case, both the power spectrum and the autocorrelation grow at the
onsetting pattern’s chosen frequency.

Missing from this list of bifurcations of the W—C network is the wave instability
arising from an oscillating Turing. This is because, in the absence of delays, it is not
possible to generate an oscillating Turing in the two-variable W—C model: such an
instability can only occur in reaction—diffusion systems of three or more morphogens.
This was first pointed out by Turing in his foundational 1952 paper [33], and more
recent papers have used this fact to extract mathematical conditions for the occurrence
of a wave instability in three-component reaction—diffusion systems [34, 35].

Hutt et al. [27, 28] have shown that under certain specific conditions, the presence
of noise can delay the onset of a Turing bifurcation in a neural field. The delay oc-
curs if the noise is “global” (uncorrelated in time while constant in space) since it
induces a form of space-locking of field activity; but no such delay was reported in
the case of fully uncorrelated noise (i.e., noise which is white in both space and time).
Because all of our numerical simulations use white noise that is completely uncorre-
lated in space and time, our experiments of Fig. 5(c) near the Turing critical point of
Fig. 4(c) do not exhibit any onset delay, and thus the stochastic simulations for close
approach to the Turing bifurcation for the 1-D cortex are in excellent agreement with
the Chaturvedi et al. [31] Ornstein—Uhlenbeck predictions for white-noise-induced
spatial power spectral densities (compare black and red traces of Fig. 6(c)).

The fact that we are able to predict accurately the nonlinear growth in system
responsiveness using linear stochastic theory is both surprising and satisfying. The
success of linear stochastics arises because the noise stimulus and the resulting fluctu-
ation amplitudes are small, so the eigenvalues obtained from linear stability analysis
provide a good characterization of the deterministic response to the train of stochas-
tic impulses from the noise. The critical slowing near threshold is governed by the
weakening decay-rate of the dominant eigenvalue: at the critical point, the decay-rate
is zero, so the perturbation response becomes infinitely prolonged.

The observed growth and widening of temporal autocorrelations and amplification
of power at specific frequencies near instability onset are characteristic of systems
approaching phase transition. Dramatic switching of brain activity to a new state
is observed in both healthy and pathological cases, for example during wake—sleep
and wake—anesthesia cycles, and at seizure onset. It has been proposed recently by
Jirsa et al. that different bifurcation types may be responsible for these neural state
transitions [37]. Indeed, the paradoxical boost in neural activity prior to anesthesia-
induced loss of consciousness [38] may be a manifestation of critical slowing prior
to loss of consciousness [39, 40].

The translation of our Wilson—Cowan model predictions—namely critical slow-
ing near bifurcation onset—into real clinical applications will not be trivial. Under
the very strictly controlled conditions of the in vitro brain slice, we were only able to
see clear frequency changes in our local field potential recordings (Fig. 9) after going

@ Springer



Page 22 of 27 E Negahbani et al.

to the utmost lengths to suppress experimental noise (such as electrode drift, electro-
magnetic interference, vibration-induced artifacts, ground loops). This is because the
subthreshold fluctuations are orders of magnitude smaller than the huge nonlinear os-
cillations that erupt beyond the bifurcation point. Nevertheless, our model does indi-
cate an alternative approach to seizure prediction: current attempts at seizure predic-
tion have concentrated on the detection of very high frequency oscillations as seizure
precursors [41]; we suggest that it might be profitable to look instead at changes in
very low temporal and spatial frequencies as indicators of imminent seizure.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

The main idea of this paper was proposed by EN, DASR, MLSR. EN performed all numerical, theoretical
and experimental investigations. EN and DASR prepared the manuscript. All authors read and approved
the final manuscript.

Acknowledgements We acknowledge support from the Marsden Fund of the Royal Society of New
Zealand. We thank Dr Logan Voss for his guidance with the in vitro brain-slice experiments. We also
appreciate the insightful comments and guidance from two referees.

