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Abstract We discuss the notion of excitability in 2D slow/fast neural models from
a geometric singular perturbation theory point of view. We focus on the inherent
singular nature of slow/fast neural models and define excitability via singular bi-
furcations. In particular, we show that type I excitability is associated with a novel
singular Bogdanov–Takens/SNIC bifurcation while type II excitability is associated
with a singular Andronov–Hopf bifurcation. In both cases, canards play an important
role in the understanding of the unfolding of these singular bifurcation structures. We
also explain the transition between the two excitability types and highlight all bifurca-
tions involved, thus providing a complete analysis of excitability based on geometric
singular perturbation theory.

Keywords Bifurcation theory · Canards · Excitability · Geometric singular
perturbation theory · Neural dynamics

AMS Subject Classification 34E15 · 34E17 · 34K18 · 37N25 · 92B25

1 Excitable Systems

Most neurons are excitable, i.e. they are typically silent but can fire an action poten-
tial or produce a firing pattern in response to certain forms of stimulation. The fact
that equivalent stimulation can elicit qualitative different spiking patterns in different
neurons demonstrates that intrinsic coding properties differ significantly from one
neuron to the next.

B M. Wechselberger
wm@maths.usyd.edu.au

P. De Maesschalck
peter.demaesschalck@uhasselt.be

1 Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Belgium

2 School of Mathematics & Statistics, University of Sydney, F07, NSW 2006 Sydney, Australia

http://crossmark.crossref.org/dialog/?doi=10.1186/s13408-015-0029-2&domain=pdf
mailto:wm@maths.usyd.edu.au
mailto:peter.demaesschalck@uhasselt.be


Page 2 of 32 P. De Maesschalck, M. Wechselberger

Fig. 1 Bifurcation diagrams of the canonical model (1) together with ‘frequency–current’ (f–I) plots:
(Type I) c = 0.005; SNIC bifurcation near I = Ibif = 0 where the frequency approaches zero; (Type II)
c = 4; supercritical singular Andronov–Hopf bifurcation near I = Ibif = 0; the subsequent canard explo-
sion is clearly visible; note the small frequency band for the relaxation oscillation branch

A first answer to the question of the neuron’s computational properties was given
by Hodgkin [1] in the 1940s, who identified three basic types (classes) of excitable
axons distinguished by their different responses to injected steps of currents of var-
ious amplitudes. Type I (class I) axons are able to integrate the input strength of an
injected current step, i.e. the corresponding frequency–current (f–I) curve is contin-
uous (see Fig. 1). Type II (class II) axons have a discontinuous f–I curve because of
their inability to maintain spiking below a certain frequency. The frequency band of
a type II neuron is very limited and, hence the frequency is relatively insensitive to
the strength of the injected current. It appears that type II neurons resonate with a
preferred frequency input. Type III (class III) axons will only fire a single or a few
action potentials at the onset of the injected current step, but are not able to fire repet-
itive action potentials like type I and type II neurons. Type III neurons are able to
differentiate, i.e. they are able to encode the occurrence of a ‘change’ in the stimulus.
Such phasic firing (versus tonic or repetitive firing) identifies these type III neurons
as slope detectors [2]. Obviously, the f–I curve is not defined for type III neurons.

Starting in the 1980s, Rinzel and Ermentrout [3, 4] pioneered a mathematical
framework based on bifurcation theory that distinguishes type I and type II neural
models. Recall, type I and type II neurons are able to fire trains of action potentials
(tonic firing) if depolarised sufficiently strong which distinguishes them from type III
neurons. This distinction points to a bifurcation in type I and type II neurons where
the cell changes from an excitable to an oscillatory state. The main bifurcation pa-
rameter is given by I , the magnitude of the current step protocol, and leads to the
following classical definition of excitability via bifurcation analysis under the varia-
tion of the applied current I [4]:

• Type I: The stable equilibrium (resting state) disappears via a saddle-node on in-
variant circle (SNIC) bifurcation.
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• Type II: The stable equilibrium (resting state) loses stability via an Andronov–Hopf
bifurcation (HB), either sub- or supercritical.

Note that there is no bifurcation occurring in type III models, i.e. the equilibrium
(resting state) remains stable. For a possible biophysical interpretation of these three
distinct excitability types we refer to, e.g., [5, 6].

A canonical model that captures the main features of neural excitability is given
by

w′ = εg(w,v) = ε
(
G(v) − w

)
,

v′ = f (w,v, I ) = v2(d − v) − w + I,
(1)

with

G(v) =
{

cv, v ≤ vth,

cv + e(v − vth)
2, v > vth,

(2)

a sufficiently smooth (here C1) function with threshold parameter vth, and parameters
0 < ε � 1, d, e > 0 such that d

3 < e < d holds1 and c ∈ [0, c1]. The parameter I ∈
[I0, I1] ⊂ R is the main bifurcation parameter and is often associated with the injected
current in a real neuron. In this canonical model, we are able to identify all three
excitability types. Figure 1 shows bifurcation diagrams and frequency–current plots
for type I and type II excitability where the parameters vth = 0.15, ε = 10−2, d = 2,
e = 1.5 are fixed and (I, c) are varied.

Remark 1 In the canonical model (1), the nonlinear nature of G(v) is essential to
guarantee relaxation type behaviour as observed in type I neurons which distinguishes
this polynomial model from the classic FitzHugh–Nagumo model [7, 8] which can
only produce type II (and type III) behaviour. In more biophysically inspired two-
dimensional systems, the Morris–Lecar model [9] presents a prime example which is
able to produce all three excitability types; see also [4–6, 10].

1.1 Slow–Fast Excitable Systems

An important feature of most neural systems is that they evolve on multiple time
scales; see, e.g., [11]. It is the interplay of the dynamics on different temporal scales
that creates complicated rhythms. Multiple (or slow–fast) time-scale problems are
usually modelled by singularly perturbed systems such as (1) where the time-scale
separation of the ‘fast’ variable v (voltage) and the ‘slow’ variable w (recovery vari-
able) is explicitly identified through the singular perturbation parameter ε � 1. The
interest in such slow–fast systems goes towards the presence of so-called relaxation
oscillations. Along an orbit of relaxation oscillation type, parts where the velocity of
the phase variables is small (the slow parts) are alternated with high velocity peaks
on short time intervals (the fast parts). During the slow parts, the phase state is O(ε)-
close to the critical set f (w,v, I ) = 0 (because then ‖(w′, v′)‖ = O(ε)), whereas

1This is a condition on the position of possible equilibrium states in this model.
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during the fast part the phase state is at an O(1)-distance from this critical set. Tonic
firing as observed in (1) is exactly of relaxation type.

We want to emphasise this inherent slow–fast time-scale structure found in many
neuronal models and use geometric singular perturbation theory (GSPT) [12, 13] as
a mathematical framework. In this approach, we focus on a class of two-dimensional
singularly perturbed models given by

w′ = εg(w,v, ε,λ),

v′ = f (w,v, ε, I ),
(3)

where I ∈ [I0, I1] ⊂ R is an external (constant) drive of the excitable system, the
prime denotes the (fast) time derivative d/dt and ε � 1 is a small positive parameter
encoding the time-scale separation between the slow and fast variables. The param-
eter λ is considered in some interval [λ0, λ1] and will serve, together with I , as a
bifurcation parameter. The functions f and g are assumed to be sufficiently smooth.
We stress that it is not important for f to be independent of λ and for g to be inde-
pendent of I , though it does simplify the presentation.2

By switching from the fast time scale t to the slow time scale τ = εt , system (3)
transforms to

ẇ = g(w,v, ε,λ),

εv̇ = f (w,v, ε, I ),
(4)

where the overdot denotes the (slow) time derivative d/dτ . As ε → 0, the trajectories
of (3) converge during fast segments to solutions of the one-dimensional layer (or
fast) problem

w′ = 0,

v′ = f (w,v,0, I ),
(5)

while during slow segments, trajectories of (4) converge to solutions of

ẇ = g(w,v,0),

0 = f (w,v,0, I ),
(6)

which is a one-dimensional differential-algebraic problem called the reduced (or
slow) problem. Note that the critical set

S := {
(w,v) ∈ R × R|f (w,v,0, I ) = 0

}
(7)

is the set of equilibria of (5). In general, this set S defines a differentiable manifold
referred to as the critical manifold, and it forms the phase space of the reduced prob-
lem (6). GSPT [12–15] uses these lower one-dimensional sub-systems (5) and (6)
to predict the dynamics of the full two-dimensional system (3) or (4) for ε > 0. In
Sect. 2, we provide the general setup for a class of two-dimensional systems in the
context of GSPT that covers all three excitability types.

2For example, it allows Assumption 1 (page 5) to be formulated independently of λ.
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While this GSPT approach to explain relaxation type behaviour in neural systems
is well known to the mathematical and computational neuroscience community, see
e.g. [5, 11], it is not often or consequently used to explain the underlying bifurcation
structure in such singularly perturbed systems. This is the focus of Sects. 3–6 and
we study singular bifurcations and their unfoldings in a normal form introduced in
Sect. 3.1.

