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Abstract Rhythmic behaviors such as breathing, walking, and scratching are vital
to many species. Such behaviors can emerge from groups of neurons, called central
pattern generators, in the absence of rhythmic inputs. In vertebrates, the identifica-
tion of the cells that constitute the central pattern generator for particular rhythmic
behaviors is difficult, and often, its existence has only been inferred. For example,
under experimental conditions, intact turtles generate several rhythmic scratch motor
patterns corresponding to non-rhythmic stimulation of different body regions. These
patterns feature alternating phases of motoneuron activation that occur repeatedly,
with different patterns distinguished by the relative timing and duration of activity
of hip extensor, hip flexor, and knee extensor motoneurons. While the central pattern
generator network responsible for these outputs has not been located, there is hope to
use motoneuron recordings to deduce its properties. To this end, this work presents
a model of a previously proposed central pattern generator network and analyzes its
capability to produce two distinct scratch rhythms from a single neuron pool, se-
lected by different combinations of tonic drive parameters but with fixed strengths
of connections within the network. We show through simulation that the proposed
network can achieve the desired multi-functionality, even though it relies on hip unit
generators to recruit appropriately timed knee extensor motoneuron activity, includ-
ing a delay relative to hip activation in rostral scratch. Furthermore, we develop a
phase space representation, focusing on the inputs to and the intrinsic slow variable
of the knee extensor motoneuron, which we use to derive sufficient conditions for
the network to realize each rhythm and which illustrates the role of a saddle-node
bifurcation in achieving the knee extensor delay. This framework is harnessed to con-
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sider bistability and to make predictions about the responses of the scratch rhythms
to input changes for future experimental testing.

Keywords Central pattern generator · Turtle motor rhythms · Phase plane analysis ·
Slow dynamics

1 Introduction

Under experimental conditions, intact turtles are observed to generate a variety of
rhythmic motor patterns corresponding to stimulation of different body regions (in-
cluding caudal scratch, rostral scratch, pocket scratch, and forward swim; see Fig. 1)
[1]. All of these patterns feature alternating phases of motoneuron activation that oc-
cur repeatedly, while different patterns are distinguished by the relative timing and
duration of activity of hip extensor motoneurons, hip flexor motoneurons and knee
extensor motoneurons. Notably, these stable, rhythmic behaviors arise in the absence
of rhythmic stimulation, suggesting that a central pattern generator (CPG) may be re-
sponsible. Spinalized turtles, in which motor pathways from higher brain areas have
been cut, display corresponding fictive behaviors in response to the same forms of
stimulation, which suggests that necessary components for rhythm generation are
present in the brain stem and spinal cord [1–4]. However, even with restriction to
these areas, the complexity of the neuronal networks in turtle have made it impracti-
cal to locate the relevant CPG neurons experimentally.

As an alternative, researchers have, on theoretical grounds, proposed structures
that may represent important components or principles involved in the function of
the relevant CPGs [5–9]. Computational methods offer a natural means to investigate
these structures’ properties and generate predictions about them that may guide future
experimental investigations. In this work, we use computational methods to study
a model CPG network that was previously suggested as a kernel for turtle pocket
scratch (pocket) and rostral scratch (rostral) motor pattern generation [4]. Specifi-
cally, we demonstrate that a simulated version of this model can generate both of
these rhythms, selected only by the relative levels of certain constant inputs, for fixed
parameter values, and we derive conditions on model parameters that ensure that this
dual functionality will exist.

Previous theoretical work on motor pattern generation in turtles [5, 10] focused on
the generation of two other turtle motor rhythms, caudal scratch and forward swim,
from a variety of network architectures, testing their compatibility with several ob-
served experimental characteristics. A common theme between those works and this
one is the notion of eliciting multiple rhythms from a fixed network. Indeed, both
approaches depart from the traditional unit pattern generator framework (in which
there exist specific excitatory and inhibitory populations dedicated to controlling the
activity of motoneurons associated with each joint, [11]). The models in the earlier
paper included distinct interneurons projecting to each motoneuron (MN) involved,
but these could interact directly in the rhythm generation process; furthermore, in-
hibition was restricted to interactions shaping the interneuron outputs, rather than
impinging on MNs directly [5]. Here, we do not maintain a complete segregation
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Fig. 1 Schematic illustration of
stimulation of different turtle
body sites. Illustration of how
stimulation of different sites, via
an electrode for swim or body
surface contact for scratch,
elicits different patterns of
activity in motoneuron
recordings from turtle. Figure
source: [1]

of projection targets and instead show that by considering only hip-related pools of
excitatory and inhibitory interneurons, each projecting to both hip and knee MNs,
appropriate knee-hip timing relations can be produced.

This result may seem surprising in light of past theory; however, a variety of ex-
perimental works [2–4, 12] have shown that knee extensor MNs receive temporally
overlapping excitation and inhibition and that the time courses of the inputs to knee
extensor MNs are similar to those of inputs to hip flexor MNs in rostral and to hip
extensor MNs in pocket. Berkowitz and Stein argued that an architecture featuring
excitatory and inhibitory pools of interneurons for each of hip extensor and hip flexor
(with each MN population active in synchrony with its respective excitatory pool),
which also project to knee extensor MNs, could be more consistent with experimen-
tal findings than other architectures [4]. The idea that different rhythm generators can
control knee extensor MN timing in different rhythms also fits in with recent obser-
vations from experiments in the mouse hindlimb locomotor network, which suggest
that intrinsically rhythmic interneuron modules can be flexibly recruited to drive MN
pools [13]. Certainly, knee flexor motoneurons are also involved in the generation of
these rhythms [9, 14, 15]. Hip extension, hip flexion, and knee extension are sufficient
to typify the rhythms, however, and previous studies have focused on these three MN
populations [1–4], so we do not consider hip flexor activity in this work.

While the specific network architecture that we consider is motivated by findings
from experiments in turtles, our model has a variety of features that are interesting
from a mathematical point of view and that may be of use in other modeling work.
Wherever possible, we use a general framework and mathematical approach to gain
insight into the mechanisms underlying our key results: a single network can (in a
nontrivial way) produce two distinct rhythms selected by constant input levels, the
timing of activation of a neuron receiving concurrent excitation and inhibition at all
times can be controlled by different inputs under different conditions, and a delay in
the onset of activity of one neuron relative to another can arise robustly in a model
network lacking any explicit inclusion of delay. Our general mathematical approach
will allow our findings, while made in a model for turtle motor rhythm generation, to
be extensible to other networks with fairly general features.
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Fig. 2 Proposed (left) and implemented (right) network architectures. Solid circles correspond to in-
hibitory synaptic connections, open triangles (left) and dashed arrows (right) to excitatory ones. Figure
source for proposed architecture: [4]

The remainder of this paper is organized as follows. In Sect. 2, we present the
details of the implemented architecture and the specific mathematical choices made
to model it. Section 3 has three main parts. First, we show results of simulations that
illustrate the multi-functionality of the model network (Sect. 3.1). Next, we derive
a reduced slow phase space based on knee extensor motoneuron dynamics in which
analysis becomes tractable and apply this framework to elucidate the fundamental
mechanisms that generate the network dynamics we observe (Sect. 3.2). Finally, we
harness the phase space to consider additional experimental findings and new pre-
dictions relating to bistability and to responses to changes in inputs (Sect. 3.3). The
paper concludes with a discussion (Sect. 4).

2 Model

A possible motor CPG architecture, differing from the traditional unit pattern gener-
ator (UPG) framework with a separate interneuron pool driving each muscle’s mo-
toneurons [11, 16], was proposed based on experimental results on turtle scratching
rhythms [4] (Fig. 2, left). As has been well established, however, drawing a plausi-
ble wiring diagram for a rhythmic circuit does not allow the immediate inference of
actual circuit activity patterns [17]. To explore network dynamics, we implement a
simplified version of the proposed architecture, featuring a layer of interneuron pools
indexed by labels i ∈ {IP,EP,ER, IR} interacting with each other and feeding for-
ward to a layer of MNs indexed by labels i ∈ {HE,KE,HF} that do not interact. In
lieu of an excitatory pool exciting an inhibitory sub-population that in turn inhibits or
disinhibits inhibitory pools as originally proposed (e.g. EP excites a sub-population
that inhibits IP and disinhibits IR, Fig. 2, left), in our model E and I pools are linked,
for simplicity, via direct synaptic connections (Fig. 2, right). A variety of notation
associated with this model and its dynamics will be introduced throughout the paper,
which we summarize in Table 1.

