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Abstract In the primary visual cortex of many mammals, the processing of sensory
information involves recognizing stimuli orientations. The repartition of preferred
orientations of neurons in some areas is remarkable: a repetitive, non-periodic, lay-
out. This repetitive pattern is understood to be fundamental for basic non-local as-
pects of vision, like the perception of contours, but important questions remain about
its development and function. We focus here on Gaussian Random Fields, which pro-
vide a good description of the initial stage of orientation map development and, in
spite of shortcomings we will recall, a computable framework for discussing general
principles underlying the geometry of mature maps. We discuss the relationship be-
tween the notion of column spacing and the structure of correlation spectra; we prove
formulas for the mean value and variance of column spacing, and we use numeri-
cal analysis of exact analytic formulae to study the variance. Referring to studies by
Wolf, Geisel, Kaschube, Schnabel, and coworkers, we also show that spectral thinness
is not an essential ingredient to obtain a pinwheel density of π , whereas it appears
as a signature of Euclidean symmetry. The minimum variance property associated to
thin spectra could be useful for information processing, provide optimal modularity
for V1 hypercolumns, and be a first step toward a mathematical definition of hyper-
columns. A measurement of this property in real maps is in principle possible, and
comparison with the results in our paper could help establish the role of our minimum
variance hypothesis in the development process.
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Fig. 1 Layout of orientation preferences in the visual cortex of a tree shrew (modified from Bosking et al.
[10]). Here orientation preference is color-coded (for instance neurons in blue regions are more sensitive
to vertical stimuli). Maps of sensitivity to different stimulus angles were obtained by optical imaging;
summing these with appropriate complex phases yields Fig. 1: see Swindale [11]. In particular, at singular
points (pinwheels), all orientations meet (see the upper right corner); for a fine-scale experimental study
of the neighbourhood of such points, see [8]

1 Introduction

Neurons in the primary visual cortex (V1, V2) of mammals have stronger responses
to stimuli that have a specific orientation [1–3]. In many species including primates
and carnivores (but no rodent, even though some of them have rather elaborated vi-
sion [4, 5]), these orientation preferences are arranged in an ordered map along the
cortical surface. Moving orthogonally to the cortical surface, one meets neurons with
the same orientation preference; traveling along the cortical surface, however, reveals
a striking arrangement in smooth, quasi-periodic maps, with singular points known
as pinwheels where all orientations are present [6–8]; see Fig. 1. All these orienta-
tion maps look similar, even in distantly related species [5, 9]; the main difference
between any two orientation preference maps (OPM) seems to be a matter of global
scaling.

The common design has very precise and beautiful geometrical properties, and
universal quantitative properties of these cortical maps have recently been uncov-
ered: for instance, a density of singular points close to π has been observed [9, 12];
see below. However, the exact functional advantage of this geometrical arrangement
in hypercolumns remains unclear [5, 11, 13–16]. What is more, the functional prin-
ciples underlying the observed properties of orientation maps are still in debate; in
particular, it is often thought that a pinwheel density of π has to do with monochro-
maticity (existence of a critical wavelength in the correlation spectrum) of the corti-
cal map. The aim of this short paper is to clarify the role of the monochromaticity, or
spectral thinness, condition, using the simplified mathematical framework of Gaus-
sian Random Fields with symmetry properties. Our first few remarks (Sect. 2.1) are
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included for clarification purposes: we first give an intrinsic definition of the column
spacing in these fields, then discuss the intervention of spectral thinness in theoretical
and experimental results related to pinwheel densities. Then (Sect. 2.2) we introduce
the “minimum variance” property in our title, to help discuss the quasi-periodicity
in the map and to try to understand better the notion of cortical hypercolumn. In the
concluding Discussion (Sect. 3), we also try to clarify the relevance of this property
for the development of real maps and formulate a simple test for our hypothesis that
it is indeed relevant.

Many models for the development of orientation maps have been put forward [5,
17–19]; they address such important issues as the role of self-organization, or of in-
teractions between orientation and other parameters of the receptive profiles [14,
19–22]. In this short note, we focus on a mathematical computable framework in
which geometrical properties can be discussed with full proofs, and whose quanti-
tative properties can now be compared with those of experimental maps. While we
thus put the focus on the geometry of theoretical maps rather than on the most real-
istic developmental scenarios, we try to relate this geometry to organizing principles,
viz. information maximization and perceptual invariance, which are relevant for dis-
cussing real maps. In a mathematical setting, these principles can be enforced through
explicit randomness and invariance structures.

Wolf, Geisel, Kaschube and coworkers [9, 23–25] have described a wide class of
probabilistic models for the development of orientation preference maps. In all these
models (and in our discussion) the cortical surface is identified with the plane R2, and
the orientation preference of neurons at a point x is given by (half) the argument of
a complex number z(x); one adds the important requirement that the map x �→ z(x)

be continuous (this is realistic enough if the modulus |z(x)| stands for something like
the orientation selectivity of the neurons at x; see [7, 11, 26]). Pinwheel centers thus
correspond to zeroes of z.

A starting point for describing orientation maps in these models, one which we
will retain in this note, is the following general principle: we should treat z as a
random field, so at each point x, the complex number z(x) as a random variable.