A closer look at the bifurcation diagram of type II excitability in Fig. 1 reveals that
shortly after the Andronov–Hopf bifurcation the amplitude of the bifurcating limit
cycles explodes dramatically under a very tiny (an exponentially small) parameter
change. This is known as a canard explosion [14, 15] and indicates that the singular
perturbation nature of the neural model is also reflected in the bifurcation structure.
Note also a similar dramatic change in frequency near this singular Andronov–Hopf
bifurcation. We will review this (well-known) bifurcation phenomenon in Sect. 4.

Additional bifurcation structure is necessary to explain the transition from type II
to type I excitability. This is covered in Sect. 5 where an incomplete canard explosion
is identified. This lesser-known phenomenon refers to a premature termination of a
canard explosion in a homoclinic bifurcation.

Similarly to the singular Andronov–Hopf bifurcation, one has to expect that the
SNIC bifurcation associated with type I excitability shown in Fig. 1 must have a
singular nature. We identify a singular Bogdanov–Takens/SNIC bifurcation point as
the organising centre for type I excitability. Unfolding this type I singular bifurca-
tion structure is the main focus of Sect. 6 which is based on the blow-up method,
a desingularisation technique for nilpotent singularities that has been successfully
implemented in geometric singular perturbation problems with loss of normal hyper-
bolicity [14–16].

Finally, we summarise our results in Sect. 7 and discuss its implications for possi-
ble numerical observations in slow–fast neural models.

2 The Setup for Slow–Fast Excitable Systems

We start with introducing basic assumptions on the singularly perturbed system (3),
respectively, (4).

Assumption 1 For each I ∈ [I0, I1], the critical manifold S is cubic shaped and given
as a graph {w = ϕI (v)}, i.e.

S = S−
a ∪ F− ∪ Sr ∪ F+ ∪ S+

a ,

with attracting outer branches S±
a , repelling middle branch Sr , and folds F±. We

also assume that the vertical fibres containing the two local folds F−, respectively,
F+ intersect the critical manifold one more time outside the fold points at points p,
respectively, q; see Fig. 2. The two folds are assumed to be regular extremes of the
graph w = ϕI (v).

The representation of S as a graph {w = ϕI (v)} necessarily implies that ∂f/∂v 
= 0
for all (w,v) ∈ S. The stability condition on the branches S±

a and Sr identifies them
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Fig. 2 Left: several branches of
the critical manifold, with fold
points F± in between. Right:
slow dynamics on the cubic. The
nullcline ẇ = 0 may intersect
the cubic one or more times
along the dotted part of this
cubic

as normally hyperbolic; see Fig. 2 (left). This refers to the stability property of S as a
set of equilibria of the layer problem (5) and is expressed by

{
∂f
∂v

(w,v,0, I ) < 0 for (w,v) ∈ S±
a ,

∂f
∂v

(w,v,0, I ) > 0 for (w,v) ∈ Sr .

The two local extremes of S denoted by (w±, v±) = (ϕI (v
±), v±) are called fold

points F±; they correspond to saddle-node bifurcation points in the layer problem
(5) and we have

∂f

∂v

(
w+, v+,0, I

) = 0,
∂2f

∂v2

(
w+, v+,0, I

)
< 0, (8)

∂f

∂v

(
w−, v−,0, I

) = 0,
∂2f

∂v2

(
w−, v−,0, I

)
> 0. (9)

Figure 2 can be viewed as the corresponding bifurcation diagram of the layer problem
(5) with w as the main bifurcation parameter. If we want to impose the geometry
shown in Fig. 2, then we need to—and will—assume that

∂f

∂w
< 0, (w, v) ∈ S. (10)

Assumption 2 For each λ ∈ [λ0, λ1], the following holds along the w-nullcline
g(w,v,0, λ) = 0 of system (4):

∂g

∂w

= 0,

∂g

∂v
· ∂g

∂w
≤ 0.

This assumption implies that the w-nullcline is a graph {w = ψλ(v)}, and ψλ is a
monotonically increasing function. While mathematically not necessary, this reflects
the property of a typical neural model where g = 0 is given as a graph of a sigmoidal
function over v.

Assumption 3 For all (I, λ) ∈ [I0, I1] × [λ0, λ1], system (4) can have one, two or
three equilibria on w = ϕI (v), all of them located either on Sr or on S−

a ; see Fig. 3.
The number of equilibria and their exact locations depend on (I, λ).
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Fig. 3 Neural model (1): nullclines under variation of I which leads to the (singular limit) definition
of Ibif: (Type I) I = Ibif at a saddle-node bifurcation; (Type II) I = Ibif at (singular) Andronov–Hopf
bifurcation. In the transition from type II to type I, a cusp bifurcation appears as can be predicted by
looking from the bottom pictures in this figure

This assumption together with the geometric properties of the two nullclines f = 0
and g = 0 defined in Assumptions 1 and 2 imply the following under the variation of
(I, λ) ∈ [I0, I1] × [λ0, λ1]; see Fig. 3:

• there can be no more than one equilibrium on the lower attracting branch S−
a ;

• the existence of exactly two equilibria indicates a saddle-node bifurcation either
on Sr or at F−.

Remark 2 Assumption 3 sets the scene for the transition from an excitable to an
oscillatory state. It excludes the possibility of a transition from an oscillatory state to
a(nother) steady state (known as depolarisation block in neuroscience), by restricting
the parameter space from above. This is not necessary but allows us to focus on the
onset of oscillations, not the termination.

Next we look at the reduced problem (6). The corresponding one-dimensional
dynamics on the critical manifold S projected onto its base coordinate v is given by

−∂f

∂v

(
ϕI (v), v,0, I

)
v̇ = ∂f

∂w

(
ϕI (v), v,0, I

)
g
(
ϕI (v), v,0, λ

)
. (11)

Generically, system (11) defines the reduced dynamics along the hyperbolic branches
of the critical manifold, outside the fold points F± where (11) is singular. Assump-
tion 3 implies that g(ϕI (v), v,0, λ) 
= 0 on the upper branch S+

a .
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Fig. 4 Singular limit bifurcations at the lower fold F− and their singular limit orbits in system (1)
(vth > 0, I = Ibif = 0). (a) (Type I) singular saddle-node homoclinic (SNIC) (c = 0) together with a
singular Bogdanov–Takens bifurcation (= singular BT/SNIC); (b) singular Andronov–Hopf bifurcation
with incomplete family of canard cycles (0 < c < csn); (c) family of (incomplete) canard cycles and fam-
ily of singular saddle-node homoclinics of canard type (c = csn); (d) (Type II) singular Andronov–Hopf
bifurcation and (complete) family of canard cycles (c > csn)

Assumption 4 For all (I, λ) ∈ [I0, I1] × [λ0, λ1], the fold point F+ = (w+, v+) is a
regular jump point. More precisely, we impose

∂2f

∂v2

(
w+, v+,0, I

) · ∂f

∂w

(
w+, v+,0, I

)
> 0, g

(
w+, v+,0, λ

)
> 0. (12)

The first condition in (12) is equivalent to imposing the requirement that
ϕ′

I (v) = 0, ϕ′′
I (v) < 0; in other words, the fold F+ is a regular local maximum of

ϕI .3 Together with the second condition, this determines the direction of the reduced
flow near F+ and qualifies this fold point as a jump point: all orbits that come in
along the upper branch S+

a jump off the fold F+ and follow the fast fibre towards q;
see Fig. 2 (right). Note that no equilibrium on Sr can approach the upper fold F+
while varying parameters (see also Remark 2).

On the other hand, an equilibrium from S−
a may cross or bifurcate at the lower

fold F−, which is necessary to observe a bifurcation from an excitable to an oscilla-
tory state. Assumptions 3 and 4 imply that the reduced flow on S−

a is either towards
an equilibrium on S−

a or towards the lower fold F− (see Fig. 2 (right) and Fig. 4),
another essential feature for an excitable/oscillatory system.

These basic assumptions hold for many two-dimensional neuronal models includ-
ing the canonical system (1). This model has a cubic-shaped critical manifold S (As-
sumption 1). The function G(v) is monotonically increasing (Assumption 2). It is the
nonlinear nature of G imposed by Assumption 3 that allows us to explore the cases
of different numbers of equilibria (restricted to S−

a and Sr only). If 0 < I1 < IF+ and
vth < v+, where IF+ is defined implicitly by ϕIF+ (v+) = G(v+), then Assumptions 3
and 4 are fulfilled and F+ is a regular jump point for all I ∈ [I0, I1] and c ∈ [0, c1].
3This first condition in (12) is in fact already a consequence from condition (10) together with (8).
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3 Singular (or Slow–Fast) Bifurcations

Our main task is to identify bifurcation structures in the singularly perturbed system
(4) based on singular observations, i.e. for ε = 0. For system (1) we have F− =
(ϕI (v

−), v−) = (I,0). At this fold, G(v) − w = G(0) − I is zero when I = Ibif =
G(0):

Ibif =
{

0, vth ≥ 0,

ev2
th, vth < 0.

(13)

When I < Ibif, there is a unique singularity on the stable branch S−
a with possible

extra singularities on the middle branch while for I > Ibif there is no singularity
on S−

a . Hence, the transition from an excitable to an oscillatory state happens near
I ∼ Ibif and we will distinguish different excitability types by different behaviour
near the lower fold F−.

Remark 3 System (1) models type III excitability if Ibif lies outside of the interval
[I0, I1], i.e. Ibif > I1. In general, type III excitability can be characterised by the
property that Ibif lies outside of the interval [I0, I1].