Appendix A
A.1 Verification of Flux Equations for 1-D Wilson—Cowan Model Eqs. (10)

Here we show that the excitatory and inhibitory fluxes entering the population of
type k,

¢Ek(x,l)=f E(x', t)ngk(x —x")dx’,

00 (A.1)
¢1k(x,t)=/ I(x',t)npe(x —x')dx', ke{E, I},

—0o0

are a solution of the partial differential equations (10). Define the Fourier transforms

- 1 +00 ,
Fer(@.n) = — / dx pi(x, e,

2 J_
e (A2)
~ 1 .
EEk(C]»t)Zg/. dx Egi(x,t)e™ "7,
—0Q
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and the corresponding inverse mappings:

+o0 5 )
¢Ek(xit)=/‘ dq ¢Er(g, 1)e'?”,

. (A3)
Epc(x,1) = f dg Ere(q. el

—00

Since the first equation in Eq. (A.1) is a convolution, its Fourier domain equivalent is

bEk(q,1) =2mE(q,1) - ii(q). (A.4)

Substitute (A.2), (A.3) in the first equation of (10):

L oo 2 2\ 4 —igx
5 (A%x +4%)Prxlq, e dg
T J-c0
too )
=5 . A E(g, e dg. (A.5)
Equating integrands:
(A% +q?)Prr(q, 1) = A E(g, 1) (A.6)
Ek T4 Ek\q, (g, 1), .
using (A.4):
1 A,
i(q) = —(—E) (A7)
2 A%k—i—qz

Note From Eq. (4):
B 1 Ajk +00 A .
Y v L4 d jklxla—igx
n(q) 27T< > /_OO xe €
. 0
_ A {/ dx eAiki—igx +/Oodx e_A-/“x_iqx}
2Q27) | oo 0
Ajk {I:eA/kx_i‘/xT I:e_Af"x_i"x ]+°O
= - +|—
2Qm) L Ajk—iq ] —(Ajk+iq) Jo }
_ Ajk |: 1 + 1 j|
C2@m) [ Aj—iq  Aj+ig

. . 2
_ Ak [Ajk+lq+/ljk—tq}_i( Ak ) AS)
2(27) A§k+q2 2 A§k+q2 ’

which is the same result as (A.7). Thus n(x) = %e‘AEkm and @gi(x,t) satisfy
Egs. (10).
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Appendix B
B.1 Matlab Code

The Euler implementation of 1-D Wilson—Cowan model is presented in this appendix.
The code demonstrates pre-Turing and pre-Hopf simulations (using TurHopf flag)
in response to a delta function or continuously applied white noise (using ImpStoch
flag). One can reproduce Figs. 5(b-III), (c-III) by setting ImpStoch=0.

Initial values for £ and I firing rates were set to the steady state values extracted
from intersection of model nullclines.

Lines 4853 demonstrate how white noise is added to the initial steady-state val-
ues. To expedite Turing emergence, the network is energized with boosted noise at
the first time step; the noise amplitude is attenuated (line 48) thereafter.

The fixed-step Euler method uses model derivatives (computed by the nested func-
tion EI_derivs on line 92) to update E and [ activities. Spatio-temporally uncor-
related white noise is generated using Matlab’s randn function at every time step
(lines 98, 99), but is inactivated (s £=0 for the impulse runs).

Very long simulations are needed (Last=1000, 5000 for pre-Hopf and pre-
Turing cases, respectively) with very fine time steps (dt=0.005 ms) in order to
obtain fully evolved patterns similar to Figs. 5(b-III) and (c-III).

function JMNS_demo_code
% Demonstration code for integrating the Wilson-Cowan 1-D neural equations

1
2

3

4 %% flags

5 ImpStoch = 1; % 1 for impulse response, 0 for stochastic simulation

6 TurHopf = 1; % 1 for pre-Turing, 0 for pre-Hopf simulation

7

8 $% Define the 1-D space domain

9L = 6000; % length of cortical rod (um)

10 dx = 1.5; % spatial resolution (um)

X = [-L/2: dx: L/2]"; % cortical rod as a column vector (um)

12 N = length(X); % number of elements in the rod

13

14 %% Define the Eg. (4) connectivity kernels

15 1f TurHopf % pre-Turing:

16 [b_EE b_EI b_IE b_II] = deal(18, 10, 19, 0); % synaptic strength
17 [sigEE sigEI sigIE sigII] = deal(50, 148.5, 148.5, 20);% synaptic range
18 else % pre-Hopf:

19 [b_EE b_EI b_IE b_II] = deal (18, 10, 19, 0); % synaptic strength
20 [sigEE sigEI sigIE sigII] = deal (43, 42, 42, 20); % synaptic range

21 end

2 WEE = b_EE/ (2*sigEE) * exp(-abs(X)/sigEE);

23 wEI = b_EI/(2+sigEI) * exp(-abs(X)/sigEI);

