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Abstract Sensory input to the lamprey central pattern generator (CPG) for loco-
motion is known to have a significant role in modulating lamprey swimming. Lam-
prey CPGs are known to have the ability to entrain to a bending stimulus, that is,
in the presence of a rhythmic signal, the CPG will change its frequency to match
the stimulus frequency. Bending experiments in which the lamprey spinal cord has
been removed and mechanically bent back and forth at a single point have been used
to determine the range of frequencies that can entrain the CPG rhythm. First, we
model the lamprey locomotor CPG as a chain of neural oscillators with three classes
of neurons and sinusoidal forcing representing edge cell input. We derive a phase
model using the connections described in the neural model. This results in a simpler
model yet maintains some properties of the neural model. For both the neural model
and the derived phase model, entrainment ranges are computed for forcing at differ-
ent points along the chain while varying both intersegmental coupling strength and
the coupling strength between the forcer and chain. Entrainment ranges for chains
with nonuniform intersegmental coupling asymmetry are larger when forcing is ap-
plied to the middle of the chain than when it is applied to either end, a result that is
qualitatively similar to the experimental results. In the limit of weak coupling in the
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chain, the entrainment results of the neural model approach the entrainment results
for the derived phase model. Both biological experiments and the robustness of non-
monotonic entrainment ranges as a function of the forcing position across different
classes of CPG models with nonuniform asymmetric coupling suggest that a specific
property of the intersegmental coupling of the CPG is key to entrainment.

Keywords Entrainment range · Central pattern generator · Locomotion

1 Introduction

The central pattern generator (CPG) for vertebrate locomotion consists of a circuit of
neurons in the spinal cord that produces the basic oscillatory rhythmic output nec-
essary for locomotion such as walking and swimming [1]. Sensory input is known
to have a significant effect on the rhythmic output of the CPG in order to adjust to
perturbations from the body and environment as well as to adjust the timing of the
electrical waves of activity relative to the muscle activity down the body [2–4]. For
example, edge cells are stretch receptors located on the margin of the spinal cord of
the lamprey that inhibit contralaterally and excite ipsilaterally [3, 5]. Experiments of
Tytell and Cohen [6] specifically address the role of edge cells in modulating CPG
rhythm (also see [7, 8]). In the presence of a rhythmic stimulus, the vertebrate CPG
frequency tends to approach the frequency of that stimulus, a phenomenon known
as entrainment. Consider a CPG oscillating at a frequency ω in the absence of sen-
sory input. Then consider a CPG subjected to a rhythmic stimulus at a frequency ωf,
close to ω. Denote by ω∗

i the average frequency of the ith oscillator in the chain dur-
ing forcing, which may or may not be equal to the forcing frequency ωf. When the
CPG’s response is periodic with its frequency equal to the forcing frequency, that is,
ω∗

i = ωf for all i, the CPG is said to be 1:1 entrained. In this paper we only consider
1:1 entrainment, which we will refer to simply as entrainment. The range of frequen-
cies for which the CPG is entrained to the forcer is termed the entrainment range.
Tytell and Cohen [6] found that the experimental entrainment ranges were approxi-
mately twice as large for bending stimuli applied near the middle of the preparation
as those for stimuli applied at the ends. This experimental result motivated the study
of entrainment in CPG models in order to determine the mechanisms responsible for
entrainment ranges which are non-monotonic as function of the forcing position.

The locomotor CPG is commonly represented by a chain of coupled oscillators.
Each individual oscillator can be represented by models with varying biological de-
tail (see, for example, [9–13]). The simplest model, a phase model with sinusoidal
coupling functions, was pioneered by Cohen, Holmes, and Rand [9] in terms of the
lamprey locomotion CPG and represents each oscillator as a single variable. In this
paper we refer to this model as the sinusoidal phase model. A neural network model
of a segment of the CPG represents classes of neurons in that segment, with the num-
ber of variables proportional to the number of classes. Finally, a Hodgkin–Huxley
type oscillator models neurons in each segment with multiple physiological variables.
Seminal work of Cohen, Holmes, and Rand [9] inspired models of entrainment of
forcing at either end of the chain [10, 13, 14]. Previte et al. [15] considered entrain-
ment ranges for chains of phase oscillators, with sinusoidal coupling, forced at any
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point along the chain. They developed analytical bounds on the entrainment ranges
and characterized loss of entrainment.