3.1 Normal Form Near the Singular Fold Point

In the canonical model (1) assuming it is not of type III, the fold F− is a singular fold
point at I = Ibif defined in (13). We can make the simple coordinate transformations
w = x/d + I and v = y/d to write the system in the form

x′ = ε
(
dG(y/d) − x − dI

)
,

y′ = y2 − x − y3/d2,

which simplifies for v ≤ vth to

x′ = ε(cy − x − a),

y′ = y2 − x − y3/d2,
(14)

where a = dI . Note that, when v > vth, an extra term ε e
d
(y − dvth)

2 appears in the
x′ equation.

While in general one has to do a bit more work, the normal form for system (3)
near the singular fold F− shows similarity with the normal form (14) of the canonical
model. The local shape of the vector field (3) near the fold F− is described in the
following proposition.

Proposition 1 Under Assumptions 1–3 and (10), the family of vector fields (3) can
be locally transformed in the following normal form near F−:

x′ = ε
(
cy − σx − a + O

(
x2, y3, xy, εy2)),

y′ = y2 − x + βy3 + O
(
y4),

(15)
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where σ = ±1, σc ≥ 0 and β 
= 0. The coefficients a, c and β can be computed
explicitly in terms of (I, λ, ε).

Proof Starting with system (3), and working under Assumption 1 and (10), we know
from the implicit function theorem that the v-nullcline f (w,v,0, I ) = 0 is a graph
w = ϕI (v). By the same argument, we can factor f (w,v, ε, I ) as (ϕ̃I,ε(v)−w) · f̃ for
some strictly positive function f̃ (w, v, ε, I ), and with ϕ̃I,ε(v) = ϕI (v) + O(ε). By
dividing the vector field by f̃ (i.e. by rescaling time), we obtain the (topologically)
equivalent vector field4

w′ = εg̃(w,v, ε, λ, I ),

v′ = ϕ̃I,ε(v) − w.

The reader may verify that Assumptions 1–3 remain unchanged after this manipu-
lation.5 Since ϕ′′

I (v) > 0 and hence ϕ̃′′
I,ε(v) > 0, we can solve ϕ̃′

I,ε(v) = 0 using the
implicit function theorem to find an I -dependent point at v = v∗(I, ε), ε-close to the
fold of ϕI (v).6 Replacing v by v − v∗ and w by w − ϕ̃I,ε(v∗) allows one to assume
in the remainder that the fold of ϕ̃I,ε(v) is located at the origin. It suffices to see that
after this translation, v′ = B0(ε)v

2 − w + O(v3) for some B0(ε) > 0. We arrive at

w′ = ε
(
A0 + A1v + A2v

2 + A3w + O
(
ε,w2, v3,wv

))
,

v′ = B0(ε)v
2 − w + O

(
v3),

where the coefficients Ak and B0 depend on (I, λ). Let us now write (w,v) =
(Zx + εPy + ε2Q,v = Zy + εR) for well-chosen (P,Q,Z,R). Aided by a com-
puter algebra program it is easy to verify that one can choose (P,Q,Z) in terms of
R to make sure y′ = y2 − x + O(y3). Once we have obtained this, it is not so hard to
see that one can choose R in such a way that we arrive at

x′ = ε
(
C0 + C1y + C2x + O

(
ε, x2, y3, xy

))
,

y′ = y2 − x + B1y
3 + O

(
y4).

In other words, the leading-order coefficient with y2 in x′ has disappeared. The
O(ε) terms in x′ that are not part of O(x2, y3, xy) are of the form ν1(ε), ν1(ε)x,
ν2(ε)y, ν3(ε)y

2. The first three terms can be put together with the primary part
C0 + C1y + C2x, by allowing Ci to be ε-dependent. It shows that the remainder
term is O(x2, y3, xy, εy2). A linear rescaling of (x, y, t) allows one to further reduce
to the case C2 = ±1. The constraint C0C2 ≥ 0 follows from Assumptions 2–3. �

Remark 4 For system (14), the coefficients in the normal form are given by c ≥ 0 and

a = dI, β = −1/d2, σ = 1, (16)

4With a slight abuse of notation we denote the new time derivative also by a prime.
5This remark applies for all manipulations of the system in this proof.
6In the canonical model (1), the v-coordinate of the fold does not depend on I .
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at least when vth > 0. When vth < 0, the parameters a and c are shifted by extra terms
(which we will not give details of here) that depend on vth. The extra term in the co-
efficient a will make a = 0 at I = Ibif = ev2

th. The coefficient c in the normal form in
that case depends regularly on vth and can be used to locally distinguish the different
scenarios depicted in Fig. 3. Hence, it makes sense to consider the coefficients (a, c)

in the normal form as the main bifurcation parameters.

In system (15) for a < 0, there exists a stable equilibrium on the lower stable
branch S−

a while for a > 0, there is no stable equilibrium on the lower stable branch
S−

a and the fold F− is a regular jump point. Thus a transition in the dynamics must
happen for a ∼ 0 near the lower fold F− and, depending on c, we classify the singular
contact point F− as follows:

• For a = 0 and c > 0, the fold F− is a singular (or slow–fast) Andronov–Hopf
point; see Sect. 4.

• For a = c = 0, the fold F− is a singular (or slow–fast) Bogdanov–Takens point;
see Sect. 6.

These two local singular bifurcation points are associated with the two differ-
ent neural excitability types I and II. Note that a Bogdanov–Takens bifurcation is
a codimension-2 bifurcation that includes a codimension-1 Andronov–Hopf bifur-
cation in its unfolding. So, we also expect to find a connection between these two
bifurcations as c tends to zero.

Remark 5 Although type III neurons are not associated with any bifurcation for fixed
current input, these slope detectors play an important role in identifying dynamic
changes and producing transient responses. We refer to [2] for details and [10] where
type III neurons and excitability are discussed in the context of GSPT.

From Fig. 3, we can deduce the presence of another (local) codimension-2 bifur-
cation, a cusp bifurcation [17] where two codimension-1 saddle-node bifurcations
merge.7 Its approximate location can be computed easily in the normal form (15),
under the condition that we discard the higher order terms O(x2, xy, y3) in the ẋ

equation and the O(y4) terms in the ẏ equation: (a, c) = (acusp +O(ε), ccusp +O(ε))

with

acusp := σ

27β2
and ccusp := − σ

3β
. (17)

This indicates that for fixed 0 < c < ccusp we observe three equilibrium states, two
of which are located on Sr (see Assumption 3). This has interesting consequences on
the global bifurcation structure of our problem; see Sect. 5.

As can be seen in Fig. 4 for c = 0 and I = Ibif, the layer problem of a type I neuron
has a saddle-node bifurcation of equilibria at the lower fold F−. This allows for the
construction of a singular homoclinic orbit Γ as follows: we start at the saddle-node

7Note that the cusp is not a ‘singular’ bifurcation since it persists in the singular limit as a bifurcation of
the reduced problem, i.e. the cusp forms a regular bifurcation structure within this singularly perturbed
system.
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Fig. 5 Sketch of singular limit bifurcation diagram in (a, c) parameter space: singular Bogdanov–Takens
and saddle-node homoclinic (SNIC) at the origin (blue); singular Andronov–Hopf branch (red dashed) and
cusp bifurcation + saddle-node branches (black); see Fig. 4 for the corresponding cases (a)–(d) along the
singular AH branch

equilibrium at the lower fold F− and concatenate a fast fibre of the layer problem
that connects to the upper stable branch S+

a . Then we follow the reduced (slow) flow
towards the upper fold F+ where we concatenate a fast fibre at F+ that connects back
towards the lower attracting branch S−

a . Finally, we follow the reduced (slow) flow
on S−

a towards the lower fold F− and hence end up at the saddle-node equilibrium.
This homoclinic orbit is the singular limit representation of the SNIC indicated in
Fig. 1. Hence for a = c = 0, we have identified a (global) singular SNIC bifurcation
together with a (local) singular Bogdanov–Takens bifurcation. The unfolding of these
singular bifurcations is done in Sect. 6. Figure 5 summarises all our singular limit
observations.

4 Type II Excitability: Singular Andronov–Hopf Bifurcation and
Canard Explosion

In the case of type II excitability as shown in Fig. 3, the stable equilibrium on the
lower branch S−

a crosses the lower fold F− at I = Ibif and moves onto the unstable
middle branch Sr where it becomes unstable as an equilibrium of the reduced problem
(11). Hence, two eigenvalues change sign as we cross F−. The bifurcation point Ibif
will in general depend on λ; throughout this section, λ will be fixed and we will not
further stress the dependence on λ, as the corresponding bifurcation is codimension-1
and only I is needed as a parameter for its unfolding. We introduce

G(v, I, λ) := g
(
ϕI (v), v,0, λ

)
. (18)

Assumption 5 For fixed (I, λ) = (Ibif, λ), the fold point F− = (w−, v−) with
w− = ϕI (v

−) is a singular contact point that undergoes a singular Andronov–Hopf
bifurcation with respect to the parameter I at I = Ibif. More precisely, we impose

G
(
v−, Ibif, λ

) = 0,
∂G
∂v

(
v−, Ibif, λ

)
> 0,

∂G
∂I

(
v−, Ibif, λ

) 
= 0. (19)

Besides the singular point near F− occurring in this bifurcation, there are no other
singular points on S−

a .
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Applying the normal form transformation outlined in the proof of Proposition 1
reveals that Assumption 5 amounts to imposing

a|I=Ibif = 0, c > 0 and
∂a

∂I

= 0,

which can easily be verified on the canonical model (1).