Even without considering development, it is reasonable to introduce randomness,
to take into account inter-individual variability. But of the statistical properties of
zero-set of general random fields, our understanding is that present-day mathematics
can say very little [27]; only for very specific subclasses of random fields are precise
mathematical theorems available. The most important of those is the class of Gaus-
sian Random fields [27–29]—a random field z is Gaussian when all joint laws for
(z(x1), . . . , z(xn)) ∈ C

n are Gaussian random variables.
If the map z arises from an unknown initial state and if the development features

a stochastic differential equation, taking into account activity-dependent fluctuations
and noise, the Gaussian hypothesis is very natural for the early stages of visual map
development (see [23, 25, 30]). In the most precise and recent development models
by Wolf, Geisel, Kaschube, and others [9, 14, 31], it is, however, only the initial
stage that turns out to be well represented by a Gaussian field: upon introducing
long-range interactions in the integral kernel of the stochastic differential equation
representing the refinement of cortical circuitry, the Gaussian character of the field
must be assumed to break down when the nonlinearities become significant, and the
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stationary states of the dynamics which represent mature maps cannot be expected to
be Gaussian states. We shall comment on this briefly in Sect. 2.1.3 and come back to
it in the Discussion (Sect. 3).

In spite of this, we shall stick to the geometry of maps sampled from Gaussian
Random Fields (GRFs) in our short paper. We have several reasons for doing so.
A first remark is that a better understanding of maps sampled from them can be
helpful in understanding the general principles underlying more realistic models, or
helpful in suggesting some such principles. A second remark is that with the naked
eye, it is difficult to see any difference between some maps sampled from GRFs
and actual visual maps (see Fig. 2), and that there is a striking likeness between
some theorems on GRFs and some properties measured in V1. A third is that precise
mathematical results on GRFs can be used for testing how close this likeness is, and
to make the relationship between GRFs and mature V1 maps clearer.

Wolf and Geisel add a requirement of Euclidean invariance on their stochastic dif-
ferential equation, so that if the samples from a GRF are to be thought of as providing
(early or mature) cortical maps, the field should be homogeneous (i.e. insensitive, as
a random field, to a global translation x �→ x + a), isotropic (insensitive to a global
rotation, x �→ ( cos(α) − sin(α)

sin(α) cos(α)

)
x) and centered (insensitive to a global shift of all orien-

tation preferences, changing the value z(x) at each x to eiθz(x)). Here again, looking
at mature maps, geometrical invariance is a natural requirement for perceptual func-
tion; so we shall assume that the GRF z is centered, homogeneous, and isotropic
[27, 32]. Note that of course, this invariance requirement cannot be formulated in a
non-probabilistic setting (a deterministic map from R

2 to C cannot be homogeneous
without being constant).

It actually turns out that these two mathematical constraints (Gaussian field statis-
tics and symmetry properties) are strong enough to generate realistic-looking maps,
with global quasi-periodicity. Quite strikingly, it has been observed [30, 33] that one
needs only add a spectral thinness condition to obtain maps that seem to have the right
qualitative (a hyper columnar, quasi-periodic organization) and quantitative proper-
ties (a value of π for pinwheel density). These mathematical features stand out among
theoretical models for orientation maps as producing a nice quasi-periodicity, with
roughly repetitive “hypercolumns” of about the same size that have the same struc-
ture, as opposed to a strictly periodic crystal-like arrangement (see [14, 21], compare
[34, 35]). The aim of this short note is to clarify the importance of this spectral thin-
ness condition for getting a quasi-periodic “hypercolumnar” arrangement on the one
hand, a pinwheel density of π on the other.

Before we give results about homogeneous and isotropic GRFs, let us mention
that the quantitative properties of the common design which have been observed by
Kaschube et al. [9] also include mean values for three kinds of nearest neighbour
distance and for two parameters representing the variability of the pinwheel density as
a function of subregion size; evaluating these mean values in the mathematical setting
of random fields, even in the oversimplified case of invariant GRFs, is a difficult
mathematical problem which is beyond the author’s strengths at present. So in this
short note, we shall focus on the existence of a precise hypercolumn size and a well-
defined pinwheel density in the common design, and refrain from examining the other
important statistics.
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2 Results

2.1 Two Remarks on Gaussian Random Fields with Euclidean Symmetry

2.1.1 Preliminaries on Correlation Spectra

Let us first formulate the spectral thinness condition more precisely: in an invari-
ant GRF, the correlation C(x, y) between orientations at x and y depends only on
‖x − y‖. Let us turn to its Fourier transform, or rather to the Fourier components of
the map Γ : R2 → C such that C(x, y) = Γ (x − y). For an invariant Gaussian field,
specifying Γ does determine the field; what is more, there is a unique measure P on
R

+ such that

Γ (τ) =
∫

R>0
ΓR(τ) dP (R), (1)

where, for fixed R > 0, the map ΓR is1 τ �→ ∫
S1 eiR�u·τ d �u.