Based on the experimental recordings shown in Fig. 1 and the architecture in
Fig. 2, the parsimonious assumptions are that HE activates in synchrony with its ex-
citatory interneuron population EP, which activates in antiphase with the inhibitory
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Table 1 Variables

Vi Membrane potential for population i

hi Deinactivation of persistent sodium current for population i

si Slow synaptic gating variable for population i

INaP Persistent sodium current

Isyn Synaptic input from the network

Iext External synaptic input

F(Vi,hi , si ) Right hand side of the voltage differential equation

gi(Vi , hi ) Right hand side of the persistent sodium differential equation

g
i,j
syn Synaptic weight of the synapse from population j to population i

iext
i

Weight of external drive to population i

s Vector of all synaptic variables in the network

Vi,X(h, s) Left (X = L), middle (X = M) or right (X = R) branch of the cubic
voltage nullcline for population i

pi,X(s) Fixed point located on the X ∈ {L,M,R} branch of the voltage nullcline
for population i

(V JU
i

(s), hJU
i

(s)) Jump up curve, curve in slow phase space from which population i may
enter the active phase

(V JD
i

(s), hJD
i

(s)) Jump down curve, curve in slow phase space from which population i

may enter the silent phase

smax Maximum value achieved by synaptic gating variable

sdynamic Synaptic gating variable evolving in time for a given portion of the
rhythm, while the other synaptic gating variable is fixed

I = {iext
IP , iext

EP , iext
ER , iext

IR } Set of external drives to populations of interneurons

T
j
active(I ) Length of time population j is active for a given I

sSN Value of s at which saddle-node bifurcation occurs

smin
ER (I ) Minimum value achieved by sER for a given I

Is = [smin
ER (I ), sSN] Values of sER from which KE can enter the active phase

hmax hJD
EP(smax) = hJD

ER(smax), the largest hKE value at which KE can enter the
silent phase

hmin(I ) hJD
ER(smin

ER (I )), the value of hKE on the ER curve of jump down knees

corresponding to smin
ER (I )

Ih = [hmin(I ), hmax] Values of hKE at which KE can enter the silent phase

LKIs The part of the curve of jump up knees corresponding to s ∈ Is

T (I ) Time for s to decay from sSN to smin
ER (I )

h(a;b, c) hKE value at time a for a trajectory that started at time 0 with initial
condition (hKE, s) = (b, c)

hmin
ER (I ) h value on the ER jump up curve given by smin

ER (I )

h+
SN Forward flow of (hSN, sSN) for time T (I)

h−
SN Backward flow of (hSN, sSN) to the line s = smax

h−
smin Backward flow of (hJU

ER(smin
ER (I )), smin

ER (I )) to the line s = smax

t∗ Minimal time spent in the silent phase by KE
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interneuron population IP, while HF activates in synchrony with its excitatory in-
terneuron population ER, which activates in antiphase with the inhibitory interneuron
population IR. The nature of the rhythms (Fig. 1) indicates additionally that HE and
HF must activate in antiphase for both rhythms, with HF activated longer in rostral
and HE activated longer in pocket. It was hypothesized that KE receives inputs that
are similar to those received by HF in rostral and similar to those received by HE
in pocket [3]. The subsequently proposed architecture in Fig. 2, however, suggests
that the inputs to KE are proportional to those to both HE and HF, which makes it
less clear why KE synchronizes with HF, after some delay, in rostral and with HE in
pocket (Fig. 1), which is what we seek to explain.

Since we seek to assess the basic rhythm generating capabilities of the proposed
architecture, we model each neuronal population in the network as a single cell, leav-
ing issues of heterogeneity for future investigation; we nonetheless refer to each as a
“population” in the remainder of the paper (cf. [6]). Inasmuch as the relevant rhythm
generating neurons in turtle have not been identified, the specific currents that are
central to their rhythmicity are not known. Given this situation, it makes sense to
avoid overly specific assumptions about the dynamics of model components. The dy-
namically simple Wilson–Cowan equations were used in related previous work [5]
to model forward swim and caudal scratch rhythms. However, there is a delay in the
onset of knee extensor activity relative to hip extensor in caudal scratch that was not
modeled in the earlier study. Since the delay of knee extensor onset in rostral scratch
is one of the key features that we seek to model, and phase plane considerations sug-
gest that the monotone nullclines of a Wilson–Cowan system cannot give a significant
delay, the Wilson–Cowan framework does not appear to be appropriate for our study.

As an alternative, we use a minimal Hodgkin–Huxley type model for each popu-
lation. We choose an inward, slowly deinactivating persistent sodium current (INaP )
as the primary current controlling oscillations in our model. This current has been
used in previous CPG modeling studies [6, 7, 18, 19] has been observed experimen-
tally in neurons in other CPGs [20], and is well suited to supply the voltage plateaus
underlying bursts of spikes. Since past computational and mathematical work has es-
tablished that certain classes of currents endow models with similar properties, this
specific current choice is not critical for qualitative aspects of our model’s behavior,
and our results will apply immediately to networks featuring other inward, slowly
deinactivating currents [18, 21]. We omit the details of actual spikes in our model,
since the relative durations of active periods, not specific spiking dynamics, are the
primary results that we seek to reproduce and since plateau potentials are observed
in turtle motoneurons [22, 23]. As a result, we obtain an analytically tractable frame-
work, which would not be possible from incorporation of detailed models for turtle
motoneuron dynamics [23, 24].

Given these considerations, our model for each interneuron population takes the
form

CmV̇i = −INaP (Vi, hi) − IL(Vi) −
∑

j �=i

Isyn(Vi, sj ) − Iext(Vi) ≡ Fi(Vi, hi, s),

ḣi = (
h∞(Vi) − hi

)
τh(Vi) ≡ gi(Vi, hi),

ṡi = α(1 − si)s∞(Vi) − βsi,

(1)
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Table 2 Model parameters
Parameter Units

Cm 0.21 pF

gNaP 10 nS

eNa 50 mV

gL 2.8 nS

eL −65 mV

mhalf −37 mV

θm −6 mV

hhalf −30 mV

θh 6 mV

ε 0.01 ms−1

shalf −43 mV

θs −0.1 mV

einh
syn −80 mV

eexc
syn 0 mV

α 1

β 0.08

where Vi denotes voltage, hi the inactivation of the persistent sodium current INaP , si
the fraction of the maximal synaptic conductance that is induced by the population’s
activity, and s the vector of s variables of all populations in the network (although the
evolution of Vi does not depend directly on si ). In the voltage equation for popula-
tion i, INaP (Vi, hi) = gNaP m∞h(Vi − eNa), IL(Vi) = gL(Vi − eL) is a leak current,
Isyn(Vi, sj ) = g

ij
synsj (Vi − esyn) for esyn ∈ {eexc

syn, e
inh
syn} denotes synaptic current in-

duced by population j , Iext(Vi) = (iext
i )(Vi −eexc

syn) denotes excitatory synaptic current
with conductance iext

i from a source outside the network, m∞, h∞, and s∞ are mono-
tone sigmoidal functions given by x∞(v) = (1+exp((v−xhalf)/θx))

−1, x ∈ {m,h, s}
with m∞ and s∞ increasing and h∞ decreasing, and τh(v) = ε cosh((v − hhalf)/2θh)

for 0 < ε � 1. All synaptic inputs are defined with g
ij
syn > 0; whether a synaptic

input is excitatory or inhibitory is determined by its reversal potential esyn. Default
parameter values used in simulations are listed in Table 2; values of iext

i are varied
and are discussed as they arise in our analysis. Simulations of the above system give
physiologically realistic voltage ranges with the parameters used in Table 2. How-
ever, because we are interested in relative durations of activity, it is more useful to
consider rescaled voltage as a representation of population activity. That is, the popu-
lation activity, PA, is related to voltage, V , as follows: PA(V ) = 1/(1 + e(V +30)/−2).
This can be seen in Figs. 6, 15, and 16.

With these parameter values, our model equations satisfy several structural hy-
potheses. We base our analytical arguments on these hypotheses, so that our results
extend beyond our specific choices of model functions and parameter values.

(H1) For each population i, for all relevant synaptic inputs s, the Vi nullcline,
{(Vi, hi) : Fi(Vi, hi, s) = 0}, is cubic in the (Vi, hi) phase plane. This null-
cline includes left, middle, and right branches, denoted, respectively, by
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Fig. 3 Nullcline configurations for varying values of θh (shifting the h nullcline, red) to illustrate key
structures in phase space

V = Vi,L(h, s), V = Vi,M(h, s), and V = Vi,R(h, s) with Vi,L < Vi,M < Vi,R
for each (h, s) for which all three exist. For our choice of model, for fixed s,
Vi,L and Vi,R increase as a function of h and Vi,M decreases as a function of
h, so this will henceforth be assumed as well, although it is not required for
our results to hold. Figure 3 illustrates these structures and those introduced in
subsequent hypotheses.

(H2) For each population i, the hi nullcline, {(Vi, hi) : gi(Vi, hi) = 0}, is monotone
decreasing.

(H3) In the absence of synaptic coupling (gsyn = 0), each population has a unique
fixed point, pFP

i,R(0) = (V FP
i,R(0), hFP

i,R(0)), on the right branch of the Vi nullcline
for a range of input conductances, iext

i .
(H4) In the presence of coupling (gsyn > 0) and with input strength iext

i fixed within
the range we consider, the right fixed point is retained and left pFP

i,L(s) =
(V FP

i,L (s), hFP
i,L(s)) and middle pFP

i,M(s) = (V FP
i,M(s), hFP

i,M(s)) fixed points are
gained and lost via saddle-node bifurcations that occur for some nonzero
choices of the synaptic input s (for example, see Fig. 4).