Here we further investigate the hypothesis from Previte et al. [15] that entrainment
ranges that vary non-monotonically as a function of the stimulus position provide in-
formation regarding how intersegmental connection strengths vary as a functions of
the length and direction. We replace the sinusoidal phase model of [15] with a neural
model for each CPG segment and compute entrainment ranges. We further derive a
phase model, which incorporates biological details from the neural model into the
coupling functions. The resulting phase model (implicitly) contains more biological
details than the sinusoidal phase model, but it is simpler than the neural model. We
numerically compute entrainment ranges as a function of both stimulus position and
forcing strength for the neural and derived phase models. We compare entrainment
ranges for the two models, which are predicted to coincide in the limit of weak in-
tersegmental coupling and forcing [9, 16, 17]. Deriving the phase model allows us
to determine the extent to which its coupling functions and forcing functions are ap-
proximately sinusoidal. If the derived phase model is approximately sinusoidal, this
would suggest that the previous analysis of [15] may be sufficient to understand the
entrainment of the neural model in the limit of weak coupling. If not, the derived
phase model would serve to motivate future analysis that extends the analysis of [15]
to a wider range of coupling and forcing functions. Finally, after computing entrain-
ment ranges, we classify how entrainment is lost.

Swimming is a closed-loop system that requires sensory feedback. A power-
ful approach to study such a closed-loop system is to conduct experiments on its
components under open-loop conditions [18]. System identification, parametric and
non-parametric modeling, and concepts from control theory can then be used to
understand how the open-loop properties of a system’s component determine its
closed-loop behavior [18, 19]. This approach has been used to study, for example,
blowflies [20] and electric fish [21, 22] and motivates our interest in the open-loop
effect of bending on the lamprey CPG.

The manuscript is organized as follows. Section 2 contains a description of the
neural model of Buchanan [23] and Williams [24], and it extends the model to include
edge cells. Section 3 contains a description of the derivation of the phase model from
the more detailed neural model. Entrainment ranges as a function of the connection
strength and forcing position are presented in Sect. 4. Loss of entrainment is discussed
for both models in Sect. 5. Section 6 contains a comparison of the entrainment results
from the sinusoidal phase model, the neural model, and the experimental data.

2 Neural Model

The neural model of the lamprey CPG is based on the model developed by
Buchanan [23] and Williams [24]. The model consists of a chain of coupled identical
segmental oscillators, with each oscillator corresponding to one anatomical segment
of the lamprey spinal cord. The segmental oscillators are modeled as in [24], except
that we use a smooth approximation of the piecewise-linear threshold function of [24]
(see below). Each segment is described by six variables representing the six classes
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Fig. 1 Cell classes of the neural model described in [23, 24] are excitatory interneurons (E), lateral in-
hibitory interneurons (L), crossed inhibitory interneurons (C), and edge cells (EC). Numbers indicates cell
indices. Bars and circles indicate excitatory and inhibitory connections, respectively. Edge cells are only
active in the segment at which bending occurs

of cells depicted in Fig. 1. Coupling connections exists between all oscillators, but
the strength of the connections depends on their length and direction. Each segment
of the CPG consists of three types of neurons: excitatory (E), lateral inhibitory (L),
and crossed inhibitory (C) interneurons. Each segment exhibits left–right symmetry
with each side containing one E, L, and C cell connected through intrasegmental
connections, as illustrated in Fig. 1. Following [12], the effect of bending on the CPG
is mediated by edge cells in the margin of the spinal cord, with connections onto
CPG cells as shown in Fig. 1 [5]. We model the bending experiments of Tytell and
Cohen [6] by assuming that bending activates the edge cells of only one segment.

The model is connectionist with one variable per cell: vij is the “voltage” of cell j

in segment i, scaled to be unitless and lie between −1 and 1. (For convenience we use
the term “cell” to refer to a class of cells.) When vij < 0 the cell does not fire action
potentials and vij represents the membrane voltage of the cell body. When vij > 0
the cell fires action potentials and vij represents the normalized firing rate. Although
the model is connectionist, its form is similar to conductance-based models such as
the Hodgkin–Huxley model [25] with the time derivative of voltage proportional to
the sum of “currents”, each with its own reversal potential. The reversal potentials are
in the range from −1 to 1, so that voltage remains in this same range. The model is

v̇ij = −GRvij + G
j
T (1 − vij ) +

n∑

k=1

6∑

l=1

α
lj
i−kG

lj

0 h(vkl)
(
V l

syn − vij

)

+ δimαf

2∑

s=1

G
sj

f h
(
vs

ec(θf)
)(

V
sj
syn,ec − vij

)
,

for i = 1, . . . , n; j = 1, . . . ,6, (1a)

θ̇f = ωf, (1b)

where

h(x) = σ log
(
1 + ex/σ

)
(1c)

is a smooth threshold function and

vs
ec(θf) = (−1)s sin(2πθf) (1d)

is the edge cell voltage with s denoting the left or the right side as illustrated in Fig. 1.
(See Table 1 for a list of the model parameters and their values.) In Eqs. (1a)–(1d), n
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Table 1 Neural model parameters used for simulations and to compute the derived phase model