Remark 6 System (1) satisfies Assumption 5 for a range of λ values, along a param-
eter curve I = I II

bif(λ).

The nature of the singular Andronov–Hopf bifurcation can easily be seen when
looking at the trace and the determinant of the Jacobian of system (3) given by

trJ = ∂f

∂v
+ ε

∂g

∂w
, detJ = ε

(
∂f

∂v

∂g

∂w
− ∂f

∂w

∂g

∂v

)
. (20)

Close to the fold F−, a bifurcation of equilibria defined by f = g = 0 happens for
0 < ε � 1 when trJ = 0. This implies ∂f

∂v
= −ε

∂g
∂w

= O(ε) and, in the singular limit,

this gives the fold condition ∂f
∂v

= 0. From Assumption 5 we have ∂f
∂w

∂g
∂v

< 0 evaluated
at g = 0 and, hence, detJ = O(ε) > 0. So, we are expecting a singular Andronov–
Hopf bifurcation for I = Ih that creates small O(

√
ε) amplitude limit cycles with

nonzero frequencies of order O(
√

ε) [14, 15, 18]. Hence, the singular nature of the
Andronov–Hopf bifurcation is encoded in both, amplitude and frequency. Figure 1
shows an example of a supercritical singular Andronov–Hopf bifurcation.

Note in Fig. 1 that the O(
√

ε) branch of the Andronov–Hopf bifurcation suddenly
changes dramatically near I = Ic. This almost vertical branch marks the unfolding
of canard cycles within an exponentially small parameter interval of the bifurcation
parameter I . This is often referred to as a canard explosion [14, 15]; it provides the
necessary continuous connection between the small Andronov–Hopf limit cycles and
the large relaxation cycles as shown in Fig. 1. In the singular limit, canard cycles
can be identified as follows: Note that the stability switch of the equilibrium in the
reduced problem (11) is due to the singular nature of system (11) at F−; a stabil-
ity switch of a single equilibrium without interacting with another equilibrium in a
one-dimensional regular perturbation problem is otherwise not possible. In fact, for
I = Ibif there exists no equilibrium in the reduced problem (11) due to a cancellation
of a simple zero. Hence, a trajectory is able to cross from S−

a to Sr with nonzero speed
which is a hallmark of a singular canard. One can construct singular canard cycles
that are formed through concatenations of slow canard segments and fast fibres as
shown in Fig. 4(d). Note that these singular canard cycles have O(1) amplitude and
have a frequency O(1) on the order of the slow time scale. These singular canard
cycles will unfold to the above mentioned canard cycles in a canard explosion. The
following summarises these observations.

Theorem 1 In system (4) under Assumptions 1–5, assuming the existence of only one
equilibrium and for sufficiently small ε, a singular Andronov–Hopf bifurcation and a
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canard explosion occur at

Ih = Ibif + H1ε + O
(
ε3/2) and (21)

Ic = Ibif + (H1 + K1)ε + O
(
ε3/2). (22)

The coefficients H1 and K1 and, hence, the type of singular Andronov–Hopf bifurca-
tion (super- or subcritical), can be calculated explicitly.

In fact, for the normal form (15) given in Proposition 1 and under the condition
that c > 0 is sufficiently large, we find with respect to the bifurcation parameter a

that abif = 0, ah = H1aε + O(ε3/2) and ac = (H1a + K1a)ε + O(ε3/2), with

H1a = c

2
σ, K1a = − c

4

(
σ + 3

2
βc

)
. (23)

When K1a > 0, the Hopf bifurcation is supercritical; when K1a < 0, it is subcritical.

Proof We refer to [15], where the main part of the statement is shown. Here we just
restrict to computing H1a and K1a in the normal form (15).

Let us start with H1a , given (21). A simple asymptotic analysis reveals that a
singularity is located at (x, y) = (ε2 H1a

c2 + O(ε3), ε
H1a

c
+ O(ε2)), about which the

linearisation of the vector field has a trace given by (−σ + 2H1a

c
) + O(ε2). The Hopf

bifurcation hence occurs at H1a = c
2σ .

Next we focus on the canard value H1a + K1a . Since the singular Hopf point
is of generic nature, the parameter value at which canards are present are the same
parameter values for which there exists a smooth asymptotic expansion x = ϕ(y) +
ϕ1(y)ε+ϕ2(y)ε2 +O(ε3) representing an invariant graph. Expressing the invariance
by plugging the series in the differential equations yields expressions for ϕ1 and ϕ2,
given ac = (H1a + K1a)ε + O(ε2). Then imposing the requirement that ϕ2 should
not have a pole at y = 0 yields a condition on H1a + K1a that leads to the required
result. �

Remark 7 By actively using the singular nature of canards, the above calculation also
presents an alternative way to find the first Lyapunov coefficient K1a to determine the
criticality of the singular Andronov–Hopf bifurcation.

In the singular limit, we have Ih = Ic = Ibif indicating the singular nature of the
bifurcation. Note that the classic definition of type II excitability refers to the slow
O(ε) frequency band of the large relaxation oscillations which does not vary much
(and not to the actual intermediate O(ε1/2) singular Andronov–Hopf bifurcation fre-
quency).

A closer look at the expression for the first Lyapunov coefficient K1a in Theorem 1
indicates that there is a change of criticality at c = cbautin + O(ε1/2) with

cbautin := −2σ

3β
, (24)

which evaluates to cbautin = 2d2

3 in the canonical model (1).
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Lemma 1 For fixed 0 < ε � 1, the normal form (15) has for c ≈ cbautin a
codimension-2 Bautin (generalised Andronov–Hopf) bifurcation point.

The Bautin bifurcation [17] indicates for fixed 0 < c < cbautin that we are dealing
with a subcritical singular Andronov–Hopf bifurcation (under the variation of the
parameter a) which is accompanied by another codimension-1 bifurcation, a saddle-
node of periodic orbits (SNPO) bifurcation that has branched of the codimension-2
Bautin point. Due to the singular nature of our problem, this SNPO bifurcation is
a bifurcation of canard cycles. Thus it happens exponentially close to the canard
parameter value ac defined in Theorem 1.

5 Type I/II Excitability Transition Regime: Incomplete Canard
Explosion

Recall from (17) that for ε = 0 we observe a codimension-2 cusp bifurcation at
(a, c) = (acusp, ccusp), which persists along a parameter curve {(acusp(ε), ccusp(ε), ε) :
ε ∈ [0, ε0]} in (a, c, ε) parameter space:

Lemma 2 For fixed 0 < ε � 1, the normal form (15) has for c ≈ ccusp a
codimension-2 cusp bifurcation point.

This lemma indicates that the cusp has no singular nature8 with respect to the limit
ε → 0. For fixed 0 < c < ccusp, we have three equilibrium states, at least two of which
are located on Sr (see Assumption 3). This changes the global bifurcation structure
of our problem. While we still observe a singular Andronov–Hopf bifurcation with
respect to the parameter a, the growth of the limit cycles is, however, bounded as
one approaches a homoclinic connection towards one of these additional equilibria
(which is of saddle type). The next theorem discusses this scenario, which describes
a first transition from type II excitability towards the type I limiting situation. We
formulate the results concerning the main system, but we will make the description
according to the parameters introduced for the normal form (15) in Sect. 3.1. For
the canonical model (1), the relation between a and I is trivial, while in general the
relation between (I, λ) and (a, c) may be complicated, though Sect. 3.1 entails a
procedure on how to compute the change of parameters.

Remark 8 We denote by c−
sn > 0 the c-coordinate where one of the SN branches inter-

sects the c-axis (‘SNIC of canard type’ in Fig. 5). In the normal form (15) excluding
the higher order (big-oh) terms, we know that 0 < c−

sn < ccusp. We assume that this is
also the case with the big-oh terms included.

Theorem 2 In system (15) under Assumptions 1–5, for fixed 0 < c < c−
sn < ccusp and

0 < ε � 1 there exists an unstable equilibrium on the middle branch Sr,ε bounded
away from the lower fold F−. Furthermore, there exist functions

0 < asnpo(ε) < a�(ε) < as(ε) < ac(ε) < ah(ε) < a+
sn(ε)

8The cusp forms a regular bifurcation structure within this singularly perturbed system.
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Fig. 6 Bifurcation diagram for fixed 0 < c < ccusp. The parabola shows the two equilibra near the fold
F− (the third equilibrium branch and second SN are not shown). The a-axis is not shown on scale, as the
distance between asnpo and ac should be exponentially small. Keeping that in mind, an incomplete canard
explosion is seen as a goes from ac to as

that all converge to zero in the singular limit ε → 0 (except a+
sn) and for which the

following holds (see also Fig. 6):

1. For a+
sn < a, the fold F− is of regular jump type and a large stable relaxation

cycle exists.
2. At a = a+

sn, a saddle-node bifurcation of singular points on the middle branch
Sr,ε in an O(c)-neighbourhood of F−; the large relaxation cycle persists.