Now, correlations on real cortical maps can be measured and the spectrum of Γ

can be inferred [30]; data obtained by optical imaging reveals that the spectral mea-
sure P is concentrated on an annulus ([30, p. 100], see also [33]): this means that
there is a dominant wavelength Λ0, such that the measure P concentrates around
R0 = 2π

Λ0
.

Correlation spectra of real V1 maps, first discussed in [33], have been measured
precisely by Schnabel in tree shrews [30] (see [30, p. 104], Fig. 5.6(d) is reproduced
in Fig. 2 below). The spectral measure P has a nicely peaked shape, and the very
clear location of the peak is used as the dominant wavelength Λ; see Fig. 2. From
Schnabel’s data we evaluate the standard deviation in P to be about 0.2Λ (caution:
here P is a real correlation spectrum, not the spectral density of a GRF).

Although this is far from being an infinitely thin spectrum, it is not absurd to look
at the extreme situation where we impose the spectral thinness to be zero. Figure 3
shows a map sampled from a monochromatic invariant GRF, in which Γ is one of the
maps ΓR of the previous paragraph, in other words the inverse Fourier transform of
the Dirac distribution δ(R − R0) on a circle: monochromatic (or almost monochro-
matic) invariant GRFs yield quite realistic-looking maps, at least to the naked eye.

This thinness hypothesis certainly has to do with the existence of a precise scale
in the map, that is, with the “hyper columnar” organization. In all existing theoretical
studies that we know of, spectral thinness is introduced a priori into the equations
precisely in order to obtain a repetitive pattern in the model orientation maps. For
instance, in the very successful long-range interaction model of Wolf et al. [9, 31],
the linear part of the stochastic differential equation for map development features
a Swift–Hohenberg operator in which a characteristic wavelength is imposed. The
“typical spacing” between iso-orientation domains is then defined as that which cor-
responds to the mean wavenumber in the power spectrum:

2π

Λmean
:=

∫
k dP (k). (2)

1The measure on S
1 used in this formula has total mass one.
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Fig. 2 Correlation spectra of orientation maps in macaque and tree shrew V1. a and b are from Niebur
and Worgotter’s 1994 paper [33]: in a, the solid and dashed lines are spectra obtained by two different
methods (direct measurement of correlations and Fourier analysis) from an experimental map obtained by
Blasdel in macaque monkey, the power spectrum of which is displayed on b. Images c and d are from
Schnabel’s 2008 thesis [30, p. 104]. Methods for obtaining c and d from measurements on Tree Shrews
are explained precisely by Schnabel in [30, Sects. 5.3 and 5.4]. The green- and blue-shaded regions code
for bootstrap confidence interval and 5 % significance level, respectively. The power spectrum in d has
standard deviation around 0.2 in the unit displayed on the horizontal axis and determined by the location
of the maximum; the mean and quadratic wavenumbers in this spectrum are in the intervals [1.05,1.10]
and [1.18,1.23], respectively

2.1.2 Mean Column Spacing in Invariant Gaussian Fields

It is reasonable, both intuitively and practically, to expect that Λmean gives the mean
local period between iso-orientation domains. For reasonable bell-shaped power
spectra, Λmean is in addition quite close to the location of the peak in the spectrum,
which very obviously corresponds to the “dominant frequency” in the power spec-
trum and is quite straightforward to measure. But from a mathematical point of view,
there is a paradox here.

For Gaussian fields, it is natural to try to clarify this and write down an intrinsic
definition of the mean column spacing in terms of the probabilistic structure of the
field. The paradox is that then the natural scale to use turns out to be different from
Λmean, and the difference is appreciable in measured spectra. We are going to show
presently that in an invariant Gaussian random field, the typical spacing turns out to
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Fig. 3 Computer-generated
map, sampled from a
monochromatic field. This
figure shows an orientation map
which we have drawn from a
simulated Invariant Gaussian
Random Field with circular
power spectrum. We used 100
plane waves with frequency
vectors at the vertices of a
regular polygon inscribed in a
circle, and random Gaussian
weights (see the Appendix);
with respect to the unit of length
displayed on the x- and y-axes,
the wavelength of the generating
plane waves is 1/3

be the wavelength Λsq corresponding to the quadratic mean wavenumber:

2π

Λsq
:=

√∫
k2 dP (k), (3)

which coincides with Λmean if and only if the field is monochromatic.
Using Schnabel’s data to evaluate the corresponding wavelengths in real maps, we

find that the quotient between Λsq and Λmean is about 1.1, and they are within 15 %
of each other. So using one rather than the other does have an importance.

To justify our claim that Λsq is a good intrinsic way to define the column spacing
in an invariant Gaussian field, let us consider a fixed value of orientation, say the
vertical. Let us draw any line D on the plane and look for places on D where this
orientation is represented, which means that the real part of z vanishes. Now if z
is an Euclidean-invariant standard Gaussian field, Re(z)|D is a translation-invariant
Gaussian field on the real line D. From the celebrated formula of Kac and Rice we
can then deduce the typical spacing between its zeroes, and this yields the following
theorem.

Result 1 Pick any line segment J of length 	 on the plane and any orientation
θ0 ∈ S

1. Write NJ,θ0 for the random variable recording the number of points on J

where the Gaussian field z provides an orientation θ0. Then

E[NJ,θ0 ] = 	

Λsq
.