Parameter Description Value Restrictions

n Number of segmental oscillators 10

m Index of forced oscillator Varies 1 ≤ m ≤ n

GR Resting conductance 3.5 s−1

G
j
T

Tonic excitatory conductance 0.875 s−1 E cells

0.350 s−1 L cells

3.500 s−1 C cells

Gkl
0 Maximal synaptic conductance of

intersegmental connection
15 s−1 L to C connection

35 s−1 All other connections

V l
syn Synaptic reversal potential for

intersegmental connection
1 Excitatory connections

−1 Inhibitory connections

σ Smoothing parameter of threshold function 0.05

α
lj
r Intersegmental connection strength See Fig. 5

Ad Amplitude of descending coupling Varies

Aa Amplitude of ascending coupling Varies

λd Length constant of descending coupling Varies

λa Length constant of ascending coupling Varies

αf Forcing strength Varies

ωf Forcing frequency Varies

V
sj
syn,ec Synaptic reversal potential for EC

connection
1 Excitatory connections

−1 Inhibitory connections

G
sj
f Maximal synaptic conductance of EC

connections
1

represents the number of spinal cord segments in the experimental preparation being
modeled. We choose n = 10 as a compromise between required computation time and
approximating the large number of segments in experimental preparations, where n

can approach 50. On the right side of (1a), the first term represents the resting conduc-
tance that drives the voltage toward 0. The second term represents the tonic excitatory
conductance that drives the voltage toward 1. The third term, the double summation,
represents the influence of other neurons on vij , which occurs via the intrasegmental

(k = i) and intersegmental (k �= i) connections. The term α
lj
i−kG

lj

0 is the maximal
synaptic conduction of the connection from cell l of oscillator k to cell j of oscilla-
tor i. Cell indices are indicated in Fig. 1. Note that the maximal synaptic conductance
does not depend on the absolute positions of the two oscillators in the chain, but only
on the signed distance between them, r = i − k. Note for convenience, we refer to
r as the connection length, where negative values correspond to ascending connec-
tions and positive values correspond to descending connections. For intrasegmental
connections, i = k, α

lj
i−k = 1 and G

lj

0 is the maximal synaptic conductance. For inter-

segmental connections, αlj
r expresses the maximal synaptic conductance as a fraction

of the maximal synaptic conductance of the intrasegmental connection of the same
type. Figure 5 illustrates the synaptic conductances for connections between E and C
cells, L and C cells, and all other cellular connections. We refer to α

lj
r as connection
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strength and describe how connection strengths are specified when we consider the
phase-model approximation in Sect. 3. The threshold function h given by (1c) de-
scribes how coupling depends on the voltage of the presynaptic cell. This function
represents an activation threshold, where once the voltage of the neuron reaches a
certain threshold it becomes “active.” In contrast to the models of Buchanan [23] and
Williams [24], which use a piecewise-linear h, we chose a smooth h to facilitate our
computational analysis. As σ decreases to 0, the smooth function approaches the non-
smooth version of [23] and [24]. We used σ = 0.05 in our simulations. A connection
between cells drives the postsynaptic cell’s voltage toward the synaptic reversal po-
tential V l

syn, which depends on the type of the presynaptic cell l. If cell l is an E cell,

which is excitatory, then V l
syn = 1; if cell l is an L or C cell, which are inhibitory, then

V l
syn = −1.

The last term of (1a), the single summation, describes the influence of bending
via edge cells on the CPG voltages vij . We use the Kronecker delta function δim to
indicate that bending only occurs at segment m. The summation index s indicates
whether input is from the edge cell on the left (s = 1) or right (s = 2) side. The
parameter αf is the strength of forcing and the parameters G

sj

f are used to indicate
the relative strength of forcing on different cells in segment m. For simplicity, we
assume that G

sj

f = 1 for all the edge cell connections shown in Fig. 1 and G
sj

f = 0

otherwise. The parameter V
sj
syn,ec is the synaptic reversal potential for the connection

from the edge cell on side s to cell j ; V
sj
syn,ec is 1 for the ipsilateral connections, which

are excitatory, and −1 for the contralateral connections, which are inhibitory. For an
edge cell connection, the input to the threshold function h is the voltage vs

ec(θf), which
is defined by (1b) and (1d).