3. For ah < a < a+
sn, the system has a saddle p+ and an unstable focus/node p−

on the middle branch Sr,ε surrounded by the large relaxation cycle. The unstable
focus/node p− is closer to the fold F−.

4. At a = ah, p− changes stability and a subcritical singular Andronov–Hopf bi-
furcation takes place; the large relaxation cycle persists.

5. For ac < a < ah, repelling small-amplitude limit cycles appear around the stable
focus p−; the large relaxation cycle persists.

6. For as < a < ac, small jump-back canard cycles appear that rapidly grow in
amplitude (canard explosion); the large relaxation cycle perturbs to a large-
amplitude jump-forward canard cycle.

7. At a = as , a small jump-back homoclinic loop of canard type, issued from the
saddle p+, appears together with a stable large-amplitude canard cycle.

8. For a� < a < as , the small homoclinic loop breaks and only the stable large-
amplitude canard cycle persists.

9. At a = a�, a large-amplitude homoclinic loop of canard type, issued from the
saddle p+, appears together with the outer large-amplitude cycle.
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10. As a decreases from a�, large-amplitude canard cycles appear that grow in
amplitude until it disappears in a saddle-node bifurcation of limit cycles at
a = asnpo.

Proof Before proving this theorem, we would like to mention that the distance be-
tween ah and ac is O(ε), just like in the previous singular Andronov–Hopf case,
while the values ac, as , a� and asnpo are all exponentially close to each other.

Singularities near the fold. For fixed 0 < c < ccusp, the singularities are found at inter-
sections of the nullclines cy−a−x+O(x2, y3, xy) = 0 and y2 −x+βy3 +O(y4) =
0, hence have y-coordinates satisfying ρ(y) := −a+cy −y2 +O(y3) = 0. The value
a+

sn corresponds to the solution of {ρ(y) = 0, ρ′(y) = 0}, solved w.r.t. (y, a). It yields

a+
sn = c2

4
+ O

(
c3). (25)

At a = a+
sn, the double singular point appears (in the singular limit ε = 0) at y =

c
2 + O(c2), i.e. on the middle branch, and for ah < a < a+

sn there are two singular
points: one unstable node/focus p− close to the fold, and a saddle p+ that is O(c)-
away from the fold, both located on the middle branch.

For a > ah, the location of the singularities implies that the fold F− is a jump
point and a stable relaxation cycle is present. This shows parts (1)–(3).

Remark 9 Note, there exists also a third equilibrium on the middle branch, an unsta-
ble node/focus denoted by n, bounded away from the fold F−. This third equilibrium
bifurcates with p+ along the second saddle-node branch (see Fig. 5).

Singular Andronov–Hopf bifurcation. As demonstrated in the proof of Theorem 1,
we have a singular Andronov–Hopf bifurcation

ah = ε
c

2
+ O

(
ε3/2),

and the criticality depends on the sign of K1a = − c
4 (1 + 3

2βc) = − c
4 (1 + O(c))

which is negative since 0 < c < ccusp < cbautin, i.e. the Andronov–Hopf bifurcation is
subcritical. This shows parts (4)–(5).

Remark 10 The canard parameter value ac is not strictly defined, as also a “small-
amplitude limit cycle” is not strictly defined. We choose a δ-neighbourhood of the
fold and the moment where the canard cycles grow out of this δ-neighbourhood along
the canard explosion, we define the parameter value a = ac(ε). (In other words, ac

lies beyond the “birth of canards”.)

Incomplete canard explosion and homoclinic saddle loops. The presence of the sad-
dle p+ shows that the canard cycles cannot grow unlimitedly during the canard ex-
plosion. We give here a short overview of the proof of the presence of small canard
cycles because we will use elements of the proof to show the existence of canard
homoclinics.
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For fixed c > 0, we rescale a = √
εA, thus studying an O(

√
ε) neighbourhood

of the positive c-axis in (a, c) parameter space along which we observe a singular
Andronov–Hopf bifurcation; see Fig. 5. We consider, in normal form coordinates,
two transverse sections: a section S = {y = 0, x0 < x < x1} which is transverse to
the fast flow and a section T = {y = 0, |x| = O(ε)} close to the singular fold F−.
Using geometric singular perturbation theory, we find that both the forward flow and
the backward flow of the vector field takes points of S to T ; indeed, the forward
resp. backward fast flow takes points of S to S−

a resp. Sr , after which the dynamics
of the slow flow governs the drift towards T . It defines two maps

xT = εF (xS,
√

ε,A), xT = εB(xS,
√

ε,A), (26)

where the forward map F and the backward map B are known to be smooth in terms
of (xS,

√
ε,A); see [19]. To be more precise, let x+

S be the (parameter dependent)
coordinate of the intersection of S with the fast fibre separatrix of the saddle p+.
Then this coordinate is the supremum of the x-coordinates for which the backward
map in (26) is defined. In [19] it is then shown that F − B = 0 at (

√
ε,A) = (0,0)

(independently of xS ), and ∂
∂A

(F − B) 
= 0 at that point. Application of the implicit
function theorem leads to the presence of a canard curve A = √

εAcanard(xS,
√

ε)

along which the vector field has a canard periodic orbit that intersects the section S

at x-coordinate xS . The canard curve Acanard is smooth in ε and its value depends
in an exponentially small way on xS . In other words, canard cycles are found in an
exponentially small wedge along an O(ε) neighbourhood of the positive c-axis in
(a, c)-parameter space.

We can further rely on the results in [20], where it is shown that the maps (26)
are smooth up to and including (at its extension) the boundary x = x+

S . This implies
that the canard value as = εAcanard(x

+
S ,

√
ε) obtained above is actually a parameter

curve along which the vector field has a homoclinic saddle loop of canard type (of
‘jump-back’ type). This proves part (7) of the theorem.

Remark 11 Around the unstable canard cycle (or homoclinic a bit later on), there ap-
pears a big relaxation oscillation of canard type. It lies close to the full relaxation os-
cillation, but travels an O(c)-distance along the middle repelling branch (see Fig. 6).
The exact distance travelled along the middle branch can be computed using slow-
divergence integrals and exit–entry relations; we refer to the literature [21].

By introducing an alternative section S̃ between the middle and upper branch
instead of S, we can treat homoclinic saddle loops of the ‘jump-away’ type in a
completely similar way. The only thing that changes is that points of S̃ undergo a
large-amplitude oscillation in their way to T in positive time (travelling along S+

a to-
wards the jump point F+, jumping off towards S−

a ). The smoothness of the transition
maps and the application of the implicit function theorem is analogous. This defines
a = a� < as and proves part (9) of the theorem.

For a < a�(ε), the homoclinic connection breaks into a repelling large-amplitude
cycle. While a proceeds to the outside of an O(ε)-neighbourhood of 0, it encounters
the relaxation-like attracting cycle that surrounded all repelling cycles. They disap-
pear in a saddle-node bifurcation of limit cycles at a = asnpo < a�. This proves part
(10) of the theorem.
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Fig. 7 Heteroclinic connections
of canard type undergo a
transition from headless canard
to canard with head, from the
jump-back canard homoclinic to
the jump-away canard
homoclinic

For a� < a < as in between the two homoclinic curves, the stable manifold Ws

connects in reverse time to an orbit that follows the large homoclinic for some time,
but exiting at a time prior to the time needed to connect back to p+. Therefore, no
limit cycles may appear. In fact, since we know there is an additional singularity on
the middle branch Sr , denoted by n, and assuming it is of node type, then the ex-
ponential gap between the two homoclinics is filled by canard curves along which
canard-type heteroclinic connections appear between n and p+; see Fig. 7. The tran-
sition from headless heteroclinic canard to heteroclinic canard with head can be seen
as a natural continuation of the truncated canard explosion of the canard homoclinics.
The proof of the presence of such heteroclinics is completely analogous to above. In
particular, no limit cycles are present in this scenario. This proves part (8) and finishes
the proof of the theorem. �

5.1 Termination of Homoclinic Saddle Loops: SNICs

In the canonical form (1), the singular Andronov–Hopf curve intersects the saddle-
node bifurcation curve along which the saddle p+ collides with a third singularity,
a node n on the middle branch Sr . Expressing (1) in the local coordinates (14), this
singular bifurcation point is marked in blue in Fig. 5 and has coordinates (a−

sn, c
−
sn) =

(0,− 1
4β

). In this section, we discuss how this codimension-2 singular bifurcation
point perturbs to ε > 0.

The SN-curve perturbs regularly for positive values of ε to a curve c = csn(a, ε).
Observe that the part of the AH curve between the origin and this codimension-2 bi-
furcation point perturbs to a wedge of canard curves, corresponding to the incomplete
canard explosion discussed in Theorem 2.