Indeed, let us write Φ for Re(z)|D , viewed as a stationary Gaussian field on the
real line, G for its covariance function, and G for the covariance function of Re(z)
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viewed as a homogeneous and isotropic random field on R
2. The arguments lead-

ing up to the statement of Result 1 and the Kac–Rice formula which is recalled in

the Appendix prove that E[NJ,θ0 ] = 	 ·
√

λ
π

, where λ = E[Φ ′(0)2]. But E[Φ ′(0)2] =
∂x1∂x2E[Φ(x1)Φ(x2)]|x1=x2=0, and this is ∂x∂yG(x − y)|x=y=0 = −G′′(0). To com-
plete the proof we need to calculate this.

Now, in view of the Euclidean invariance of Re(z), we know that G′′(0) is half
the value of 
G at zero. To evaluate this quantity, we use the spectral decomposition
of G: it reads G = ∫

R>0 GR dP (R), where GR is the covariance function of a real-
valued monochromatic invariant field on R

2, hence is equal to 1
2ΓR (recall that ΓR

was defined in Eq. (1), and is real-valued). Now, ΓR satisfies the Helmholtz equation

(ΓR) = −R2ΓR , and in addition ΓR(0) is equal to 1, so GR(0) is equal to 1/2. We

conclude that G′′(0) is equal to − 1
4

∫
R>0 R2 dP (R) = π2

Λ2
sq

. This completes the proof

of Result 1.
Let us now comment on this result. It means that repetitions of θ0 occur in the

mean every Λsq. Of course this is very close to Λmean when the support of the power
spectrum is contained in a thin enough annulus (if the width of such an annulus is less
than a fifth of its radius, Λmean and Λsq are within 3 % of each other). But in general,
it is obvious from Jensen’s inequality that Λmean ≥ Λsq, with equality if and only if
the field is monochromatic. In real maps, there is an appreciable difference between
Λmean and Λsq as we saw.

2.1.3 Pinwheel Densities in Gaussian Fields and Real Maps

Let us turn now to pinwheel densities; we would like to comment on a beautiful the-
oretical finding by Wolf and Geisel and related experimental findings by Kaschube,
Schnabel and others. We feel we should be very clear here and insist that this sub-
section is a comment on work by Wolf, Geisel, Kaschube, Schnabel and others; if
we include the upcoming discussion it is to clarify the role of the spectral thinness
condition in the proof of their result, and we seize the opportunity to comment on this
work’s theoretical significance.

If a wavelength Λ is fixed, the pinwheel density dΛ in a (real or theoretical) map
is the mean number of singularities in an area Λ2. In the experimental studies of
Kaschube et al. [9] and Schnabel [30], the wavelength used is obtained with two al-
gorithms, one which localizes the maximum in the power spectrum, and one which
averages local periods obtained by wavelet analysis. These two algorithms give ap-
proximately the same result, say Λexp, and pinwheel densities are scaled relatively
to this Λexp: a very striking experimental result is obtained by Kaschube’s group,
namely

dΛexp = mean number of pinwheels in a region of area Λ2
exp 
 π ± 2 %. (4)

On the other hand, in an invariant Gaussian random field, expectations for pin-
wheel densities may be calculated using generalizations of the formula of Kac and
Rice. This calculation has been conducted by Wolf and Geisel [23, 25], Berry and
Dennis [36]; recent progress on the mathematical formulation of the Kac–Rice for-
mula makes it possible to write down new proofs [29, 37], as we shall see presently.
The value of π occurs very encouragingly here, too:
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Theorem (Wolf and Geisel [25], Berry and Dennis [36]; see also [29, 37]) Let us
write PA for the random variable recording the number of zeroes of the Gaussian
field z in a region A, and |A| for the Euclidean area of A. Then

E[PA] = π

Λ2
sq

|A|.

We think it can be of interest for readers of this journal that we include a proof of
this result here. We would like to say very clearly that the discovery of this result is
due to Wolf and Geisel on the one hand, and independently to Berry and Dennis in the
monochromatic case. In [29], Azaïs and Wschebor gave a mathematically complete
statement of a Kac–Rice-type formula, and recently Azaïs, Wschebor and León used
it (following Berry and Dennis) to give a mathematically complete proof of the above
theorem, though they wrote down the details only in case z is monochromatic [37].
It is for the reader’s convenience and because the focus of this short note is with
non-monochromatic fields that we recall their arguments here.

Azaïs and Wschebor’s theorem (Theorem 6.2 in [29]), in the particular case of a
smooth reduced Gaussian field, is the following equality:

E(PA) = 1

2π

∫

A
E

{∣∣detdz(p)
∣∣|z(p) = 0

}
dp.