3 Derived Phase Model

To test how coupling asymmetry affects the shape of entrainment ranges as a function
of the forcing position we study another phase model which is derived from the neu-
ral model described in Sect. 2. A phase model is a simplification of the neural model
and represents each anatomical segment of the CPG with a single variable. Previte et
al. [15] studied a phase model with sinusoidal coupling functions. However, instead
of using sine functions to couple the oscillators, we use the neuron-to-neuron connec-
tions in the neural model to compute intersegmental connections between oscillators.
We exploit the theory of weakly coupled oscillators [9, 16, 17] to approximate the
neural model given by (1a)–(1d) by a phase model of the form

θ̇i = ω0 +
n∑

k=1
k �=i

6∑

j=1

6∑

l=1

α
lj
i−kH

lj (θk − θi)

+ δimαf

2∑

s=1

6∑

j=1

H
sj

f (θf − θi), for i = 1, . . . , n, (2a)

θ̇f = ωf, (2b)
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Fig. 2 Simulation of a single segment within a chain of oscillators defined by (1a)–(1d) for two cycles
without forcing. Plot shows the cell voltages within the first segment (i = 1). Weak intersegmental cou-
pling, defined by Aa = 0.0004, Ad = 0.0002, λa = λd = 4, was used to connect segments. Thus, the
solution for the oscillator in the chain closely approximates the solution for a single, uncoupled oscillator.
Note the spatiotemporal symmetry between left and right cells. The voltage of the left cells is the same as
the voltage of the right cells except for a phase shift of half a period

under the assumptions that intersegmental connection strengths α
lj
r (r �= 0) and forc-

ing strength αf are small and ωf is close to ω. The function Hlj describes the coupling
provided by a single intersegmental connection of unit strength from cell l in one seg-
ment to cell j in another segment. Similarly, H

sj

f describes the coupling provided by
a connection of unit strength from the edge cell on side s of segment m to cell j in
the same segment. Note we no longer consider intrasegmental coupling since each
segment is represented by a single variable.

Recall that intersegmental connections have the same connectivity as the intraseg-
mental connections shown in Fig. 1. For example, given coupling length r , there are
12 nonzero α

lj
r corresponding to 2 connections for each of 6 connection types: E to C,

E to L, L to C, C to E, C to L, and C to C. Due to the right–left symmetry of the neural
model and the left–right spatiotemporal symmetry of the segmental oscillator’s limit
cycle, two connections of the same type have the same connection strength and same
coupling function. Note these symmetries can be seen in Fig. 2, which depicts the
steady state of the neural model for one segment, simulated without forcing. The left
and right cells have the same voltage with a phase shift of half a period. Therefore,
we can write

6∑

j=1

6∑

l=1

α
lj
r H lj =

∑

c∈C
αr,cHc, where C = {EL,EC,LC,CE,CL,CC} (3)

where, for example, αr,EL = α12
r = α45

r and HEL = H 12 + H 45 = 2H 12. Let αr be
the mean of αrc for c ∈ C. We define Hr , the coupling function of the length r , as

Hr = 1

αr

6∑

j=1

6∑

l=1

α
lj
r H lj =

∑

c∈C

αr,c

αr

Hc. (4)
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Similarly, the 8 edge cell connections of Fig. 1 consist of two connections for each
of the four connection types: EC to Li, EC to Ci, EC to Lc, and EC to Cc, where ‘i’
and ‘c’ indicate ipsilateral and contralateral connections, respectively. Therefore, we
can define the forcing coupling function Hf as

Hf =
2∑

s=1

6∑

j=1

H
sj

f = Hf,Li + Hf,Ci + Hf,Lc + Hf,Cc, (5)

where, for example, Hf,Li = H 11
f + H 25

f = 2H 11
f .

Now, using (4) and (5), we can write the phase model (2a), (2b) as

θ̇i = ω0 +
n∑

k=1
k �=i

αi−kHi−k(θk − θi) + δimαfHf(θf − θi), for i = 1, . . . , n, (6a)

θ̇f = ωf. (6b)

Model (6a), (6b) has the standard form of a chain of coupled phase oscillators forced
at one location. To specify this model, two choices remain. First, for each connection
length r we must specify the connection strength ratios αr,c/αr in (4) that determine
the coupling function Hr . We defer this specification until we have computed the
coupling function Hc for each connection type c (see Fig. 4 below). Second, we must
specify how coupling strength αr depends on r . Experimental evidence does not pro-
vide the exact form of this dependence but does indicate an asymmetry in ascending
and descending coupling strengths [7, 26, 27]. Among the possible modeling choices
in the literature (e.g. [11, 28]), we will follow Varkonyi et al. [29] and assume that
the coupling strength decays exponentially with coupling length:

αr =

⎧
⎪⎨

⎪⎩

Ade−|r|/λd for r > 0 (descending connections),

Aae
−|r|/λa for r < 0 (ascending connections),

1 for r = 0 (intrasegmental connections),

(7)

where Ad , λd and Aa , λa are the amplitudes and length constants for descending and
ascending coupling, respectively. Representative parameter values can be found in
the caption of Fig. 8.