These hypotheses restrict the system such that it has between one and three fixed
points for all relevant inputs and coupling strengths. Fixed points on the right branch
of the Vi nullcline correspond to tonic spiking behavior (since the model lacks spike
generating currents), while fixed points on the left branch of the Vi nullcline corre-
spond to a relatively constant low voltage. Therefore, hypothesis (H3) means each
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Fig. 4 Saddle-node bifurcation for KE. The red curve is the hKE nullcline, while the black curves are
VKE nullclines for differing combinations of synaptic input. The change between these two combinations
induces a saddle-node bifurcation. We illustrate this bifurcation in the (VKE, hKE) phase plane since it is
critical for delaying KE activation in the rostral rhythm

population is intrinsically tonically active (Fig. 3, right fixed point). In our desired
network activity, bursting behavior in a population of neurons consists of regular al-
ternations between states of low voltage near some family of left nullcline branches
V FP

i,L (s) (silent phase) and states of tonic spiking (i.e., elevated voltage) near some

family of right nullcline branches V FP
i,R(s) (active phase), linked via abrupt voltage

transitions of significant amplitude, corresponding to jumps between branches. In
this framework, the synaptic decay must be sufficiently slow relative to the time scale
of voltage jumps, to avoid convergence to a fixed point. Since the synaptic variables
represent conductances induced by populations of neurons that are generating a burst
of activity, the assumption that they decay gradually during a phase is quite reason-
able. On the other hand, we take synaptic activation to occur on the fast time scale,
reflecting the synchronized onset of activity in a presynaptic population; see Eqs. (2)
and (3) below.

A key point is that hypotheses (H3) and (H4) together imply that transitions from
the silent to the active phase must occur by escape. Given a mutually inhibitory pair
of populations where one is active and the other is silent, the silent population may
become active by reaching the jump up (left) knee of its V nullcline (i.e., left fold
of its family of V nullclines, parameterized by the synaptic strength s controlled by
the other population). Doing so allows it to jump to the active phase, inhibiting the
other population and, for sufficiently large gsyn, relegating the other population to
the silent phase. When these conditions are met, the two populations form a half-
center oscillator in which switches between phases are controlled by the silent popu-
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lation [25, 26]. Thus, in addition to the surfaces of fixed points for each population,
pFP

i,X(s) = (V FP
i,X(s), hFP

i,X(s)), X ∈ {L,M,R}, of mathematical importance are also the
surfaces of jump up and jump down V nullcline folds, or knees, for each population:
(V JU

i (s), hJU
i (s)) and (V JD

i (s), hJD
i (s)). For fixed levels of external and synaptic in-

puts, the jump up (down) knee corresponds to a local maximum (minimum) of the Vi

nullcline. A surface of knees is then the surface of these local extrema, parameterized
by the values of the synaptic input variables, for a fixed external input strength.

Based on our parameter choices (Table 2), for each i, we consider that jumps
between branches of a V nullcline occur instantaneously relative to the rate of INaP

(de)inactivation and relative to the slow decay of si (set by the small value of β) in the
silent phase. Furthermore, we have performed simulations with a very steep synaptic
activation function s∞(v), since θs is quite small. Thus, for purposes of analysis, we
write β = εβ̃ , define τ = εt , and let a prime denote differentiation with respect to τ .
We then extract from system (1) in the ε → 0 limit a fast subsystem governing jumps
between phases:

CmV̇i = Fi(Vi, hi, s), j �= i,

ḣi = 0,

ṡi = α(1 − si)s∞(Vi),

(2)

a slow subsystem governing evolution within the silent phase:

h′
i = gi

(
Vi,L(hi, s), hi

)
,

s′
i = −β̃si ,

(3)

and a slow subsystem governing evolution within the active phase

h′
i = gi

(
Vi,R(hi, s), hi

)
,

si = 1.
(4)

At any time when there is no population making a fast jump, the collection of popula-
tions evolves in a high-dimensional slow phase space with governing equations given
by making an appropriate choice of either Eq. (3) or Eq. (4) for each population.

Suppose we consider a collection of N interacting populations. Since si does not
affect Vi , hi directly, it is useful to project the trajectory to an N -dimensional slow
phase space for each population, with dimensions corresponding to that population’s
h variable along with the s variables for the other N −1 populations. The population’s
jump up and jump down knees, (V JU

i (s), hJU
i (s)) and (V JD

i (s), hJD
i (s)), are then given

by surfaces in its slow phase space (e.g. [27, 28]).
In the singular limit, each si jumps to 1 at the instant (with respect to the slow

time scale) of the jump in Vi , hence the equation si = 1 in (4). In our simulations, we
will be away from the singular limit and hence the maximal value of s is α/(α + β),
which we will denote by smax in the analysis below.
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3 Results

3.1 Baseline Simulation Results

We simulated system (1) using XPPAUT [29] to find parameter values for which
the network (Fig. 2, right) would generate a rostral scratch rhythm under one set
of constant external input strengths, {iext

i }R, and a pocket scratch rhythm under a
different set of constant external input strengths, {iext

i }P (see Fig. 1). We required

that synaptic weights, {gij
syn}, were fixed at the same values for both rhythms, such

that our results would represent activation of a fixed network by two different forms
of stimulation, presumably representing effects of body surface stimulation in two
different regions (Fig. 1).

Two distinct classes of synaptic weights were implemented in the network, stan-
dard (S) and strong cross-excitation (SCE) (Fig. 5). The S class is based on the idea
that a rostral-inducing stimulus should strongly recruit the excitatory ER pool respon-
sible for driving HF and less strongly recruit the inhibitory IR pool that blocks this
action, and similarly for pocket. These input levels can also be interpreted as all four
interneuron populations receiving a baseline level of input, with ER, IP receiving
additional input in rostral and EP, IR receiving additional input in pocket.

The SCE class is based on the reasoning that the entire rostral pool, including both
ER and IR, should be most strongly stimulated by rostral-inducing stimuli, and sim-
ilarly for pocket. We call this weight class SCE because a stronger cross-excitation
from ER to IP and from EP to IR (0.8 nS versus 0.5 nS) was used to promote syn-
chrony between these pairs of populations in this case. Here, all four interneuron
populations can be viewed as receiving a baseline level of input, but with an addi-
tional input boost to the “active side”.

In both cases, the synaptic weights at the interneuron level (not to the MNs) are
just a minimal combination that allows oscillations to occur; that is, decreasing any
of the weights appreciably without changing the others to compensate leads to a loss
of all oscillations. The baseline input strengths (0.17 nS in S and 0.16 nS in SCE)
were chosen such that no oscillations are elicited when no interneuron populations
receive an additional drive. The S and SCE weights are similar in the sense that they
result in qualitatively similar interneuron dynamics and output from the interneurons
to the MNs. This output is largely constrained by the required behavior of HF and
HE:

• HF and HE activate in antiphase and do not receive temporally overlapping exci-
tation and inhibition [2–4] meaning that IP must be in antiphase with EP and IR in
antiphase with ER (Fig. 2, right panel).

• In light of these antiphase relations, it is natural for EP, IR to activate in synchrony
and ER, IP to activate in synchrony.

• HF is activated longer than HE in rostral (Fig. 1, right panel of Fig. 2, Fig. 5),
hence ER must receive more input than EP in rostral (reversed in pocket).

Any synaptic weights selected must satisfy these constraints. Furthermore, as will be
seen in the next section, a certain general relationship among the synaptic weights to
KE must be satisfied to allow both rhythms to be elicited from the network.
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Fig. 5 Synaptic weights and
input strengths. Two different

sets of synaptic weights g
ij
syn

and external input strengths iext
i

used in our simulations of
system (1), with units (mS)
omitted. Top: “standard”
weights; bottom: “strong
cross-excitation” weights. Solid
lines ending in circles denote
inhibitory connections; dashed
lines ending in arrows represent
excitatory ones. Both sets of
weights include certain
symmetries but the activity they
support is robust to asymmetric
perturbations

With the S and SCE weights, the network can generate both rostral and pocket
rhythms, selected by the external input strengths {iext

i } as shown in Fig. 5; see Fig. 6
for an example simulation with the S class. Thus, we have confirmed the conjecture
that the architecture illustrated in Fig. 2 is capable of such multi-functionality, sug-
gesting its viability as a building block of circuits generating multiple output rhythms
from a single set of MNs and muscles. Naturally, for both the S and the SCE weights,
there is a range of each input parameter {iext

i } over which each rhythm persists. As
mentioned previously, the reason that both architectures work is because they produce
qualitatively similar interneuron activity patterns and corresponding outputs from the
interneurons to the MNs; note that the connections from the interneurons to the MNs
are weighted the same across both weight classes. The mathematical analysis done
in the next section shows that sufficient changes in these interneuron-to-MN weights
would cause the network to lose the desired behavior.
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Fig. 6 Basic simulation results. Example relative population activity for MN populations resulting from
simulation of system (1) with the S weights. MN population identified in the legend. The y-axis represents
population activity as rescaled voltage, 0 indicates silent, 1 indicates active. Note that the relative timing
and durations of activity in the simulation match the recordings (see Fig. 1). The SCE weights produce the
desired relative timing and durations as well (not shown)

3.2 Necessary Conditions for Rhythms

Because hip extensor and hip flexor each only receive antiphase excitation and in-
hibition and maintain the same antiphase relationship with each other across both
rhythms, choosing synaptic weights from the interneuron populations to HE and
HF is easy. We henceforth assume that these weights and the weights within the
interneuron network are fixed such that this antiphase behavior, with appropriate rel-
ative phase durations, occurs. Because KE receives temporally overlapping excitation
and inhibition, synchronizes with a different hip component in each rhythm, and ex-
hibits a delay in onset relative to its hip partner in rostral and not pocket, the synaptic
weights to KE are much more constrained. We will consider dynamics in certain slow
phase spaces to derive conditions on these weights that yield multi-functionality of
the networks shown in Fig. 5, which generalize to any model with a qualitatively
similar structure.