Here the integral is with respect to Lebesgue measure on R
2, and the integrand is a

conditional expectation. To evaluate this, one should first note that z has constant vari-
ance, and an immediate consequence is that for each p, the random variable z(p) is
independent from the random variable recording the value of the derivative of the real
part (resp. the imaginary part) of z at p. So the random variables |detdz(p)| and z(p)

are actually independent at each p, and we can remove the conditioning in the for-
mula. Now at each p, dz(p) is a 2×2 matrix whose columns, C1(p) := ( (∂xRe(z))(p)

(∂yRe(z))(p)

)

and C2(p) := ( (∂xIm(z))(p)

(∂yIm(z))(p)

)
, are independent Gaussian vectors (see [27, Sect. 1.4 and

Chap. 5]). Because z has Euclidean symmetry, C1(p) and C2(p) have zero mean and
the same variance, say Vp , as (∂xRe(z))(p). But |detdz(p)| is the area of the paral-
lelogram generated by C1(p) and C2(p), and the “base times height” formula says
this area is the product of ‖C1(p)‖ with the norm of the projection of C2(p) on the
line orthogonal to C1(p). The expectation of ‖C1(p)‖, a “chi-square” random vari-
able, is 2

√
Vp and that of the norm of the projection of C2(p) on any fixed line is√

Vp; since both columns are independent, we can conclude that

E(A) = 1

π

∫

A
Vp dp = |A|

π
V0

(the last equality is because z and all its derivatives are stationary fields). Now we
need to evaluate V0 = E{(∂xRez)(0)2}. But this quantity already appeared in the
proof of Result 1, it was labeled λ there. So we already proved that it is equal to
π2

Λ2
sq

, and this concludes the proof of Wolf and Geisel’s theorem.

From this theorem Wolf, Geisel, and others deduce that dΛmean ≥ π , and it is in
this form that the theorem is discussed. However, we have seen that dΛsq , which is
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equal to π whatever the spectrum, is a rather more natural theoretical counterpart
to dΛexp . If we drop the focus away from Λmean to bring Λsq to the front, we obtain
from Result 1 the following reformulation of Wolf and Geisel’s theorem.

Result 2 Write 
 for the typical distance between iso-orientation domains, as ex-
pressed by Result 1, and η for the value E[PA]

|A| of the pinwheel density. Then

η = π


2
. (5)

There are two simple consequences of Wolf and Geisel’s finding which we would
like to bring to our reader’s attention.

The first is that the pinwheel density of π observed in experiments is scaled with
respect to Λexp, and not with respect to Λsq. Using Schnabel’s data, we can evaluate
the dΛsq of real maps, and as Λsq is about 0.82Λexp in Schnabel’s data, dΛsq strongly
departs from π in real maps. Since it would be exactly π in maps sampled from
GRFs, one consequence of the work in [9, 25, 30] is the following.

Corollary The pinwheel density of observed mature maps is actually incompatible
with that of maps sampled from invariant Gaussian Fields.

This fact is quite apparent in the work by Wolf, Geisel, Kaschube, and coworkers,
but since we focused on GRFs in this short note we felt it was useful to recall this as
clearly as possible.

Our second remark is that in the reformulation stated as Result 2 here, there is no
longer any spectral thinness condition. In other words, when we consider maps sam-
pled from Gaussian Random Fields, a pinwheel density of π is a numerical signature
of the fact that the field has Euclidean symmetry. Result 2 thus shows that when one
considers invariant GRFs, average pinwheel density and monochromaticity are inde-
pendent features.

Because invariant GRFs have ergodicity properties, an ensemble average such as
that in Result 2 can be evaluated on an individual sample map; one can thus con-
sider a single output of the GRF z and proceed to quantitative measurements on it
to determine whether the probability distribution of z has Euclidean symmetry. Very
remarkable, since no single output can have Euclidean symmetry!

To conclude this subsection, let us recall that Results 1 and 2 say nothing of map
ensembles that do not have Gaussian statistics, and in particular nothing of the ge-
ometry of real maps; they certainly do not mean that the definition of Λexp used in
experiments is faulty, but were simply aimed at disentangling monochromaticity from
other geometrical principles in the simplified setting of GRFs. To illustrate the fact
that our results are not incompatible with the definition of Λexp used in experiments,
let us note that of the two methods used by Kaschube et al. to determine Λexp, one
(the averaging of local wavelet-evaluated spacings) provides a definition of column
spacing similar to that which we used in Result 1, and the other (looking for the peak
in the power spectrum) gives an appreciably different result from Λsq as we recalled.
The fact that Kaschube et al. observe the two algorithms to give very close results in
real maps does not go against Result 1, but rather can be seen as another argument,
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this time Result 1-based, against GRFs representing mature maps. The measurement
of the pinwheel density, Eq. (4), furthermore indicates that development seems to
keep Result 2 true at the mature stage. We shall come back to this in the Discussion.

2.2 The Variance of Column Spacings

Results 1–2 show that for Gaussian Random Fields, the existence of a pinwheel den-
sity of π is independent of the monochromaticity condition. We evaluated the ex-
pected value of the column spacing in an invariant GRF in Result 1, and we now
turn to its variance. There are several reasons why it should be interesting to establish
rigorously that spectral thinness provides a low variance.