3.1 Coupling Functions

To define the functions Hr and Hf in (6a), (6b) we use the methods of phase reduction
and averaging (see [30–32]) as applied to weakly coupled oscillators [29]. Under
the assumption of weak coupling in (1a)–(1d), we can describe the intrasegmental
connections in the neural model as a phase dependent coupling function for each
connection type, Hc .

Applying the techniques used in [29] to (1a)–(1d) the 6 intersegmental coupling
functions Hc in (3) are computed. The first step in this process is to compute the phase
response curves (PRCs) for each class of neurons within a single segment. Figure 3
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Fig. 3 The PRCs are plotted for the left E, L, and C cells. Each PRC describes the resulting phase shift
that occurs when that cell’s voltage is perturbed by 10−6, at various initial phases. PRCs for right E, L, and
C cells are the same except for a phase shift of 0.5 due to the right–left symmetry within each oscillator

Fig. 4 For each type of neural connection between E, L, and C cells, an Hc function is computed to
represent the effects of neurons on the voltage of the neuron within the oscillator. The six Hc functions are
computed for connections from L to E cells, C to E cells, C to L cells, E to C cells, L to C cells, and C
to C cells. Here we show only half of the neuron-to-neuron connections in Fig. 1 because of the left–right
symmetry within the oscillator

illustrates the PRCs for the neural model (1a)–(1d). These are the 6 neuron-to-neuron
connections in half of a single oscillator. Recall that due to the spatiotemporal sym-
metry (seen in the connections in Fig. 1 and the simulated voltages in Fig. 2) Hc

are the same for connections between neurons on the right side of the oscillator and
those on the left side. The six connections for the left E, L, and C cells are depicted
in Fig. 4.

Recall that the intersegmental coupling functions defined by (4) are a linear combi-
nation of the six neuron-to-neuron connections Hc . In (4), αrc determines how much
each neuron-to-neuron connection of length r contributes to the intersegmental con-
nection for oscillators i and k where r = i − k. The choice of αrc also determines the
phase lag between oscillators. Experimentally, a phase lag of approximately 1% of
the cycle per segment has been observed [1, 33]. This means that as neural activity
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Fig. 5 Relative strengths
αrc/αr of different connection
types as a function of the
connection length r

travels down the CPG, the phase difference between consecutive segments is 0.01.
Choosing the correct set of coefficients to produce the desired phase lag is called
tuning. We use the tuning methods in [26] to determine the appropriate {αrc}. Tun-
ing is achieved when the zeros of the coupling functions match the phase lag of 0.01
per segment. After tuning, for a chain of ten oscillators, we have 18 intersegmental
connection functions Hr for r = −9, . . . ,−1,1, . . . ,9 representing both ascending
and descending connections. Each Hr is then multiplied by αr , the average of the in-
trasegmental connection strengths of length r . The fraction of the connection strength
αrc/αr is depicted in Fig. 5 for the different cell-to-cell connections.

A method similar to the one used to compute intersegmental coupling functions
Hr is used to compute Hf, where cell i is replaced by an edge cell. Hence, θi will
represent the phase of the forcer, which has its own period Tf = 1/ωf. These edge
cell connections are depicted in Fig. 6 for the left edge cell.

As described before by (5), the forcing function Hf in (6a), (6b) is defined as
the sum of all of the edge cell connections. Here we assume that each edge cell
connection contributes equally to the overall forcing connection (each function has
coefficient 1).

Fig. 6 For each type of neural connection from edge cells, an Hf,c function is computed that describes
the strength of that connection as a function of the relative phase between the edge cell and the oscillator
where forcing is applied
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At this point, we have computed all components of the phase model: intersegmen-
tal connections, Hr , and forcing connection, Hf. However, rather than use the phase
model directly, we instead consider the relative phase model by looking at the phase
difference between each oscillator and the phase of the forcer. This is characterized
by the change of variable φi = θf − θi , which transforms (6a), (6b) to

φ̇i = δ −
n∑

k=1
k �=i

αi−kHi−k(φi − φk) − δimαfHf(φi), for i = 1, . . . , n, (8)

where δ = ωf − ω0. In the phase model, entrainment corresponds to stable periodic
orbits, whereas in the relative phase model, entrainment corresponds to stable fixed
points of (8). When the CPG is entrained to the forcing frequency, the phase differ-
ence between a given oscillator in the chain and the forcing oscillator remains con-
stant. Using the relative phase model allows us to use continuation and fixed point
stability analysis, which we can exploit to find entrainment ranges.