3.2.1 Reduction of Slow Phase Space Dimension

To focus on KE, we need consider only a subset of the slow variables in the model. KE
receives four synaptic inputs with conductance variables {sEP, sER, sIP, sIR}, which
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Fig. 7 Reduced module controlling knee extensor activity. Two interneuron units form a half-center oscil-
lator, linked by mutual inhibition (thick solid lines). Each unit recruits a corresponding hip MN (thin solid
lines) and supplies a hybrid excitatory and inhibitory input to KE (dot dashed lines with squares), with a
single corresponding synaptic conductance variable

activate on the fast time scale (Eq. (2)) and decay on the slow time scale (Eq. (3)).
Additionally, the inactivation of persistent sodium for KE, hKE , evolves on the same
slow time scale. Therefore, there is a five-dimensional slow phase space for KE. An-
alyzing dynamics in this full, five-dimensional space is impractical.

To reduce dimension further, we identify the interneuron pairs that activate to-
gether, (EP, IR) and (ER, IP), to form a single half-center oscillator and we consider
a reduced model to describe KE activity, illustrated in Fig. 7. With this reduction, us-
ing eexc

syn = 0, sER = sIP, and sEP = sIR, the synaptic input for knee extensor becomes

IKE
syn = sER

[
(gIP + gER)VKE − gIPeinh

syn

] + sEP
[
(gIR + gEP)VKE − gIReinh

syn

]
.

This step reduces our phase space from five dimensions to three, with variables
(hKE, sEP, sER). The projection of the periodic pocket trajectory of the reduced model
to (hKE, sEP, sER) space is shown in the top left of Fig. 8, along with several curves
that are important for understanding KE dynamics. These plots are critical to our
analysis. When ER is active, sER ≈ smax, so the corresponding part of the trajectory,
color coded red, lies approximately on the {sER = smax} plane within phase space,
which is the back right face of the cube shown. Similarly, the epoch with EP active
has sEP ≈ smax and yields a trajectory, color coded black, near the back left face of
the cube. As an alternative to considering a three-dimensional phase space, however,
it is convenient to switch between a pair of two-dimensional slow phase planes, cor-
responding to the back two faces in the top left of Fig. 8, as EP and ER alternate
between periods of silence and activity. These are shown in the top right of Fig. 8.
For example, while EP is active, sER evolves and the projection of the trajectory to
the (hKE, sER) plane is shown as the thick black curve. Of course, even after EP
switches from active to silent, the projection of the trajectory to the (hKE, sER) plane
still exists; the projected trajectory segment after the switch is shown as the thin black
curve. Using similar considerations for the projection to (hKE, sEP), we in fact plot
two copies of the full trajectory, each in its own two-dimensional phase plane, one
with the trajectory shown thick while EP is active and thin while ER is active, and
the other the opposite. The switch from EP active to ER active occurs abruptly when
sEP begins its slow decay from smax and sER increases very rapidly (instantly in the
singular limit) to smax, and we switch each curve from thick to thin when sEP = sER
occurs.
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Fig. 8 Phase space views for the KE dynamics in the reduced module shown in Fig. 7 during the pocket
rhythm. Top left: full three-dimensional slow phase space. Top right: projections onto the two two-dimen-
sional planes where the trajectory lies. Bottom: single, combined two-dimensional representation. In all
plots, black and red curves are projections of parts or all of the trajectory of a periodic pocket scratch
solution, with bold black and thin red denoting times when EP is active and bold red and thin black times
when ER is active. Green curves denote the fixed point curves for KE pFP

KE,R(s) (stable, solid), pFP
KE,M(s)

(unstable, dashed), and pFP
KE,L(s) (stable, solid) (in order of increasing hKE) while EP is active. Magenta

curves denote the analogous curves of fixed points for KE while ER is active. The dark blue curve is the
curve of jump down knees for KE while EP is active; cyan curves are jump down knees and jump up knees
(larger hKE values) for KE while ER is active. Finally, dashed black curves in the top right indicate points
on the two projections that correspond to the same times, when the switches between the EP active phase
and the ER active phase occur. Additional labeling on the top right indicates relevant structures defined
above. Additional labeling on the bottom indicates key changes in activity of various populations through-
out the rhythms. Gray tick marks indicate transitions from activity to silence. This labeling holds for all
panels and future figures
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Finally, since the values over which sER and sEP vary over each period are similar,
both slow phase planes can be compressed to a single plot. Again, when this plot is
displayed in the bottom part of Fig. 8, we show two copies of the trajectory. For the
black (red) copy, sdynamic should be interpreted as sER (sEP), with thick and thin parts
as in the separate two-dimensional plots (thick black when EP is active such that sER

decays gradually, thick red when ER is active such that sEP decays gradually).
For fixed input levels (sEP, sER), the VKE nullcline has one or more fixed points, a

jump up knee, and a jump down knee. These become two-dimensional surfaces under
variation of both inputs, while fixing one input at smax selects a one-dimensional
curve. In Fig. 8, the curves of fixed points for sEP = smax are shown in green and for
sER = smax in magenta; both show up in the bottom plot, but it is important to keep
in mind that each is only meaningful when sdynamic has the correct interpretation.
Similarly, the curves of knees are shown in dark blue and cyan. There are two cyan
curves, with smaller hKE values for jump down knees than for jump up. There is only
one dark blue curve because the curve of jump up knees is outside of the relevant
range of (hKE, s) values when EP is active.

3.2.2 Scratch Trajectories and Weights of Synapses onto KE

To generate pocket and rostral scratch rhythms in our model, we had to select val-
ues for synaptic connections in the model network, which remain the same for both
rhythms, and strengths of external inputs to the network, which differ between the
rhythms. As mentioned previously, fixing the weights of synapses to the HE and HF
MNs is not particularly interesting, since the desired antiphase activation patterns for
each rhythm are set at the interneuron level in the full or reduced model. For conve-
nience, we simply choose g

HE,EP
syn = g

HF,ER
syn and g

HE,IP
syn = g

HF,IR
syn .

The weights of synapses onto KE are more interesting. To understand how these
are constrained, we can focus on the reduced model, which maintains four distinct
synaptic weights from the interneurons onto KE. With the convenient viewpoint that
we have established, it is now helpful to consider the details of the trajectories for
pocket scratch (Fig. 8) and rostral scratch (shown in Fig. 9 in a two-dimensional view
analogous to the bottom panel of Fig. 8) for our baseline parameter choices. Recall
that in the pocket rhythm, KE activates with HE, here represented by the activation
of EP. When EP becomes active and the thick black part of the trajectory starts, hKE

decreases, corresponding to the trajectory being in the active phase for KE, near a
right branch of the VKE nullcline. The trajectory cannot cross the curve of jump down
knees (dark blue) with sdynamic decreasing, because it is blocked by the green fixed
point curve (which almost coincides with the dark blue one in Figs. 8 and 9). The
switch of sdynamic from decreasing to increasing corresponds to the activation of ER
(and hence HF). The rise in sdynamic pulls the trajectory across the curve of jump
down knees of the VKE nullcline (dark blue), terminating the active phase of KE.
We then switch our view to the thick red trajectory, along which hKE increases (and
sdynamic = sEP decreases), corresponding to the trajectory being in the silent phase for
KE, near a left branch of the VKE nullcline. The trajectory actually reaches the curve
of jump up knees (cyan), and hence KE activates before the activation of EP and
HE cause sdynamic = sEP to increase. But shortly after this switch, EP itself activates,
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Fig. 9 Rostral slow phase plane. Trajectory for KE for rostral scratch projected to a single slow phase
plane. Coloring of curves is identical to Fig. 8. Bottom: zoomed view near the saddle-node bifurcation
where the fold in the magenta fixed point curve intersects the cyan jump up knee curve for ER/HF active

yielding a rise in sdynamic, and we switch back to the thick black trajectory, where
we started. In fact, experiments reveal a natural variability in pocket scratch patterns.
There are many experimental examples of pocket rhythms in which knee extensor
becomes active just before hip extensor, at the final moments of hip flexor activity,
and indeed a mean pocket rhythm computed from experimentation has this property
[30]. Hence, this result provides validation that the solution that we have obtained
provides a reasonable reduced representation of a pocket rhythm.