As in the case of the saddle homoclinics, denote by x+
S the intersection of the sec-

tion S with the unstable separatrix of the singularity p+, up to the point where it be-
comes a saddle-node. Then the part {x < x+

S } of S is the part for which the backward
map B : S → T is well defined. Applying the results in [20], we know that the map B

has a Ck-smooth extension (for any k) to the boundary of its definition domain. It im-
plies that we can define B(x+

S , ε, a, csn(a, ε)) and also F(x+
S , ε, a, csn(a, ε)), like in

(26) but where we made the dependence of c explicit. Therefore, solving F − B = 0
using the implicit function theorem with respect to the rescaled parameter A (recall
a = √

εA) allows us to prove the presence of saddle-node homoclinics of (‘jump-
back’) canard type.
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Fig. 8 Sketch of bifurcation diagram in (a, c) parameter space for 0 < ε � 1: cusp bifurcation and SN
branches (black); Bautin bifurcation point (red) with Andronov–Hopf branches (sub = dashed/super =
solid); and saddle-node of periodic orbit (SNPO) branch (green); small and large homoclinic (HOMs and
HOM�) branches (blue); SNIC segment (blue) on the SN branch a−

sn

As before, replacing the section S with the alternative S̃, we can apply the same
reasoning to prove the presence of a canard value along which there is a saddle-
node homoclinic of (‘jump-away’) canard type. Since the canard values Acanard are
smooth in terms of xS , we clearly see that the homoclinic loop curves (of jump-
back and jump-away type) terminate at corresponding saddle-node homoclinic at the
saddle-node bifurcation curve.

The exponential wedge on the SN-curve between the two terminal points are ter-
minal points of SNIC canard curves that correspond to heteroclinic canards as shown
in Fig. 7. Visually, it is clear how in Fig. 7, a heteroclinic connection tends towards a
SNIC as n and p+ approach each other in a SN bifurcation. The method of proof is
similar to the one exposed before.

Remark 12 In the case c−
sn < c < ccusp fixed, the second SN-bifurcation is located

ahead of the singular (subcritical) AH-bifurcation and we observe a complete canard
explosion (including a SNPO bifurcation of canard cycles).

In the case ccusp < c < cbautin fixed, there is only the singular (subcritical) AH-
bifurcation and we also observe a complete canard explosion (including a SNPO
bifurcation of canard cycles).

Figure 8 summarises all our observations for 0 < ε � 1 (compare with the singular
limit bifurcation diagram in Fig. 5).

6 Type I Excitability: Singular Bogdanov–Takens/SNIC Bifurcation

In this section, we discuss the origin (a, c) = (0,0) which represents a local singular
Bogdanov–Takens and a global singular SNIC bifurcation point; see Fig. 5. Let us
first formulate general conditions under which the origin in the (a, c)-diagram of the
local normal form is relevant for system (3) under the condition that Assumptions 1–
4 are satisfied. We look at the lower fold point F− when it violates Assumption 5,
i.e. we are interested in parameter values λ = λbif where

∂G
∂v

(
v−, Ibif, λbif

) = 0,
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with G defined in (18). This condition is typically violated in 1-parameter families.
For SNIC bifurcations to appear with a saddle-node near the fold point F−, we will
hence impose the following condition.

Assumption 6 For fixed (I, λ) = (Ibif, λbif), the fold point F− = (w−, v−) is a sin-
gular contact point that undergoes a singular Bogdanov–Takens bifurcation with re-
spect to the parameters (I, λ) at (I, λ) = (Ibif, λbif). More precisely, we impose (on
top of Assumptions 1–4):

G
(
v−, Ibif, λbif

) = 0,

∂G
∂v

(
v−, Ibif, λbif

) = 0,
∂2G
∂v2

(
v−, Ibif, λbif

)
> 0,

(27)

∂G
∂I

(
v−, Ibif, λbif

) 
= 0,

∂G
∂λ

(
v−, Ibif, λbif

) = 0,
∂2G
∂λ∂v

(
v−, Ibif, λbif

) 
= 0.

(28)

Besides the possible singular points near F− occurring in this bifurcation, there are
no other singular points on S−

a .

Conditions (27) imply that the fold point F− is a local codimension-2 singular
point. Conditions (28) imply that a complete unfolding of the singularity is obtained
upon varying (I, λ). In fact, the conditions in (28) could be replaced by the slightly
more general condition,

det
∂(G,Gv)

∂(I, λ)

(
v−, Ibif, λbif

) 
= 0

where Gv := ∂G/∂v, but we prefer to keep (28) in order to be able to identify I as the
Hopf breaking parameter among the two parameters.

Remark 13 It can be seen that conditions (27) and (28) imply the following condi-
tions on the normal form (15):

(a, c)|(I,λ) = (Ibif, λbif) = (0,0), σ = +1,

∂a

∂I

= 0,

∂a

∂λ
= 0,

∂c

∂λ

= 0,

which are verified on the canonical model (1).

Under these conditions it is well known that in ε-dependent rescaled coordinates,
a regular Bogdanov–Takens bifurcation takes place; see [16]. As a consequence, the
presence of small-amplitude homoclinics is clear in some parameter subset. Further-
more, as (singular) Andronov–Hopf bifurcations form part of the bifurcation diagram,
canard-type orbits are present. Indeed, the double singularity in the slow dynamics
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at x = 0 may unfold in a way that the fold point becomes a canard point and an ex-
tra saddle-singularity in the slow dynamics on the middle branch may appear. In that
way, an incomplete canard explosion can be observed that terminates in a canard-type
saddle homoclinic (‘jump-back’, without ‘head’). In fact, these are phenomena that
appear locally near the Bogdanov–Takens fold point.

Besides the small-amplitude phenomena near the Bogdanov–Takens point, we
consider orbits that are close to the singular saddle-node homoclinic loop Γ shown in
Fig. 4. We expect the existence of large-amplitude saddle-node homoclinics (SNICs)
and as in the previous section, we also expect large-amplitude saddle homoclinics as
well as relaxation oscillations.

In order to get a hold on the parameters close to c = 0, we rescale the parameters
and introduce

(c, a) = (
εC, ε2A

)
, (C,A) ∈ [0,M] × [−M,M] (29)

for some large M > 0. By doing this we in fact assume that c = O(ε) and a = O(ε2).
After the parameter rescaling (29), we study the system

x′ = ε
(−ε2A + εCy − x + O

(
x2, y3, xy, εy2)),

y′ = y2 − x + O
(
y3).

(30)

The singularity at (x, y, ε) = (0,0,0) has been described in [16] as a slow–fast
Bogdanov–Takens point.9 In that paper, it is shown that a BT bifurcation takes place
near the origin. More importantly, it is shown that the phase portraits associated with
the BT bifurcation are the only phase portraits seen in a small neighbourhood of the
origin. The paper does not deal with any interactions with global return mechanisms,
i.e. the interaction of the (local) singular BT and the (global) singular SNIC have not
been studied. We will therefore repeat part of the local analysis, with the focus on the
interaction with the global return mechanism.

6.1 Blow-up of the Singular Fold

Near the fold, we study the system using blow-up [14, 15]. We write

(x, y, ε) = (
r2X,rY, rE

)
, r ≥ 0, (X,Y,E) ∈ S2+,

where S2+ denotes the half-sphere X2 + Y 2 + E2 = 1 with E ≥ 0 (also known as
Poincaré or blow-up sphere). The weights are chosen in a way that the higher order
(big-oh) terms in (30) have also higher order in the rescaled equation.

As is usual in geometric desingularisation, we study the flow on the half-sphere
in different (coordinate) charts. Two charts are important: the chart K1 (or the phase-
directional rescaling chart), and the chart K2 (or the family rescaling chart). The K1
chart is used to extend the orbits along the slow manifold (which are directed towards
the fold) to a neighbourhood that is at distance O(ε) from the origin. While this

9We refer to it as a singular Bogdanov–Takens point.
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Fig. 9 Blow-up of the singular fold. ‘Birds-eye view’ of the upper blown-up sphere X2 + Y 2 + E2 = 1
in (X,Y )-space. Normal hyperbolicity of the manifolds Sa and Sr is gained at the equator, allowing one
to extend them onto the blown-up sphere near singularities pa , respectively, pr . The two additional singu-
larities represent connection to the fast fibre at F−

transition is the most technical and least obvious for the reader who is not accustomed
to the blow-up method, it fortunately is that part where the study of system (30) agrees
with the results in studies of a classical regular jump point. Hence, we do not present
detailed computations in the chart K1, but focus on presenting important facts and
refer to the literature [14, 15] for a detailed analysis.

The phase-directional rescaling chart K1. Here, we explain the dynamics near the
equator of the blow-up sphere S2+. When presenting a picture in blown-up (x, y, ε)-
space, where the origin is replaced by (or blown-up to) a sphere, we can position
the point of view from the top of the ε-axis; looking down on the (X,Y )-plane we
see the spherical surface X2 + Y 2 + E2 = 1 with E ≥ 0 as the interior of a circle
X2 + Y 2 = 1, and the equator as the circle with the outer slow–fast dynamics around
it; see Fig. 9.

Calculations in K1 reveal two hyperbolic saddle singularities, ps and pn, and two
semi-hyperbolic singularities pa and pr along the equator. Combining information
from the slow–fast dynamics near F− with information obtained in chart K1 allows
one to reconstruct the dynamics near the circle shown in Fig. 9.

Combining the global return mechanism, which defines a map Σout → Σin, with
the information from this chart allows one to show the smoothness and exponentially
contractiveness of the (ε,C,A)-family of maps

Σn → Σa. (31)

Given the uniqueness of the centre separatrix issued from pa , one can prove that
the image of any small section Σn under this map limits to this centre separatrix
(intersected with Σa) as ε → 0. To characterise the global dynamics, it is therefore
important to know the dynamics of this centre separatrix. In particular, a connection
of Σa to Σn will distinguish whether or not singular points are met, or whether a
regular ‘jump point-like’ connection is possible. This study will be done in the family
directional rescaling chart.