4 Entrainment Ranges

In this section, entrainment ranges are computed as functions of forcing position,
forcing strength and intersegmental coupling strength. For the neural model (1a)–
(1d), a periodic solution entrained to a given forcing frequency would correspond to
a fixed point of the Poincaré map. For the relative phase model, the CPG is entrained
when the relative phases, that is, the differences in phase between an oscillator in
the chain and the forcing oscillator, θf − θi , are constant. This implies that all of the
oscillators in the chain have the same frequency as the forcer, namely ωf. Constant
relative phases correspond to stable fixed points of (8). For both models, entrainment
ranges can be computed by identifying stable fixed points.

Standard parameter continuation methods (see, for example, [34]) are used to track
fixed points in dynamical systems in order to determine the boundaries of entrainment
ranges. In the simplest case (shown in Sect. 4.2), the parameter δ = ωf − ω is varied
and the lower and upper boundaries of the entrainment range are values of δ where
the fixed point loses stability. Stability is assessed by computing the eigenvalues of
the Jacobian evaluated at the fixed point. In order to determine how the entrainment
range varies with forcing strength αf (shown in Sect. 4.1), we performed a series of
one-parameter continuations in order to compute curves in (αf, δ) parameter space
that correspond to loss of stability.

We used a series of one-parameter continuations instead of two-parameter continu-
ations, because a two-parameter continuation can become inaccurate near degenerate
bifurcations [35]. In order to follow these curves in any direction in parameter space,
the one-parameter continuations were performed along ellipses in parameter space
rather than straight lines, as illustrated in Fig. 7. The larger dotted ellipses represent
the path of the continuation steps in the parameter space. These ellipses indicate how
the parameters δ = ωf − ω and αf are updated at each continuation step. We choose
the size of the ellipse so that it is large enough to cover a relatively large area in pa-
rameter space in order to decrease computation time and also small enough to capture
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Fig. 7 Illustration of two-parameter continuation used to find entrainment ranges as a function of the
forcing strength. The dotted circles denote how the values of δ = ωf − ω0 and αf are updated at each con-
tinuation step. The plus signs denote points on the entrainment range that are detected by the continuation
circles. This allows us to detect sharp corners that may be missed with standard continuation where we
only look at vertical slices of parameter space

sharp corners of the entrainment range. The small red circles indicate the center of
continuation ellipses. To choose the next center, we take a step in the same direction
as the previous entrainment point. The points on the entrainment range are indicated
by blue plus signs. To better explain this process, consider entrainment points 2 and
3 in Fig. 7. We start with entrainment point 2, which is a known point on the entrain-
ment rage. To get the next center, indicated by the small red circle between points
2 and 3, we step in the same direction as the vector from point 1 to point 2. We
then move around the large ellipse, plotted in magenta, and find new fixed points
with slightly different values of αf and δ. To determine points on the boundary of the
entrainment range, we compute the stability of the fixed points in each model.

4.1 Entrainment Ranges as a Function of Forcing Strength

Entrainment ranges are computed for both the neural model and the derived phase
model as a function of the forcing strength using our continuation algorithm. Fig-
ure 8 illustrates 1:1 entrainment ranges for a chain of ten oscillators forced at the last
oscillator as a function of the forcing strength αf. The entrainment range, as a function
of the forcing strength, is plotted relative to the unforced, average frequency of the
chain that is, the vertical axis represents the difference between the forcing frequency,
ωf and the natural chain frequency ω. Figure 8(left), illustrates entrainment ranges for
both the neural model (indicated by the blue line) and the derived phase model (in-
dicated by the red line) for weak intersegmental coupling strength corresponding to
Ad = 0.0004, Aa = 0.0002, and λd = λa = 4 in Eq. (7). Figure 8(right) illustrates
entrainment ranges with intersegmental coupling strength 100 times stronger than
in Fig. 8(left) (Ad = 0.04, Aa = 0.02). Together Figs. 8(left) and 8(right) illustrate
the approximate scaling of entrainment ranges with intersegmental coupling strength.
For stronger coupling, the derived phase model captures the general properties of the
neural entrainment range but not the details as seen in Fig. 8(right). In the limit of
weak coupling, as in Fig. 8(left), both the neural model and the derived phase model
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Fig. 8 Entrainment ranges for the neural and derived phase models as a function of the forcing strength.
Left panel illustrates entrainment ranges as a function of the forcing strength for weak intersegmental cou-
pling corresponding to Aa = 0.0004, Ad = 0.0002, and λa = λd = 4. Right panel illustrates entrainment
ranges for 100 times stronger intersegmental coupling with Aa = 0.04 and Ad = 0.02. Note that for weak
coupling the entrainment ranges for the neural and derived phase models match closely while for strong
coupling the entrainment ranges start to differ as the forcing strength increases. The dashed line on both
plots represents Hopf bifurcations that occur when entrainment is lost. Smooth lines denote saddle-node
bifurcations. The arrows in right panel correspond to the forcing strength values αf where loss of entrain-
ment is depicted in Figs. 10 and 11

agree almost exactly, including the type of bifurcation that occurs when entrainment
is lost. The smooth lines correspond to saddle-node bifurcations, and the dashed lines
represent Hopf bifurcations. For strong coupling, the phase model is not as good of a
quantitative approximation of the neural model but does capture the same qualitative
features of the entrainment ranges of the neural model, including bifurcation type.