In the rostral rhythm, KE activation follows that of HF, here represented by the
activation of ER, with a delay. When ER becomes active, and the thick red part of the
trajectory starts, KE is still in the silent phase, with a fixed point on the left branch
of the VKE nullcline (solid magenta line at the far right of Fig. 9; see especially the
bottom panel of Fig. 9). As sdynamic decreases, the trajectory approaches the corre-
sponding branch of fixed points, and KE cannot activate until this branch undergoes
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a saddle-node bifurcation (meeting the dashed fixed point branch in the figure) at the
curve of jump up knees of the VKE nullcline (lower right cyan curve; also see Fig. 4).
At the bifurcation, KE activates and hKE starts to decay, with the trajectory heading
toward the magenta curve of fixed points in the left part of Fig. 9. When the activity
of ER terminates, sdynamic increases, which pulls the trajectory through the curve of
jump down knees (cyan) and hence switches KE to the silent phase. With EP now
activated (thick black part of the trajectory) and KE silent, hKE increases, but there is
no curve of jump up knees available to reach over the relevant range of (hKE, sdynamic)

(note the absence of a dark blue curve in the lower right of Fig. 9, analogous to its
absence in Fig. 8). Thus KE remains silent until the active phase of EP ends, sdynamic
rises, and ER activates at the transition from the thick black to the thick red part of
the trajectory, where we started.

From our investigations, it appears that obtaining both pocket and rostral scratch
rhythms with the same set of synaptic weights through the dynamic mechanisms
we have described requires certain phase plane features and timing relations, which
arise in the trajectory descriptions we have provided. Classifying these in terms of
particular phases of rhythms, the requirements on the trajectory projected to KE space
are as follows:

(i) pocket, EP active: the trajectory must not reach the curve of jump down knees
as sdynamic decreases yet must cross it as sdynamic rises (Fig. 8, the red part of
the trajectory does not increase through the cyan curve but the black part of the
trajectory increases through the blue curve);

(ii) pocket, ER active: the trajectory must reach the curve of jump up knees as
sdynamic decreases, but only sufficiently late in the active phase of ER (Fig. 8,
the red part of the trajectory reaches the right cyan curve near where it switches
to black);

(iii) rostral, ER active: the trajectory must follow a curve of fixed points to a saddle-
node bifurcation at the curve of jump up knees, must subsequently not reach the
curve of jump down knees as sdynamic decreases, and must cross the jump down
knees as sdynamic rises (Fig. 9, red parts of the trajectory);

(iv) rostral, EP active: the trajectory must not reach the curve of jump up knees as
sdynamic decreases (Fig. 9, note that there is no curve of jump up knees visible
while EP is active, corresponding to the black part of the trajectory).

The first part of requirement (iii) is critical for imposing a delay between ER ac-
tivation and KE activation. Requirement (iv) goes together with (iii); certainly no
delay would be possible if the trajectory reached a curve for the activation of KE
even before ER activated at all! To achieve requirements (iii) and (iv), we find that

it is necessary but not sufficient for g
KE,EP
syn , g

KE,IP
syn , g

KE,ER
syn , g

KE,IR
syn to be such that

the ER/IP active pair has an overall more excitatory effect on KE than the EP/IR
active pair. This means that the synaptic weights coming from ER and IR to KE must
be stronger than those coming from EP and IP. Once these requirements are im-
posed, we find that KE also activates while ER is still active in the pocket rhythm;
requirement (ii) constrains weights so that this happens as late as possible, providing
a realistic pocket rhythm. This is not, however, contrary to many experimental ob-
servations. For example, Earhart et al. [30] appear to find this slight overlap. Finally,
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both requirements (i) and (iii) are partially trivial, since the trajectory is blocked from
reaching jump down knees by the location of fixed point curves. Nonetheless, they
do constrain weights to ensure that hKE decays sufficiently during each active phase
such that subsequent rises in sdynamic can pull the trajectory across the curves of jump
down knees, transitioning KE to the silent phase along with its interneuron partner,
as desired.

3.2.3 Conditions for Rhythm Selection and Slow Phase Plane Analysis/Contraction
Arguments

With our synaptic weights onto KE and slow phase plane structure fixed to satisfy
the requirements described in the previous subsections, for each rhythm, we now de-
rive certain conditions on the set of inputs I = {iext

IP , iext
EP, iext

ER , iext
IR }, which ensure that

that rhythm will be selected. Some of these conditions are necessary, while together
the collection is sufficient, although we cannot rule out that there may be different
necessary and sufficient conditions elsewhere in parameter space. At a minimum, it
is always necessary that the inputs actually elicit oscillations, both at the interneuron
and the motoneuron levels. For convenience in what follows, define T

j

active(I ) as the
length of time for which population j is active for a given set of input parameters I

as above.
Recall that we have defined a slow phase plane structure in which activation oc-

curs by gaining access to the curve of jump up knees with ER active (as discussed in
the previous subsection). For simplicity, we henceforth refer to sdynamic as s. We
define the interval Is = [smin

ER (I ), sSN]. sSN is defined as the value of s at which
the saddle-node bifurcation of fast subsystem critical points occurs with ER active
(Figs. 8 and 9), and smin

ER (I ) is simply the minimum value to which s decays while EP
is still active. The dependence of smin

ER on input arises because the set I determines
how long EP and ER are active and hence how far s decays from smax. The interval
Is is illustrated for a particular input set I in Fig. 8.

When there is a switch between EP active and ER active, s jumps to smax. (This
occurs instantaneously in the singular limit, but in our simulations, such as Figs. 8
and 9, the switch occurs at some s∗ < smax. The value of s∗ can easily be ap-
proximated as s∗ ≈ smaxe

−βt where, using the differential equation for s in (1),
t satisfies smaxe

−βt = (smin(I ) − smax)e
−(α+β)t + smax given the minimal value of

sdynamic is smin(I ). This equality illustrates how t → 0 and hence s∗ → smax as
α → ∞, corresponding to a complete separation of time scales.) We assume that
hJD

EP(smax) = hJD
ER(smax) and denote this h-value by hmax. This assumption is based on

the numerical observation that the curves of right knees corresponding to EP active
or ER active are quite close, which relates to the reversal of synaptic excitation at
large voltages, and appear to converge at s near smax. We define a second interval
Ih = [hmin(I ), hmax], where hmin(I ) is the value of hKE along the ER curve of jump
down knees at s = smin

ER (I ). This interval specifies the full set of hKE values from
which a jump down will yield a crossing of the curve of knees. The interval Ih is
illustrated for a particular input set I in Fig. 9.

Pocket Rhythm Recall the form of the pocket rhythm, illustrated in Figs. 8 and 10.
Since HE is active longer than HF in this rhythm, we take iext

ER < iext
EP , which leads
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Fig. 10 Pocket rhythm:
duration and timing of MN
activations in simulations (left)
and experimental recordings
from MNs (right). Recall that
HF activates with ER and HE
with EP

to T ER
active(I ) < T EP

active(I ). In a successful pocket rhythm, KE activation can occur at
any value of sdynamic = sER ∈ Is . The closer to smin

ER (I ) that activation occurs, the less
the overlap of KE and HF activations. With the above constraints and definitions, the
pocket rhythm will exist for any set of inputs for which Is is mapped to int(Is) under
the slow flow pieced together by appropriate selection of (3) and (4). This mapping
to the int(Is) helps ensure that requirement (ii) in the previous section is met, as we
will show below.

By continuity, it is sufficient for the existence of a stable pocket rhythm to
find conditions on I under which the endpoints sSN and smin

ER (I ) are mapped into
the interior of Is . We use slow phase plane arguments to do so. Fix input set I .
Note that there is an ordering of the trajectories starting from the relevant part of
the cyan curve of jump up knees corresponding to ER active (Fig. 8), given by
LKIs := {(hKE, s) : s ∈ Is, hKE = hJU

ER(s)}. That is, suppose (h1, s1), (h2, s2) ∈ LKIs

with h1 > h2 and hence s1 > s2. Flow (h1, s1) forward under (3), obtaining a trajec-
tory (h1(t), s1(t)), until s1(t) = s2. Similarly, denote the forward flow from (h2, s2) as
(h2(t), s2(t)). If h1(t) > h2 (h1(t) < h2), then h1(t + τ) > h2(τ ) (h1(t + τ) < h2(τ ))
for all τ until s1(t + τ) = s2(τ ) = smin

ER (I ) and the ER active phase ends. Moreover,
by continuity, all points on LKIs are ordered in this sense.

Thus, the trajectory from LKIs that attains the minimal h(s) value when s =
smin

ER (I ) when evolved forward in time is either the one starting from s = sSN (cor-
responding to < in the statements above) or that from s = smin

ER (I ) (corresponding
to >). It turns out that the more interesting case, for which our argument yields one
additional sufficient condition, occurs when the minimal h corresponds to the initial
condition s = sSN, with the initial value of h given by hSN := hJU

ER(sSN), so without
loss of generality we henceforth assume that this orientation holds (Fig. 11).

Now, let T (I) = (1/β) ln(sSN/smin
ER (I )) denote the time for s to decay from sSN

to smin
ER (I ). Suppose we choose an initial condition such that KE activation occurs at

s = sSN during the ER active phase. We introduce the notation h(a;b, c) to denote
the hKE value at time a for a trajectory that started at time 0 with initial condition
(hKE, s) = (b, c). The first sufficient condition that we include is that the resulting
KE trajectory does not cross a curve of jump down knees when EP takes over from
ER:

(P1) h+
SN := h

(
T (I);hSN, sSN

)
> hmax.