A first one is the search for a mathematically well-defined counterpart to the state-
ment, visually obvious, that orientation maps are “quasi-periodic”. Most mathemati-
cal definitions of quasi-periodicity (like those which follow Harald Bohr [38]) are not
very well suited to discussing V1 maps, and we feel that the meaning of the word is,
in the case of V1 maps, well conveyed by the property we will demonstrate. While it
is intuitively obvious that a “nice quasi-periodicity” should come with spectral thin-
ness, as we shall see it is mathematically non-trivial.

A second reason to look at the variance is to try to understand better the concept
of “cortical hypercolumn”, due to Hubel and Wiesel, which is crucial to discussions
of the functional architecture of V1. Neurons in V1 are sensitive to a variety of local
features of the visual scene, and a hypercolumn gathers neurons whose receptive
profiles span the possible local features (note that there is no well-defined division
of V1 in hypercolumns, but an infinity of possible partitionings). In studies related
to the local geometry of V1 maps, once a definition for the column spacing Λ has
been chosen, one is led (as in [9, 24, 39]) to define the area of a hypercolumn as Λ2.
Here we put the focus on the orientation map only; but even then is thus legitimate to
wonder whether in a domain of area Λ2, each orientation is represented at least once.
Note that a value of π for the pinwheel density can guarantee this if one establishes
that the density also has a small variance; here, however, we are not going to evaluate
this variance, which is possible in principle [37] but not easy, and we simply focus
on column spacing. This is a first step in trying to check that the internal structure of
domains with area Λ2 is somewhat constant, as suggested by the available results on
pinwheel density.

Let us add that from the point of view of information processing, it is not un-
natural to expect a low variance for hypercolumn size. It is known that the behavior
of many neurons in the central nervous system depends on the statistical properties
in the distributions of spikes reaching them, and not merely on the average activity.
These statistical characteristics depend on physiology of course, but also on the in-
formation being vehicled. Now, vision is an active process; the eye moves ceaselessly
and a given object or contour is processed by many regions of V1 in a relatively short
time. For a neuron receiving inputs from V1, a low variance for hypercolumn size
should help make the distribution of received information more uniform (with mini-
mum bias for a given orientation). This would be in harmony with a general principle
at work in the central nervous system, that of maximizing mutual information, which
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on the sensory side corresponds to a maximum of discrimination (and Fisher informa-
tion; see [40]) and on the motor side to what has been called the “minimum variance
principle”, for instance in the study of ocular saccades or arm movements [41].

So we will now consider the variance V[NJ,θ0 ] of the previous random variable.
We will show that it reaches a minimum when the spectrum is a pure circle. Now,
evaluating this variance is surprisingly difficult, even though there is an explicit for-
mula, namely the following.

Theorem (Cramer and Leadbetter; see [42]) In the setting of Result 1, write G : R →
R for the covariance function of Re(z)|D and M33(τ ), M44(τ ) the cofactors of the
(3,3) and (3,4) entries in the matrix

⎛

⎜⎜
⎝

1 G(τ) 0 G′(τ )

G(τ) 1 −G′(τ ) 0
0 −G′(τ ) −G′′(0) −G′′(τ )

G′(τ ) 0 −G′′(τ ) −G′′(0)

⎞

⎟⎟
⎠ .

Then

V[NJ,θ0 ]

= π	

Λsq
−

(
π	

Λsq

)2

+
(

2

π2

∫ 	

0
(	 − τ)

√
M33(τ )2 − M34(τ )2

(1 − G(τ)2)3/2

×
[

1 + M34(τ )
√

M33(τ )2 − M34(τ )2
arctan

(
M34(τ )

√
M33(τ )2 − M34(τ )2

)]
dτ

)

. (6)

Recall here that

G(τ) = 1

4π

∫

R>0

(∫ 2π

0
cos

(
Rτ cos(ϑ)

)
dϑ

)
P(R)dR; (7)

this G(τ) is an oscillatory integral which involves Bessel-like functions with differ-
ent parameters, and the formula for V[NJ,θ0 ] features quite complicated expressions
using the first and second derivatives of this integral, with a global integration on top
of this; so any analytical understanding of formula (6) seems out of reach! But we
can check numerically that it does attest to monochromatic fields having minimum
variance.

We used Mathematica to evaluate variances of invariant GRFs, using the formu-
lae in the theorem of Cramer and Leadbetter’s. This needed some care: to evalu-
ate V[NJ,θ0 ], we had to perform numerical integration on an expression involving
derivatives of the correlation function G, itself a parameter-dependent integral which
cannot be reduced to simpler functions of the parameter. This kind of numerical eval-
uation is rather delicate to perform precisely, especially if there are oscillations in
the integral as is the case here—the result can then be very highly dependent on the
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Fig. 4 Variance is a decreasing function of spectral thinness. This is a plot of the variance of the random
variable recording the number of times a given orientation is present on a straight line segment of fixed
length. We considered here Invariant Gaussian Random Fields with uniform power spectra, and plotted
the variance as a function of spectral width. For each percentage of the mean wavenumber, we displayed
two outputs to give an idea of the attained precision. A low value for variance, here expressed in the
unit given by the square of the expectation, corresponds to a field whose hypercolumns have relatively
constant size across the resulting orientation map; the results displayed here show that a very regular
hypercolumnar organization is quite compatible with stochastic modeling, and is a direct consequence
of the spectral thinness condition found in models. Moreover, the horizontal slope at zero shows that as
regards the global properties of quasi-periodic maps, there is very little difference between a theoretically
ideal monochromaticity and a more realistic (and more model-independent) spectral thinness

sampling strategy—and if there are multiple operations to be performed on the out-
puts of these integrals—the calculations of derivatives and second derivatives of the
numerically evaluated G, and the multiple divisions, might propagate the errors quite
erratically.