4.2 Entrainment Ranges as a Function of Forcing Position

Figure 9 illustrates the effect of different types of intersegmental coupling on en-
trainment ranges plotted as a function of the forcing position. Figure 9A shows
the strength of the connections plotted as a function of the connection length for
both ascending and descending coupling and corresponds to Eq. (7) with parameters
Aa = 0.0004, Ad = 0.0002, and λa = λd = 4. Strength of the ascending connections
are uniformly stronger than descending connection strengths, hence we refer to this
intersegmental coupling scheme as uniform coupling asymmetry. Similarly, Fig. 9B
shows connection strengths, again as a function of the connection length, for both
ascending and descending connections where Aa = 0.006, Ad = 0.0004, λa = 0.75,
and λd = 4. Note in this case, for connections of length 1 and 2, ascending strengths
are stronger than descending strengths, but the curves cross transversely (at approxi-
mately coupling length 3), after which descending connections become stronger than
ascending connections. We refer to this coupling scheme as nonuniform coupling
asymmetry.

We consider entrainment ranges as a function of the forcing position to test the
hypothesis that nonuniform coupling asymmetry produces larger entrainment ranges
when forcing the middle of the chain of oscillators than when forcing at either end.
We compute entrainment ranges as a function of the forcing position m for the exam-
ples of uniform and nonuniform asymmetric coupling illustrated in Fig. 9. Figure 9C
and 9D depict entrainment ranges for both the neural (blue line) and the derived phase
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Fig. 9 Entrainment ranges as a function of the forcing position for varying intersegmental connections.
Uniform coupling asymmetry is illustrated in A with Aa = 0.0004, Ad = 0.0002, and λa = λd = 4. All
of the ascending coupling strengths are stronger than descending for all connection lengths. This coupling
scheme is used to produce monotonic entrainment ranges as a function of the forcing position, seen in C.
Nonuniform coupling asymmetry is depicted in B with Aa = 0.006, Ad = 0.0004, λa = 0.75, and λd = 4.
For our choice of parameters, ascending connections become stronger at connections of length 3. Nonuni-
form coupling is used to compute the entrainment range in D, where see non-monotonic entrainment
ranges

(stars) models. Note that at the boundary of the entrainment ranges, entrainment is
lost externally which means the chain of oscillators has a different average frequency
than the forcing oscillator (for more details please see Sect. 5). When the chain has
uniform intersegmental coupling asymmetry (Fig. 9A), entrainment range is a mono-
tonically increasing function of the forcing position, as seen in Fig. 9C for both the
neural and the derived phase model. When the chain has nonuniform intersegmen-
tal coupling asymmetry (Fig. 9B), entrainment range is a non-monotonic function of
the forcing position, since the largest entrainment range occurs at m = 3, as seen in
Fig. 9D. Nonuniform coupling asymmetry produces qualitatively the same entrain-
ment ranges as a function of the forcing position as the experimental data and sup-
ports the hypothesis of Previte et al. [15] that non-monotonic entrainment ranges as a
function of the forcing position are not a generic property of coupled oscillators but
rather depends on intersegmental coupling properties. Further, note that since cou-
pling strength is relatively weak, the phase model acts as a very good approximation
of the neural model.

5 Loss of Entrainment

To compare with the analytic loss of entrainment results described in [15], we char-
acterize how entrainment is lost outside of the entrainment ranges for the neural and
derived phase model. In the sinusoidal phase model, entrainment is lost solely through
saddle-node bifurcations. However, in both the neural and the derived phase models
entrainment is lost either via a saddle-node bifurcation or a Hopf bifurcation (also
known as a Neimark–Sacker bifurcation) of the Poincaré map [30]. Lines of saddle-
node and Hopf bifurcations meet at a codimension-two Bogdanov–Takens bifurcation
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Fig. 10 Example of loss of entrainment for the neural model. Panel A shows phase relative to the forcer
for external loss of entrainment with αf = 0.5 and ωf − ω is +0.0002 above the entrainment range as
indicated by arrow 1 in Fig. 8(right). Panel B shows relative phase for internal loss of entrainment with
αf = 2 and ωf − ω is +0.0002 above the entrainment range indicated by arrow 2 in Fig. 8(right). Panels C
and D show cycle period for external and internal loss of entrainment, respectively

of the Poincaré map [36]. The type of bifurcation varies along the lower branches of
the entrainment ranges in Fig. 8. Unlike the entrainment ranges of the sinusoidal
phase model of Previte et al. [15], the entrainment ranges of the derived phase model
capture the types of bifurcations seen in the entrainment ranges of the neural model.