Condition (P1) ensures that the KE active phase overlaps with the active phase of EP
and hence HE, as desired; in other words, T KE

active(I ) > T (I) (labeled in Fig. 11, left).
Next, we impose a condition to ensure that KE activation ends when EP activation

does. This condition forces the KE trajectory with largest h value to lie in Ih at the
end of the EP active phase. This trajectory has initial condition (hmin

ER (I ), smax) at the
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Fig. 11 Useful trajectories for deriving sufficient conditions for a stable pocket rhythm. Solid black lines
are flows forward from a known point. Dotted black lines represent backward flows. Left: the conditions
that arise when a flow is initiated from sSN. Right: the conditions that arise when a flow is initiated from
smin
ER (I )

start of the EP active phase, where hmin
ER (I ) := hJU

ER(smin
ER (I )), and evolves under (3)

with EP active for time T EP
active(I ) (to {s = smin

EP (I )}). The condition (Fig. 11, right) is

(P2) h
(
T EP

active(I );hmin
ER (I ), smax

)
< hmax.

Next, we obtain two conditions that are sufficient to ensure that the flow of LKIs

yields trajectories that return to int(LKIs ) and that do so while ER is active, but not
newly active (to ensure requirement (ii) in the previous section). To state these con-
ditions, we need to make use of the backwards flow of the endpoints (hSN, sSN) and
(hJU

ER(smin
ER (I )), smin

ER (I )) back to the line {s = smax} under system (3) with ER ac-
tive. Denote the h-coordinates of these intersections by h−

SN and h−
smin

, respectively,
with h−

smin
< h−

SN by continuity. Recall that the forward trajectory from the endpoint
(hSN, sSN) has h = h+

SN := h(T (I);hSN, sSN) when EP becomes active (see Con-
dition (P1) and Fig. 11, left). With these definitions, the final sufficient conditions,
which guarantee that the next KE activation occurs from int(LKIs ), read

(P3) h
(
T EP

active(I );hmin
ER (I ), smax

)
< h−

SN,

(P4) h
(
T EP

active(I );h+
SN, smax

)
> h−

smin
.

(P1)–(P4) are conditions on relative orderings of points in the slow phase space
that may result under certain choices of I . To appreciate that when I is chosen to
satisfy Conditions (P1)–(P4), together with the earlier condition that T ER

active(I ) <

T EP
active(I ), it follows that LKIs is mapped into its own interior under the flow and

there exists a stable periodic pocket rhythm, note that the time of evolution from
s = smax down to s = smin

ER (I ) under (3) with EP active is exactly time T EP
active(I ).

Conditions (P3)–(P4) ensure that all trajectories emanating from LKIs end up with
h ∈ (h−

min, h
−
SN) when ER first activates. From the time of ER activation, these trajec-

tories all evolve under (3) from s = smax, and Conditions (P3)–(P4) imply that they
reach int(LKIs ). In particular, they arrive with s > smin

ER (I ) and hence they do so after
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times that are less than T ER
active(I ), before the end of the ER active phase, as desired.

Furthermore, Condition (P3) allows us to clarify what we mean by “sufficiently late”
in requirement (ii) from the previous section. That is, the time KE spends in the silent
phase is minimized when it activates from (hSN, sSN), or equivalently when it enters
the silent phase at h = h−

SN. We can use Eq. (3) to calculate the minimal time spent in

the silent phase: t∗ = −1
β

ln(
sSN
smax

). (P3) guarantees that ER is active for at least time
t∗ before KE activates.

In summary, we conclude that for a choice of synaptic weights such that our earlier
assumptions on the structure of phase space are satisfied, for any choice of I such that
Conditions (P1)–(P4) hold, there exists an open set of initial conditions supporting
a stable, periodic pocket rhythm. Choices of weights that shrink sSN toward smin

ER (I ),
narrowing Is , yield less overlap between the phases when KE and HF are active at
the end of the ER active phase, and hence more experimentally realistic solutions.
This change can be achieved, for example, by weakening the excitation from ER to
KE relative to the inhibition from IP to KE; however, making this excitation too weak
will prevent KE activation entirely and destroy the rhythm.

Rostral Rhythm Next, recall the form of the rostral rhythm, illustrated in Fig. 9.
Since HF is active longer than HE in this rhythm, we take iext

EP < iext
ER , which leads to

T EP
active(I ) < T ER

active(I ). In the rostral rhythms that we seek, we assume that KE acti-
vation occurs with sdynamic = sSN with ER (and thus HF) active, in order to achieve
the delay with respect to HF activation in a robust way, keeping the same synaptic
weights as in the pocket case. We also require that KE activation ends at the same
time as ER activation. We now use slow phase plane arguments to derive sufficient
conditions for the existence of a stable rostral rhythm that meets these constraints.

The trajectory for the desired rhythm should reach the curve of jump up knees
with s = sSN and ER active and flow from there to the interval Ih. Using our previous
definitions of T (I) and hSN, a sufficient condition to achieve this requirement is
simply (Fig. 12):

(R1) h
(
T (I);hSN, sSN

) ∈ Ih.

Next, it suffices to impose conditions under which the flow maps the interval Ih

back to the curve of jump up knees where it intersects {s = sSN} at some time after
ER has already activated but while ER is still active. To derive these, it suffices to
consider the trajectories generated by the forward flow from the endpoints of Ih,
namely (hmin(I ), smin

ER (I )) and (hmax, s
min
ER (I )). There are two aspects to this mapping

requirement. One is that all trajectories have time to reach {s = sSN} from {s = smax}
(Fig. 12), a condition for which can be written in two equivalent forms using the
notation we have introduced:

(R2) sSN > smin
ER (I ) ⇔ T ER

active(I ) > (1/β) ln(smax/sSN).

The other aspect is that even the trajectory with minimal h value, which originates
from (hmin(I ), smin

ER (I )) just before EP activates, must be able to reach (hSN, sSN)

while ER is active. This trajectory flows forward from (hmin(I ), smax) under (3) with
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Fig. 12 Useful trajectories for
deriving sufficient conditions for
a stable rostral rhythm. The solid
black line denotes the flow
forward from (hSN, sSN).
Dashed black lines indicate
flows forward from two points
(hmax, sSN) and (hmin(I ), sSN).
The dotted black line represents
a backward flow

EP active, say to (hEP, sEP), and then continues forward under (3) with ER active
from (hEP, smax) (Fig. 12). Our additional sufficient condition is therefore

(R3) hEP > h−
SN,

where h−
SN is derived from the backwards flow of (3) with ER active as in the previous

subsection.
Conditions (R1)–(R3), together with the earlier condition that T EP

active(I ) <

T ER
active(I ), are sufficient for all initial conditions within Ih to pass through (hSN, sSN),

in the singular limit, albeit at different times, and reach the interior of Ih with ER ac-
tive, which guarantees a stable rostral rhythm. We observe that our strong structural
requirement that KE activation occurs at a saddle-node bifurcation of fast subsystem
equilibria, which ensures a robust delay of KE activation relative to ER (and hence
HF) activation as seen in the rostral rhythm, makes our remaining sufficient condi-
tions for the existence of a stable rostral rhythm milder than those we invoked to
ensure the existence of a stable pocket rhythm.

Key Differentiator Between Rhythms The work in this section supplies a variety
of conditions on the relative positions of various trajectories such that when a set of
inputs allows an appropriate collection of conditions to be satisfied, a pocket or rostral
rhythm results. From this analysis and our numerical simulations, we can extract a
key factor that distinguishes whether a rhythm generated by an input set is likely to
be a pocket rhythm or a rostral rhythm. Given an initial condition on LKIs with ER
active,

• inputs that lead to hKE > hmax at the termination of ER activity push the solution
toward pocket;

• inputs that lead to hKE < hmax at the termination of ER activity push the solution
toward rostral.
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Fig. 13 Key differentiator. The location of a trajectory at the end of the ER active phase, relative to hmax,
ends up being the key separator in the slow phase plane between inputs that elicit rostral and those that
elicit pocket

In other words, roughly speaking, the rhythm is selected based on whether or not
the KE trajectory has access to a curve of jump down knees from which to enter the
silent phase at the switch from ER activity to EP activity (Fig. 13). Of course, this
access depends on the time remaining with ER active after KE activates, which in turn
depends on all relationships presented in the previous two subsections. Nonetheless,
a numerical exploration of this timing issue can give a quick, rough idea of which
solutions will be favored for a given input set, an option that would not have been
obvious without our analysis. Further, this analysis provides a framework in which
features can be examined thoroughly, which we harness in the next section.

3.3 Modeling Additional Experimental Results

3.3.1 Experiments and Simulations with Input Switching

We can test the experimental relevance of our model by trying to simulate some
additional experiments that have been performed involving the rostral and pocket
rhythms. Furthermore, now that we understand the dynamic mechanisms underlying
each rhythm and the rhythm selection process, we can understand the outcomes of
simulations in these scenarios.