The family rescaling chart K2. Once the orbits have passed the chart K1, we can
assume that x = O(ε2) and y = O(ε). In the blow-up coordinates, this means that
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(X,Y,E) is bounded away from the equator {E = 0} of the sphere (since then it
means ε ∼ r). It is well known that a study of that part of the sphere can be established
by looking at an ε-dependent rescaling

(x, y) = (
ε2X,εY

)
, (X,Y ) ∈ [−R,R]2 (32)

for some large R > 0. Applying this rescaling to (30), we can divide out a common
factor ε, thus transforming the system into a regular perturbation family10

Ẋ = −A + CY − X + O(ε),

Ẏ = Y 2 − X + O(ε).
(33)

6.2 Local and Global Codimension-2 Bifurcations

System (33) describes the flow in the interior of the sphere as shown in, e.g., Fig. 9,
and it can be analysed by means of classic bifurcation analysis. Together with the
information obtained from the global return mechanism, we are able to describe all
observed local and global bifurcations in (A,C) parameter space.

Bogdanov–Takens bifurcation.

Lemma 3 For ε = 0, system (33) undergoes a subcritical Andronov–Hopf bifurca-
tion when A = Ah(C) = − 1

4 + 1
2C, C > 1, and a saddle-node bifurcation of singular-

ities when A = A+
sn(C) = C2/4. Both bifurcation curves meet in a Bogdanov–Takens

bifurcation point at (A,C) = (1/4,1). Both bifurcations persist for ε > 0.

Proof There are two singular points on X = Y 2, located at Y = Y± := 1
2 (C ±√

C2 − 4A). The singularity at Y = Y+, denoted p+, is always a saddle. The singu-
larity at Y = Y−, denoted p− is of focus/node type for C > 1 and undergoes a change
in the sign of the trace along Ah = − 1

4 + 1
2C, which indicates an Andronov–Hopf bi-

furcation. Along this parameter line, p− is weakly unstable; a basic calculation shows
that the first Lyapunov coefficient is positive. Hence the Andronov–Hopf bifurcation
is subcritical.

The two singular points p+ and p− collide along A+
sn = C2/4 indicating a saddle-

node bifurcation at p±. �

Remark 14 Let us mention, without proof, that the homoclinic saddle-loop bifurca-
tion curve (HOMs in Fig. 10) of the Bogdanov–Takens point (BT) at (A,C) = ( 1

4 ,1)

lies between the Andronov–Hopf curve (AH) and the parameter line A = A�(C) =
− 1

16 + C
4 (HOM�) and tends towards this parameter line as it approaches infinity; see

Fig. 10. This can be seen by studying (33) for ε = 0 near infinity [22].

Saddle-node homoclinic bifurcation. The following proposition states some proper-
ties of system (33) for ε = 0. As mentioned before, we focus on the interaction of

10We refrain from writing the subindex 2 on (X,Y ) in this chart to distinguish the coordinates from K1.
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Fig. 10 Bifurcations found in (33) for ε = 0 in the (C,A)-parameter plane. Codimension-2: Bogdanov—
Takens (BT), resonant homoclinic (Resonant HOM�) and saddle-node homoclinic (SN-HOM�); codimen-
sion-1: saddle-node (SN), Andronov–Hopf (AH), saddle homoclinic (HOMs and HOM�), saddle-node of
limit cycles (SNPO)

local dynamics with the global return mechanism (31). In particular, we want to un-
derstand the dynamics of the centre separatrix of pa .

Proposition 2 Along the saddle-node bifurcation line A+
sn(C) = C2/4, we have the

following behaviour of (33) for ε = 0 (see Fig. 11):

1. When C < 1
2 , the separatrix coming from pa connects to a centre-stable separatrix

of the saddle-node singularity p±. The unique unstable centre separatrix of p±
connects to pn.

2. When C = 1
2 , the separatrix coming from pa connects to the hyperbolic attracting

separatrix of the saddle-node singularity p±. The unique unstable centre separa-
trix of p± connects to pn.

3. When C > 1
2 , the separatrix coming from pa connects directly to pn along a reg-

ular orbit. This is the jump scenario. In particular, the BT point p± (C = 1) is not
connected to the separatrix.

4. The attracting separatrix of the saddle-node point p± and the separatrix coming
from pa break regularly with respect to the parameter C.

Proof The proof uses basics from planar theory of vector fields (e.g. invariant curves,
isoclines, positive invariant sets). It requires some computations, but as it concerns
basic properties we have left the details for the reader.

For C < 1/2, we define W = X − Y 2 + (C − 1)Y − 1
2 (C − 1)C. Notice that the

saddle-node singularity p± is a point on the parabola W = 0 and that Ẇ |W=0 =
(1 − 2C)(Y − C

2 )2 which is positive except at the SN point p±. Using information
from infinity (i.e. from chart K1), we see that the separatrix from pa enters the re-
gion {W > 0} which is positively invariant. Hence the ω-limit set of the separatrix
has to be the vertex of the parabola. Finally, the hyperbolic separatrix of the saddle-
node singularity p± is tangent to ∂{W = 0} which implies it lies outside the positive
invariant set {W > 0}. This proves part (1).

For C = 1
2 , the singularity p± lies on the invariant parabola from Lemma 3, which

then coincides with the separatrix coming from pa . It is not hard to verify that the
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Fig. 11 Behaviour of (33) on the Poincaré disc for ε = 0, along the SN-curve A+
sn(C) = C2

4 . For C ≤ 1
2 ,

the point pa connects to the SN point p±. At C = 1, a BT point p± occurs, not connected to pa , however

hyperbolic eigenspace of the saddle-node singularity p± coincides with the tangent
space of the parabola. This proves part (2).

For C > 1
2 , we define V = X − Y 2 − 1

2Y − ( 1
8 − C

2 ). One can verify that
V̇ |V =0 = − 1

16 (2C − 1)2 < 0, so that {V ≤ 0} is a positive invariant set. It is a sym-
bolic computation to verify that the separatrix coming from pa enters this invariant
set, and hence cannot leave.11 On the other hand, V computed at the saddle-node
point p± = ( 1

4C2, 1
2C) yields 1

4 (C − 1
2 ) > 0. We conclude that the separatrix from

pa cannot reach p±. Since pn is the only other option for a ω-limit, it shows part (3).
As for the regular breaking of the connection in part (4): we compute the stable

separatrix of the saddle-node p± and compare it with the separatrix coming from pa .
For the comparison we choose an arbitrary section crossing {V = 0} and parameterise
it by the levels of V . It is not hard to see that the separatrix coming from pa intersects
any such section at V -values that are O(C − 1

2 )2. On the other hand, a variational
computation of the stable separatrix of p± reveals that it is given by V = 1

4e1−4Y ×
(C − 1

2 ) + O(C − 1
2 )2. Since 1

4e1−4Y 
= 0, it explains the transversality. This finishes
the proof of the theorem. �

Clearly, the saddle-node curve A+
sn(C) = C2/4 persists within a manifold

A+
sn(C, ε) = C2/4 + O(ε). The regular breaking property formulated in the proposi-

tion ensures that the results persist for ε > 0.

Theorem 3 There exists a parameter surface A+
sn(C, ε) = C2/4 + O(ε) along

which a saddle-node singularity p± exists. On this surface, there exists a curve

11The separatrix of pa has an expansion Y = −√
X − 1

4 + 1−8C
32 X−1/2 − (2C−1)2

64 X−1 + O(X−3/2) as

X → ∞ and V = − (2C−1)2

32 X−1/2 + O(X−1) along this separatrix.
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Fig. 12 Behaviour of (33) on the Poincaré disc for ε = 0, along the curve A�(C) = − 1
16 + C

4 . At C = 1
2 ,

the point pa connects to the SN point p± . For C < 1
2 the pa connects to the node p− , for C > 1

2 , there is

a sequence of two heteroclinic connections from pa to pn, via the saddle p+, which is resonant at C = 3
4

C = 1
2 + O(ε) along which a saddle-node homoclinic (SN-HOM�) connection ap-

pears containing the hyperbolic separatrix of the saddle-node. For C < 1
2 + O(ε) on

this parameter surface, there is a SNIC connection containing a centre separatrix of
the saddle-node. For C > 1

2 + O(ε), there is no SNIC connection.

Proof Restrict to the saddle-node surface. Let γC,ε be the unstable separatrix of the
saddle-node p± that connects to pn. It smoothly intersects in a point PC,ε the section
Σn. The global return mechanism (31) takes this point to a point QC,ε on Σa , where
QC,0 lies on the centre separatrix. On the other hand, let νC,ε be the hyperbolic stable
separatrix of the saddle-node p± that intersects Σa at a point RC,ε . From Proposi-
tion 2, we know that Q 1

2 ,0 = R 1
2 ,0, and, parameterizing the section Σa by a regular

coordinate θ , we also know that ∂
∂C

(QC,0 −RC,0) 
= 0 at C = 1
2 . Hence, we can apply

the implicit function theorem to prove the presence of a curve C = 1
2 + O(ε) along

which both points coincide and a saddle-node homoclinic connection appears. The
rest of the statements follow easily from the properties at the singular limit. �

Resonant homoclinic bifurcation.