24 wIE = b_IE/(2%sigIE) * exp(-abs(X)/siglE);

25 wII = b_II/(2%sigII) * exp(-abs(X)/sigII); % (not used since b_II = 0)

26

27 %% Set up the time-base

28 dt = 0.005%10; % integration time step (ms)

29 Last = 1000; % duration of simulation (ms)

30 tspan = 0: dt: Last; Nsteps = length(tspan) ;

32 %% Initialize the noise attenuation and the noise scaling factor
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39
40 SigmoidE = @(v) Emax./ (1 + exp(-ax(v - theta)));

59
60 %% Euler integration of Wilson-Cowan equations
61 for 1 = 2:length(tspan)

62

83
84 %% Plot the time-space graphs
85 figure(5); clf; imagesc(tspan(length(tspan)/10:end), X,

O

86 E(:, (length(tspan)/10):end)); colorbar;
87 xlabel ('t (ms)’); ylabel(’X (um)’);
88 if TurHopf, title(’pre-Turing’); else title(’pre-Hopf’);

89
90 %% Stochastic Wilson-Cowan DEs in one spatial dimension,
91 $ with uncorrelated noise in time and space

92 function EI_derivs = WilCo_dot ()

33 if ImpStoch, noise_att = 0; else noise_att = le-10; end

3¢ sf = noise_att./sqgrt(dt+dx); % noise scaling factor

35

36 $% Sigmoid definitions

37 [a, theta] = deal(9, 2.2); % sigmoid gain (1/mV) and threshold (mV)
38 [Emax Imax] = deal(0.1, 0.15); % maximum firing rates (1/ms)

41 SigmoidI = @(v) Imax./(l + exp(-ax*(v - theta)));

42

43 $% Initial conditions and other parameter settings

44 [tau_E, tau_I] = deal(10, 8); % ms

45 E = zeros (N, Nsteps); I = zeros(N, 1);

46 1f TurHopf % pre-Turing (refer to Fig. 4 and Table 1 for P, Q values):
47 [P, Q] = deal(2.4, 1.35); % mv

48 E(:, 1) = 0.087034901273651 + randn(N, 1)*sf; sf = 0.1lxsf;

49 I(:, 1) = 0.081851136336899 + randn(N, 1)=*sf;

50 else % pre-Hopf (refer to Fig. 4 and Table 1 for P, Q values):
51 [P, Q] = deal(2.1984, 1.35); % mv

52 E(:, 1) = 0.083346268256679 + randn(N, 1)=xsf;

53 I(:, 1) = 0.069458670491093 + randn(N, 1)=sf;

54 end

55

56 if ImpStoch % apply delta-like spike to central grid point

57 E(round(N/2),1) = 0.1; I(round(N/2),1) = 0.110;

58 end

63 EI_derivs = WilCo_dot () ;

64

65 E(:, 1) = E(:, 1-1) + dt*(EI_derivs(:, 1)); % record E-activity
66 I =1 + dt*x(EI_derivs(:, 2)); % (but don’t save I-activity)
67

68 if mod(i, 100) == 1 % show progress graphs

69 if TurHopf

70 figure(2); clf; hold on; plot(X, [E(:, i)1);

71 title(sprintf ('pre-Turing E-activity:: i = %d/%d’, 1i,...
72 length(tspan)), ’‘fontsize’, 16);

73 xlabel (‘X (um)’, ’fontsize’, 14); zoom on; grid on;

74 else

7 figure(2); clf; hold on;

76 plot(tspan(l:i-1), E(round(N/2), 1l:i-1));

77 xlabel ('t (ms)’); ylabel('E (1/ms)’);

78 title(sprintf ('pre-Hopf activity, central point:: i = %d4/%d4’...
79 ,1,length(tspan)), ‘'fontsize’, 16);

80 end

81 end

82 end

end
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93
94 Evolt = ifftshift( cconv(wEE, dx*E(:, i-1), N) - ...

95 cconv (wIE, dx*I, N) ) + P;

9 Ivolt = ifftshift( cconv(wEI, dxxE(:, i-1), N) ) + Q;

97

98 derivl = ( -E(:, i-1) + SigmoidE(Evolt) + randn(N, 1)=*sf)/tau_E;

99 deriv2 = ( -I + SigmoidI (Ivolt) + randn(N, 1)=*sf)/tau_I;

100

101 EI_derivs = [derivl, deriv2];

102 end

103

104 end
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