In order to keep the numerical errors from masking the “exact” effect of thicken-
ing the spectrum, we forced the software to optimize its calculation strategy (adap-
tive Monte-Carlo integration), detecting oscillations in the integrand and adapting the
sampling requirements, and we extended evaluation time beyond the usual limits (by
dropping the in-built restrictions on the recursion depths). When the difference be-
tween successive evaluations was tamed, this yielded the variance curve displayed on
Fig. 4.

Note that the drawn variances correspond to fields with very slightly different
spacings Λsq; however, it is easy to check numerically that for every spectrum con-
sidered here, the variance of a monochromatic field with wavelength Λsq is inferior
to the variance drawn on Fig. 4.

Numerical evaluations also show that at a fixed spectral width, using few circles
to build the field (i.e. introducing several characteristic wavelengths in the map) leads
to a higher variance than simulating a uniform spectral distribution. To see this, we
first evaluated V[NJ,θ0 ] for an invariant GRF whose spectrum gathered three circles
of radii Rinf, Rsup and Rmean = 10.95 in the fixed arbitrary unit, then spanned the
interval between Rinf and Rsup with more and more circles, using spectra with 2N +1
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circles of radii Rmean + 0.95 i
N

. We observed V[NJ,θ0 ] to decrease with N in that
case, and the existence of a limit value. From Riemann’s definition of the integral, we
see that this value is that which corresponds to a spectrum uniformly distributed in
the annulus delimited by Rinf and Rsup. To keep the evaluation time reasonable (it is
roughly quadratic in N ), we kept the value N = 18 for the evaluations whose results
are shown on Fig. 3, and which are close to the observed limit values. We should also
add here that we observed higher values for variance when using smooth spectra with
several dominant wavelengths.

This is another argument for monochromaticity yielding minimum variance. Since
the space of possible spectra with a fixed support is infinite-dimensional, our numer-
ical experiments cannot explore it all. But we feel justified in stating the following
numerical results on quasi-periodicity in orientation maps sampled from invariant
Gaussian fields.

Result 3

(i) For uniform spectra, variance increases with the width of the supporting annulus.
(ii) For a given spectral width, dominance of a single wavelength seems to yield min-

imum variance. Introducing more than one critical wavelength in the spectrum
systematically increases nonuniformity in the typical size of hypercolumns.

Result 3 proves that sharp dominance of a single wavelength is the best way to
obtain minimum variance. What is more, the horizontal slope at zero in Fig. 3 means
that fields which are close to monochromatic have much the same quasi-periodicity
properties as monochromatic invariant fields. This is quite welcome in view of Schna-
bel’s results: of course we cannot expect actual monochromaticity in real OPMs,
but clear dominance of a wavelength is much more reasonable biologically. A more
theoretical benefit is the flexibility of invariant GRFs for modeling: a model-adapted
precise formula for the power spectrum may be inserted without damage to the global,
robust resemblance between the predicted OPMs and real maps [5].

These observations reinforce the hypothesis that our three informational principles
(randomness structure, invariance, spectral thinness) are sufficient to reproduce quan-
titative observable features of real maps, though as we saw, using an invariant GRF
with the most realistic spectrum does not necessarily yield a more realistic result than
using a monochromatic GRF, and leads to incompatibilities with the observed mature
maps. This form of universality is certainly welcome: individual maps in different an-
imals, from different species (with different developmental scenarii) necessarily have
different spectra, but general organizing principles can be enough to explain even
quantitative observed properties.

3 Discussion

In this short note we recalled that simple hypotheses on randomness, invariance, and
spectral width of model orientation maps reproduce important geometrical features
of real maps. Though it should not be forgotten that we worked in a simplified math-
ematical framework which reproduces only some aspects of the common design and
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whose dissemblance with real maps can be established rigorously as we recalled, we
feel two new points deserve special attention: first, we showed that in the simplified
setting of Gaussian Random Fields, the best mathematical quantity for explaining the
local quasi-period is the quadratic mean wavenumber rather than the mean wavenum-
ber, and pointed out that a pinwheel density of π , when scaled with respect to this
intrinsic column spacing, is a signature of Euclidean symmetry and not of Euclidean
symmetry plus spectral thinness; second, we established (through numerical analysis
of an exact formula) that the variability of local quasi-periods is minimized when the
standard deviation of the spectral wavelength tends to zero.

Our analysis shows that at least in the setting of Gaussian fields, realistically large
spectra are compatible with a low variance; we suggest that a low variance for col-
umn spacing might be observed in real data, and perhaps also a low variance for the
number of pinwheels in an area Λ2

exp. Spectral thinness is usually attributed to bio-
logical hardware in the cortex (like pre-sight propagation wavelengths in the retina
or thalamus [43, 44]); this turns out to be compatible with some form of optimality
in information processing.