Proposition 3 Along A�(C) = − 1
16 + C

4 , we have the following behaviour of (33)
for ε = 0; see Fig. 12:

1. When C < 1
2 , the centre separatrix of pa connects to the node p−.

2. When C = 1
2 , a SN-bifurcation takes place (see Proposition 2).

3. When C > 1
2 , a centre separatrix of pa connects to the hyperbolic saddle p+, and

one of unstable separatrices of the saddle connects to pn. The ratio of eigenvalues
is given by ρ(C) := 2 − 4C < 0, and the saddle is strongly resonant at C = 3

4 .
4. For any given C > 1

2 , the saddle connection breaks regularly with respect to the
parameter A as one moves away from A�(C) = − 1

16 + C
4 .

Proof Recalling V from the proof of Proposition 2, we see that along A� = − 1
16 + C

4 ,
{V = 0} is invariant and hence contains the centre separatrix of pa . It is easy to verify
that when C < 1

2 , only the node p− lies on {V = 0}, and when C > 1
2 only the saddle
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p+ lies there. In the second case, the node p− is found to lie in {V > 0}. So, the
unstable separatrix of the saddle in {V < 0} can only connect to pn. The computation
of the eigenvalues is direct.

Let us finally prove the regular breaking property, with a Melnikov-like approach
that is adapted to planar dynamics; see [19]. Denoting Ẋ = f , Ẏ = g, then

fgA − gfA = Y 2 − X

which evaluates to −Y
2 − 1

8 + C
2 along {V = 0}. This function has a fixed sign on the

separatrix from Y = −∞ up to the saddle p+ at Y = C − 1
4 . We can now directly

refer to [19] (Proposition 5.7) where the regular breaking is related to a Melnikov
computation, where the integrand is exactly fgA − gfA (multiplied by a specific ex-
ponential that implies the convergence of the Melnikov integral). Since this function
is sign-fixed, the related Melnikov integral is nonzero; see [23] for a generalisation
of Melnikov theory to arbitrary dimensions. �

Theorem 4 Let Cmin > 1
2 . There exists a parameter surface A�(C, ε) = − 1

16 + C
4 +

O(ε), C > Cmin along which a large-amplitude saddle homoclinic (HOM�) con-
nection exists. On this surface, there exists a curve C = 3

4 + O(ε) along which
the homoclinic changes stability (resonant HOM�): for lower values of C, the ho-
moclinic is stable, for larger values it is unstable. From this curve emerges a sur-
face A = Asnpo(C, ε) along which a SNPO bifurcation takes place. The surfaces
Asnpo(C, ε) and A�(C, ε) are exponentially close.

Proof The presence of the homoclinic surface follows from a reasoning completely
analogous to the one in the proof of Theorem 3. The change of stability is simply
an eigenvalue computation: the equation ρ(C) = −1 is perturbed regularly under the
ε-perturbation.

The emergence of an SNPO branch from the resonant saddle homoclinic is stan-
dard (see [24]), and based on three features: (i) the ratio of eigenvalues is perturbed
regularly upon variation of a parameter (C), (ii) the separatrix connection breaks reg-
ularly upon variation of another parameter (A), and (iii) the divergence integral along
the homoclinic loop is nonzero. Properties (i) and (ii) follow directly from the sin-
gular limit analysis in Proposition 3. Property (iii) follows from the slow–fast nature
of the global return mechanism: the divergence integral computation is dominated
by the passages along the slow branches S±

a , which are both attracting and yield a
contribution of the order −K/ε, for some K > 0, while the fast parts and the parts
near the folds yield an O(1) contribution. While this argument does not prove that the
SNPO branch is uniformly defined up to the limit, the proof of such a result is based
on combining the local Dulac map of the saddle with a return mechanism. Since all
properties are uniform and since the global return mechanism is sufficiently smooth
up to and including the singular limit, the method for showing SNPO branches is
valid uniformly in ε. �

Figure 10 summarises all observed codimension-2 bifurcations and the bifurcating
codimension-1 branches.
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Remark 15 There are no additional bifurcations (proof omitted).

Remark 16 The homoclinic surface A�(C, ε) defined in Theorem 4 can be extended
to C = 1

2 , up to and including its intersection with the SN-surface A+
sn(C, ε) from

Theorem 3. At the singular limit, this is seen in Fig. 10, but a proof is needed for
ε > 0. In such a proof, one would need to blow up the vector field once more at the
saddle-node singularity (x, y) = ( 1

16 , 1
4 ) and at the parameter value (a, c) = ( 1

16 , 1
2 ),

using a family blow-up, in order to uniformly separate the saddle from the node.
The technical issues involved in such a construction go beyond the scope of what we
intend to expose in this paper.

Remark 17 The bifurcation curves AH, SNPO, HOM� and HOMs shown in Fig. 8
and Fig. 10 are the same. To rigorously prove this, we would need to include the
parameters (a, c) in the blow-up analysis, i.e. we would have to blow up the origin
(x, y, ε, a, c) = (0,0,0,0,0). Again, the technicalities involved in such a construc-
tion go beyond the scope of what we intend to expose in this paper.

7 Discussion

Excitability is an important subject area in neuroscience and its modern treatment
dates back to Alan Hodgkin’s seminal work [1]. His distinction of three neural ex-
citability classes based on injected steps of currents and observed corresponding dis-
tinct frequency–current (f–I) curves still forms the basis in understanding bifurcation
mechanisms of neural excitability. FitzHugh was the first to use dynamical systems
techniques for the qualitative description of action potential generation and thresh-
old phenomena [7, 8, 25]. Rinzel and Ermentrout [3, 4] provided then a mathemati-
cal framework based on bifurcation theory to distinguish between these excitability
types: SNIC bifurcation for type I and Andronov–Hopf bifurcation for type II.

This dynamical systems approach pioneered by Rinzel and Ermentrout is also used
to explain more complicated neural activity such as bursting patterns. Here, the inher-
ent multiple time-scale structure of neural models given through inherent slow and
fast cell membrane processes is actively used to explain the bursting pattern. The bi-
furcation structure found in the fast subsystem provides a possible key to understand-
ing the genesis of bursting patterns; see, e.g., [5]. Interestingly enough, the spiking
pattern itself within a burst is also often a result of a multiple time-scale structure.
This relaxation type behaviour is typically ignored in the bursting literature, because
it would mean to consider models with (at least) three time scales—fast, intermediate
and slow—which has become only recently a new research focus [26–28].

On the other hand, the literature on neural excitability (see, e.g. [5]) clearly uses
slow–fast decomposition to explain action potential generation for tonic spiking mod-
els, although the accompanying bifurcation analysis of such a system often ignores or
just inconsequently uses the given slow/fast structure. This article actively explores
the singular nature of (two-dimensional) neural models and identifies a novel singular
bifurcation based on the slow–fast structure—the singular Bogdanov–Takens/SNIC
bifurcation—that is key to understanding type I and (part of) type II excitability.
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Using readily available tools and results from geometric singular perturbation the-
ory [14–16, 19–22] and bifurcation theory [17, 24] we are able to unfold this sin-
gular bifurcation and identify important codimension-2 bifurcation points—Bautin,
Bogdanov–Takens, resonant homoclinic and saddle-node homoclinic—which organ-
ise the bifurcation landscape for ε > 0 and help to explain the transitions between
type I and type II excitability. For example, based on the position of the Bautin
point in parameter space we identify a supercritical Andronov–Hopf bifurcation as
a clear indicator of type II excitability while a subcritical Andronov–Hopf bifurca-
tion does not necessarily guarantee a frequency band (significantly) bounded away
from zero, i.e. the model could be close to type I and thus close to a homoclinic.
Another important indicator for this proximity to type I is the cusp bifurcation and
its corresponding saddle-node branches. Within the cusp region there are three equi-
libria including a saddle which is necessary to form a homoclinic loop. In this type
I–II transition regime, properties of model neurons that are considered type II might
show behaviour usually associated with type I and vice versa. Care has to be taken
when inferring properties from such a simple excitability classification; see also [5],
where many of these bifurcations and observations have been highlighted.

Our analytical bifurcation results provide important information for the compu-
tational neuroscience community. We show that a SNIC bifurcation associated with
type I excitability only exists in a small parameter regime. Thus it is more likely to
observe a (large) saddle homoclinic in one parameter continuation of neural mod-
els, although it might be very close to a saddle-node and, hence, be mistaken for a
SNIC. Similarly, if one observes a subcritical Andronov–Hopf bifurcation close to a
saddle-node, especially where the corresponding periodic orbits terminate nearby in
a (small) homoclinic, then the other observed (large) homoclinic that terminates close
to a saddle-node cannot be a SNIC.

A main obstacle in a numerical bifurcation analysis is not only the stiffness of the
underlying problem but also the close proximity of different bifurcation branches.
Our analytical bifurcation results should be seen as a helpful guide for numerical
continuation. For example, the numerical bifurcation diagrams presented, e.g., for
the Morris–Lecar neural model in [29], Fig. 6, or for a 2D sodium spiking model in
[30], Figs. 1–2, are incomplete since the exponentially close branches HOMs , HOM�,
SNPO and SNIC (Fig. 8) are hard to distinguish numerically and the identification
of certain codimension-2 points (Fig. 10)—Bogdanov–Takens, resonant HOM� and
SN-HOM�—is a very difficult task.
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