In their 1988 work seeking to further typify scratch and swim behavior, Currie
and Stein [31] explored the presentation of rhythm-specific stimulation during ongo-
ing scratch activity. For example, while the turtle was exhibiting the rostral scratch
pattern (following stimulation in the rostral body region), stimulation was provided
in the pocket body region, which could eventually lead to a period of blended rhythm,
followed by the pocket scratch (Figs. 1 and 14).
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Fig. 14 Currie and Stein 1988 experiments. Converting a rostral rhythm to a pocket rhythm. Bottom three
traces show MN activity corresponding to KE, HF, and HE, respectively. Initial bouts of activity represent
a rostral rhythm with large delay of KE activation relative to HF. Transient pulse stimulation of the VPP
nerve (inverted triangles) eventually switches the network into a pocket rhythm. Figure source: [31]

Fig. 15 Simulation of Currie and Stein 1988 experiments. A switch from rostral inputs to pocket inputs,
at the time indicated by the arrow, causes the model behavior to transition from rostral to blended out-
put to pocket. Standard weights were used, with similar results obtained for SCE weights (not shown).
Inputs: Irostral = {iIP = 0.19, iEP = 0.17, iER = 0.19, iIR = 0.17}, Ipocket = {iIP = 0.17, iEP = 0.19,

iER = 0.17, iIR = 0.19}

To qualitatively reproduce this experiment, we consider the result of an instanta-
neous switch of inputs. That is, a rostral input set, Irostral, is given to the system. After
several periods, at the end of a phase of HE activity (as in the experiment), the in-
puts are switched to a pocket input set, Ipocket. With both the Standard and the Strong
Cross-Excitation synaptic weights, this change in inputs leads to a similar transition
to pocket as seen in the experiment (Fig. 15). Our phase plane analysis makes it
easy to understand the switch in dynamics. Once pocket inputs are applied, KE still
reaches the SN bifurcation and activates while EP and HF are active, as in rostral. But
the pocket inputs shorten T ER

active(I ), allowing EP and hence HE to take over before
hKE decays down to hmax. Thus KE remains active when EP/HE activates, yielding
a cycle that blends features of rostral and pocket followed by rapid convergence to a
pocket rhythm.

We also consider the reverse scenario of applying rostral inputs during an ongoing
pocket rhythm. Interestingly, simulations of this manipulation yield different results
depending on whether we use our Standard or SCE synaptic weights. In the Standard
set up, interrupting pocket at the end of an HE cycle with two different input sets, each
of which yields a rostral rhythm when applied to the model in a rest state, induces two
qualitatively different behaviors. In one case, even with the rostral inputs, a rhythm
that can be classified as pocket persists, although HF is active slightly longer than
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Fig. 16 Pocket to rostral simulations. Applying rostral inputs during a pocket rhythm may or
may not induce a switch to rostral. A pocket rhythm was induced using Ipocket = {iIP = 0.17,

iEP = 0.19, iER = 0.17, iIR = 0.19}. Inputs were switched at the time indicated by the arrows to one
of two different input sets, each of which evoked rostral from rest. Top: I1

rostral = {iIP = 0.19, iEP = 0.18,

iER = 0.19, iIR = 0.18} maintains the pocket rhythm, and hence uncovers bistability in the system. Bot-
tom: I2

rostral = {iIP = 0.19, iEP = 0.17, iER = 0.19, iIR = 0.17} leads to switching behavior as seen in
experiments [31]

HE, unlike the prototypical pocket rhythm (Fig. 16, top). In the other case, the rostral
inputs cause a switch to the rostral rhythm (Fig. 16, bottom).

In the case where pocket persists, we conclude that the rostral inputs that are ap-
plied render the system bistable. These inputs are closer to Ipocket than are other ros-
tral inputs that do not reveal bistability. In particular, the stronger inputs to IR and EP
in the former case cause an earlier switch from HF to HE, allowing pocket dynamics
to be maintained. In the SCE set up, we do not observe bistability numerically across
a wide range of inputs and synaptic weights that we have explored.

3.3.2 Explanation of Bistability (and Lack Thereof)

The selection between the two cases illustrated in Fig. 16 essentially comes down to a
race between EP (corresponding to HE) and KE: from the activation of ER/HF, does
EP reach the jump up knee before hKE is able to decay to reach hmax? If EP does ac-
tivate first, then the rhythm remains in pocket. If KE reaches hmax first, then a switch
to rostral can occur. The data used to generate Fig. 16 indicates that a decrease in iEP

promotes this switch. This idea can be investigated more closely through a series of
numerical calculations of these quantities, with a few approximations motivated by
the framework that the slow phase plane analysis provides.
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In the SCE regime, we have not observed bistability: introduction of rostral inputs
during ongoing pocket switches the rhythm to rostral. Heuristically, we can see why
SCE would tend to suppress bistability, based on the SCE synaptic weights (Fig. 5).
For a pocket rhythm to persist despite rostral inputs, the ER active phase must remain
sufficiently short that EP can activate before hKE drops to hmax (Fig. 13). Because
transitions in our networks occur by escape, this requirement means that EP or IR
must be able to activate before the ER stays active too long. In SCE, however, the
weights of synaptic inhibition from ER to IR and excitation from ER to IP are strong,
relative to the S case. These synaptic connections are exactly the ones that would
suppress the activation of EP and IR and thus prolong the ER active phase, causing
KE to jump down with ER and inducing a switch from pocket to rostral.

3.3.3 Predictions

The observation that some weight and input parameter sets yield bistability and others
do not may be useful for making predictions. That is, if bistability is observed exper-
imentally, then we can conservatively state that it should rule out certain parameter
combinations within the underlying rhythm generating circuit, if indeed that circuit is
qualitatively represented by our model. For example, although our simulations were
not exhaustive, together with the heuristic arguments we have provided they suggest
that an observation of bistability of pocket and rostral rhythms in response rostral in-
puts would represent evidence against SCE weights, in which both the excitatory and
the inhibitory interneurons projecting to HF are more strongly recruited by rostral
stimulation than are the corresponding HE-projecting interneurons.

More generally, we can also observe that if a single circuit generates both pocket
and rostral rhythms, then one rhythm may be more resistant to input-induced switch-
ing than the other, as we have seen by introducing rostral input during an ongoing
pocket rhythm. This is an important observation: Suppose that two separate modules
generated pocket and rostral rhythms. In that case, introducing a rostral input dur-
ing ongoing pocket would necessarily recruit the rostral module, likely perturbing
the pocket rhythm in some way that is more significant than seen in our simulations.
Hence, bistability may be used to help distinguish between these possible rhythm
generation frameworks (see also [5]).

Additionally, we can consider the effect of scaling inputs to the interneurons. We
consider what happens in the SCE regime when all four inputs are scaled by the same
factor, only the E inputs (to EP, ER) are scaled by the same factor, or only the I inputs
(to IP, IR) are scaled by the same factor (Fig. 17). In the first case (Fig. 17, left), we
see that increasing inputs (black to gray) leads to a decrease in active phase length for
both KE and the dominant IN population (namely HE in pocket and HF in rostral)
with almost no change in phase duration for the other population. This result, which
is consistent with the stipulation that phase transitions occur by escape and also with
past work exploring asymmetries in persistent sodium half-center oscillator models
[18, 26], represents a testable prediction. Next, we find that scaling only the inputs to
the excitatory INs leads to almost the same changes in active phase durations as occur
when all inputs are scaled (Fig. 17, left versus middle), while there is virtually no
change in active phase length across different scalings of the inputs to the inhibitory
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Fig. 17 Effect of input scaling
on phase durations in SCE
regime. The black bars represent
the durations of the active
phases of HE, KE, and HF
when the indicated inputs are
uniformly decreased by
multiplication by a scaling
factor less than one, just large
enough to maintain each
rhythm. The gray bars represent
the durations of the active
phases of HE, KE, and HF when
the scaling factor is greater than
one, near the upper bound for
maintaining each rhythm

Fig. 18 Effect of input scaling
on phase durations in S regime.
The black bars represent the
durations of the active phases of
HE, KE, and HF when the
indicated inputs are uniformly
decreased by multiplication by a
scaling factor less than one, just
large enough to maintain each
rhythm. The gray bars represent
the durations of the active
phases of HE, KE, and HF when
the scaling factor is greater than
one, near the upper bound for
maintaining each rhythm

INs (Fig. 17, right). These results indicate that the escape of the excitatory INs from
the silent phase largely controls rhythm frequencies. In fact, we find that the external
input to the inhibitory interneurons can be removed and the synchrony patterns of the
rhythms (but not the delay in rostral) can be maintained (data not shown), because
the excitatory INs still recruit the inhibitory populations to become active. These
predictions are more difficult to test, given that these populations of interneurons
have not yet been identified, but remain for future experimental consideration.

We repeat this experiment with the S regime (Fig. 18) and find generally very sim-
ilar results. However, it is worth noting that, in the S regime, the changes in active
phase durations across similar scaling is much less than in the SCE regime. Addition-
ally, there is a much greater change in active phase durations in rostral than in pocket.
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These differences, in addition to the bistability observed, may serve to differentiate
the S regime from the SCE regime in practice.