It would also be very interesting to compare the variance of column spacings in
real maps (in units of the spacing evaluated by averaging local periods) with the
smallest possible value for GRFs, observed in this paper for monochromatic fields
(see Fig. 4); if a lower value for variance in real maps than in monochromatic Gaus-
sian fields is found, it would mean that cortical circuitry refinement, featuring long-
range interactions, brings mature maps closer to a geometrical homogeneity of hyper-
columns. This would also throw some light on the fact that as development proceeds
and the probability distribution of the field turns away from that of a GRF, driven by
activity-dependent shaping, the column spacing obtained by averaging local periods
seems to come closer to the wavelength associated to the mean or peak wavenumber
(see [9, supplementary material, p. 5]) than it is in GRFs. It is then remarkable that
development should maintain the value of π for pinwheel density when scaled with
respect to the current value of column spacing, keeping Result 2 valid over time (of
course the density seems to move if one does not change the definition of column
spacing over time, but the best-suited quantity for measuring column spacing seems
to change). Perhaps this also has a benefit for areas receiving inputs from V1, keep-
ing their tuning with the pinwheel subsystem (which seems to have an independent
interest for information processing; see [45]) stable.
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Appendix

A.1 Sampling from Monochromatic Invariant Random Fields

In the main text, we defined monochromatic invariant Gaussian random fields through
their correlation functions, and we studied the difference between monochromatic
invariant fields and general invariant Gaussian fields. On Fig. 2 we displayed an OPM
sampled from a monochromatic invariant Gaussian field, but we did not say how the
drawn object was built from its correlation function. We provide some details in this
subsection.

Recall that the covariance function of a monochromatic invariant Gaussian random
field with correlation wavelength Λ is provided by the inverse Fourier transform of
the Dirac distribution on a circle, that is,

C(x, y) = E
[
z(x)z(y)�

] = Γ (x − y) =
∫

S1
eiRu·(x−y) du

with R = 2π
Λ

. Now, Γ satisfies the Helmholtz equation 
Γ = −R2Γ ; from this we
can easily deduce that

E
[∣∣
z + R2z

∣∣2]

is identically zero. This means that any (strictly speaking, almost any) orientation
map drawn from z satisfies itself the Helmholtz equation; thus OPMs drawn from
z are superpositions of plane waves with wavenumber R and various propagation
directions.

Thus, we know that there is a random Gaussian measure dZ on the circle which
allows for describing z as a stochastic integral:

z(x) =
∫

S1
eiRu·x dZ(u).

Now, from the Gaussian nature of z and the Euclidean invariance condition, we
have a simple way to describe Z, which we used for actual computations: if (ζk)k∈N�

is a sequence of independent standard Gaussian complex random variables, and if
u1, . . . , un are the complex numbers coding for the vertices of a regular n-gon in-
scribed in the unit circle, then

zn : x �→ 1

n

n∑

i=1

ζie
iRui ·x

is a Gaussian random field. As n grows to infinity, we get random fields which are
closer and closer to a monochromatic invariant Gaussian random field, and our field
z is but the limiting field.

A.2 Kac–Rice Formula

We derived Result 1 from the classical Kac–Rice formula, and the theorem from
which we obtained Result 2 can be obtained from a suitable generalization to plane
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random fields (see [29, 37] and [25, 27, 36] in the main text). Here we give the precise
theorem we used in the derivation of Result 1. This formula was obtained as early as
1944, though the road to a complete proof later proved sinuous; the initial motiva-
tion on Rice’s side was the study of noise in communication channels, which can be
thought of as random functions of time. For modeling noise it is then reasonable to
introduce Gaussian random fields defined on the real line, and if the properties of
the communication channel do not change over time, to assume further that they are
stationary. Rice discovered that there is a very simple formula for the mean number
of times this kind of field crosses a given “noise level”; this is the

Classical Kac–Rice formula Consider a stationary Gaussian Random Field Φ de-
fined on the real line, with smooth trajectories; choose a real number u, and consider
an interval I of length 	 on the real line. Write Nu,I for the random variable record-
ing the number of points x on I where Φ(x) = u; then

E[Nu,I ] = 	 · e−u2/2
√

λ

π
,

where λ = E[Φ ′(0)2] is the second spectral moment of the field.

For the proof of this old formula, as well as a presentation of all the features of
GRFs underlying our main text, see [27, 42]. For the proof of the theorem we used
for Result 2, which is much more recent, we refer to [25] and [37].

Just after Result 1, we mentioned that the comparison between Λmean and Λsq is
an immediate consequence of Jensen’s inequality, so let us give its statement here.
We start with a continuous probability distribution P on the real line. Now whenever
ϕ is a convex, real-valued function on R, Jensen’s inequality is the fact that, for each
measurable function f ,

ϕ

(∫

R

f (x)dP(x)

)
≤

∫

R

ϕ
(
f (x)

)
dP(x)

(compare the triangle inequality). In the main text, we used it when P is the power
spectrum distribution of a random field, f is the identity function of R, and ϕ is
x �→ x2.
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