4 Discussion

It has been postulated that turtle scratching and swimming arise when “behavioral
modules” interact and combine to control “muscle synergies” producing appropri-
ately coordinated motor outputs [32], but there is a large gap between such an abstract
statement and concrete hypotheses about the neuronal networks involved. While a
specific wiring diagram for a single circuit that could parsimoniously drive both
pocket and rostral scratching has been proposed [4], it is well known that connec-
tivity diagrams alone do not uniquely map to output patterns [17]. We have per-
formed a computational and mathematical study to investigate whether the proposed
unified CPG network, which features only hip-related populations of interneurons,
could indeed be responsible for the generation of two different turtle scratch rhythms
with distinct knee-hip synchrony patterns. Importantly, these patterns are selected by
changing external inputs to the interneurons, with the same synaptic weights between
interneurons, and from interneurons to motoneurons, preserved for both. Through the
use of slow phase plane arguments, we were able to explain how particular phase
space and bifurcation structures underlie the generation of the rhythms and to de-
rive sufficient conditions on these structures that guarantee the existence of stable
rhythms. This analysis was possible due to time scale decomposition and certain
model reductions, despite the relative high-dimensionality of the model system; be-
cause our conditions are stated in terms of dynamic structures, they apply beyond
the particular model features, such as a slowly inactivating persistent sodium current,
used in our simulations. Even with model reductions, the synaptic variables evolv-
ing during each stage of each rhythm were hybrid variables, representing combined
effects of excitatory and inhibitory inputs, which was one unusual aspect of our anal-
ysis.

Past research has focused on several different aspects that arise in multi-
functionality, including the general organizing principles governing CPGs [16, 33],
and the notion that an organism exhibits different motor patterns by selecting dif-
ferent CPGs [34], which may be collections of burst-capable unit CPGs that each
control a set of synergistic muscles [11]. Similarly, recent experimental work in mice
[13] found that the hindlimb locomotor network is composed of intrinsically rhyth-
mic modules that each drive a pool of motoneurons. Consistent with the unit CPG
framework, the model that we consider includes separate hip extensor and hip flexor
interneuron pairs (EP and IP, ER and IR); although each individual population is
tonically active in the absence of inputs, each pair can generate bursts through a
mechanism of escape from reciprocal inhibition, consistent with previous related
work [5]. Our interneuron network includes fixed interconnections and projections
both to antagonist hip interneurons and to hip motoneurons and is able to gener-
ate multiple rhythms under changes in inputs that alter the relative durations of the
unit CPGs, without changing network connections. In contrast to the unit CPG idea,
however, the hip interneurons also control knee extensor motoneurons in the model.
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Despite the multi-tasking demanded of the unit CPGs, we find that the network can
generate multiple motor patterns, selected by tuning the relative strengths of their
tonic inputs. That networks of unit CPGs can be influenced to demonstrate different
activity patterns is not surprising, given the wide variety of activity patterns that can
be elicited from a single neuron [35, 36], but the idea that CPGs for one unit can
also be harnessed to control the timing of another joint is relatively novel. Although
this idea makes sense in terms of efficient use of neuronal resources, evolutionary
principles, and the observation that individual interneurons are active during multi-
ple forms of activity [1], it remains to be determined whether this framework offers
enough robustness for functional rhythm generation.

A distinctive feature of one of the rhythms considered, the rostral scratch, is a de-
lay in the onset of KE motoneuron activity relative to HF onset. While synchroniza-
tion ([27, 37]) and near-synchronization [38] in networks of planar neuron models
with strong synaptic coupling has been well studied, the delay we consider appears
to be novel. This delay significantly restricts the choices of synaptic weights to KE
for which both rhythms can be elicited. The resulting phase plane structure leads us to
observe that, given that the sufficient conditions on synaptic weights hold, the rhythm
selected by a particular input set is largely determined by the position of the slow vari-
able coordinate of a particular trajectory segment relative to a key value hmax at the
termination of ER activity (Fig. 13).

Unfortunately, from an experimental point of view, the specific rhythm generation
conditions in our model are not accessible for many reasons, starting with the fact
that the interneuron populations in the CPG have not been identified. However, our
analysis yields the observation that in the framework we have considered, the KE
motoneuron must activate slightly before the HE during the pocket rhythm, and this
is exactly what is observed experimentally [30], which offers some validation for our
approach. Furthermore, simulation of the model can help guide future experiments.
In particular, the model network can exhibit bistability to rostral scratch inputs for
some of the parameter values considered, which seems unlikely to arise with separate
pocket and rostral generation modules (see also [5]). Thus, future experiments to
explore this form of bistability could be useful. The slow phase plane approach that
we have presented provides a framework that can be used to make predictions about
specific experiments and to explain the mechanisms underlying observed outcomes.
Our simulations also predict that changes in inputs to the CPG that are not strong
enough to destroy an ongoing rhythm will alter the active phase durations of the hip
MN that is dominant in that rhythm and of the knee extensor MN while leaving the
other hip MN activity period almost entirely unchanged, and that these changes are
controlled by the excitatory INs in the CPG. These outcomes likely result from the
underlying assumption that activity transitions in our model occur through escape
[25, 26], based on past experimentally constrained work modeling turtle motor CPGs
[5], and alternative transition mechanisms should be considered if these predictions
are falsified in future experiments.

During rostral scratching, hip extensor deletions can occur [9, 39]. In these dele-
tions, hip extensor is silent while knee extensor behavior is entirely preserved (syn-
chrony with hip flexor after a delay, periods of full activity and full quiescence); hip
flexor fails to shut down fully during its quiescent period, as during normal rostral.
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This lack of quiescence presumably results from the absence of inhibition from hip
extensor related motor pools. These deletions occur unpredictably in some prepara-
tions, although the frequency can be increased through particular experimental tech-
niques [9]. Due to a combination of the proposed architecture and the use of deter-
ministic differential equations to describe population behavior, it is not possible to
reproduce this behavior fully in our model. The only way to shut down hip exten-
sor behavior in both the standard and the strong cross-excitation architectures, by
only changing inputs and without changing synaptic weights from interneuron motor
pools to the hip extensor (which would be a trivial but non-biological solution), is
by decreasing input to IR and EP until oscillations are lost (Fig. 2). While this does
lead to tonic activity in hip flexor as desired, it also leads to tonic activity in knee ex-
tensor. One possible way to resolve this issue is to suppose that an additional source
of inputs, not included in our model, provides enough inhibition to shut down knee
extensor motoneurons while the ER input is low. A need to invoke additional inputs
to explain deletions suggests that hip-related motor pools may account for synchrony
and relative timing of scratch rhythms but may not be sufficient to fully capture all
motor behaviors observed. Although experiments suggest that inputs to knee extensor
motoneurons are hip related, it may be that knee motor pools (as in the standard UPG
approach to rhythm generation) are present in a secondary role and that interneurons
related to knee flexor activity provide inhibition that contributes to the termination
of knee extensor activity; past experiments on pocket and rostral scratch have not
focused on knee flexor motoneuron recording [1–4], and hence we omit knee flex-
ion in our model, but it could be included in future work. Alternatively, stochasticity
may need to be taken into account to capture the full range of scratch rhythm phe-
nomenology [40, 41]. Certainly, our model could be expanded to include additional
neuron pools or stochastic mechanisms. Additional experimental work to constrain
the mechanisms underlying deletions would be beneficial to help guide efforts in this
direction.

It has been suggested that oscillations underlying turtle motor rhythms may be
driven by concurrent excitation and inhibition, based on analysis of data showing that
the estimated synaptic conductances for excitation and inhibition to turtle motoneu-
rons oscillate in phase [12]. It is worth noting, however, that for the most part, neither
the type (hip extensor, hip flexor, and so on) of motoneurons from which recordings
were obtained nor the source of synaptic inputs was identified, so it is hard to know
how to interpret these results. Past reviews [16] hypothesize that this may be an arti-
fact of the experimental setup or a feature unique to motor pattern generation in turtles
(as opposed to say mammals). These findings contrast with the traditional reciprocal
model in which motoneurons receive synaptic excitation and inhibition in antiphase
[9, 26], as imposed by the mutual inhibition between EP and IP and between ER and
IR in our model network. Note that we chose this mutually inhibitory structure on
experimental grounds: It has long been established that HE is active together with
its excitatory motor pool of interneurons, EP; additionally, HE and HF activate in
antiphase (Fig. 1) [2]. The simplest way to meet these benchmarks is for EP to be ac-
tive with IR and ER with IP, as imposed by mutual inhibition. Nonetheless, it would
be interesting to explore how stochastic effects might allow multi-functionality of
a rhythm generating circuit despite less segregated excitatory and inhibitory inputs
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to its motoneurons, especially since rhythm generation in several other CPG circuits
involves some mixture of reciprocal and concurrent excitation and inhibition (see
references in [9]).

Another important future challenge will be to bring this work together with other
previous modeling efforts [5] to develop a system capable of generating all four ob-
served motor patterns, forward swim and rostral, pocket, and caudal scratch. While it
is possible to produce rhythms like forward swim and caudal scratch with a hip domi-
nated architecture as explored in this work, different synaptic weights (and, therefore,
a different network) are necessary. It is an open problem to ascertain whether a sin-
gle network could produce all four patterns. One possible approach to this problem
would be the use of genetic algorithms to derive optimal CPG network structures
[42, 43] or to determine the parameter values necessary to coordinate multiple CPGs
to generate multiple rhythms [34]. It is not clear what would constitute a practically
useful objective function for a genetic algorithm approach, however. Including more
of the known details about the ionic currents in turtle motoneurons [23] would be an-
other way to tie our modeling more closely to the biology of turtle motor rhythms in
future works. Finally, it is worth considering the effect of within-leg proprioceptive
sensory feedback, as is often considered with cats [8, 16, 44]. However, at present
such data appears to be unavailable in the literature regarding turtles. Future work
could include testing hypotheses about the effects of feedback in the present model,
to yield predictions for future experimental testing.
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