Following the definitions of loss of entrainment in [15], we investigate internal
versus external loss of entrainment in the CPG models. Internal loss of entrainment
occurs when part of the chain follows ω∗

i = ωf but for the rest of the chain ω∗
i �= ωf.

This split can occur above or below the oscillator where forcing is applied, corre-
sponding to rostral or caudal internal loss of entrainment. External loss of entrain-
ment occurs when ω∗

i are equal for all oscillators in the chain but are not equal to
the forcing frequency ωf. Figures 10 and 11 illustrate loss of entrainment for the neu-
ral model (Fig. 10) and the derived phase model (Fig. 11) for two values of forcing
strength as indicated by the arrows in Fig. 8(right). For small values of the forcing
strength αf, the size of the entrainment range increases approximately linearly with
αf as illustrated in Fig. 8 and entrainment at both the lower and the upper limits of
the entrainment range is lost via saddle-node bifurcations. For forcing strength suffi-
ciently large, the entrainment range is approximately constant as seen in Fig. 8.

Figure 10A corresponds to simulating the model described by (1a)–(1d) with ωf

chosen so that ωf − ω is just above (+0.0002) the entrainment range illustrated in
Fig. 8(right) for αf = 0.5. Figure 10A illustrates that segmental oscillators 9 and 10
are losing one cycle with the forcer. Figure 10C shows a corresponding spike in the
cycle period at each step in the relative phase. Simulating with αf = 0.5 just below the
entrainment range would produce a similar result to Fig. 10A, except the segmental
oscillator will gain one cycle with the forcer. The loss of entrainment illustrated in
Fig. 10A and 10C corresponds to external loss of entrainment because segments nine
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Fig. 11 Example of loss of entrainment for the derived phase model. The coupling parameters are the
same as those shown in Fig. 10. We see that entrainment is lost in the same way for both the neural and the
derived phase model, further supporting that the phase model contains the same entrainment information

and ten (representative of the entire chain) are oscillating together and losing a cycle
with the forcer at each step.

Figure 10B also demonstrates loss of entrainment but in this case αf = 2 and ωf
chosen so that ωf − ω is just above (+0.0002) the entrainment range illustrated in
Fig. 8(right). Forcing is still on the tenth oscillator, but instead of both oscillators
nine and ten losing or gaining a cycle with the forcer at the same time, Fig. 10B
shows that oscillator nine is losing a cycle with the forcer, whereas oscillator ten
is still oscillating with the forcer. Figure 10D shows a spike in the cycle period as
was seen in Fig. 10C at each step in relative phase. This loss of entrainment corre-
sponds to internal loss of entrainment because part of the chain is oscillating at the
same frequency as the forcer and another part is not. Internal loss of entrainment can
be characterized further as rostral or caudal. Rostral loss of entrainment means that
segmental oscillators above the forced oscillator have a different average frequency
than the forcer, but the oscillators below the forced oscillator have the same average
frequency as the forcer. On the other hand, caudal loss of entrainment means that
the loss of entrainment takes place for oscillators below the forced oscillator. Since
we consider the case where forcing is applied to the last oscillator in the chain, we
can only see rostral loss of entrainment where oscillators 1 through 9 have a differ-
ent frequency ω∗

i . The neural model described by (1a)–(1d) exhibits both external
loss of entrainment for the entrainment ranges that grow linearly as a function of αf,
and internal loss of entrainment where the entrainment ranges are a relatively con-
stant function of αf (see Fig. 8). The loss of entrainment near the Hopf bifurcation in
Fig. 8 is more complex and does not clearly fall into either of these two categories.

Both internal and external loss of entrainment are also seen in the derived phase
model. In Fig. 11A, entrainment is lost externally for forcing frequency above the
entrainment range for αf = 0.5. Figure 11B shows internal loss of entrainment for
αf = 2. As in the neural model, Figs. 11A and 11B illustrate how the oscillators gain a
cycle with the forcer. In Fig. 11A, all 10 oscillators have the same frequency ω∗

i �= ωf
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while in Fig. 11B, ω∗
10 = ωf but oscillators 1 through 9 have a different frequency.

Figures 11C and 11D illustrate the jump in cycle period where the relative phases
gain a cycle in relation to the forcing frequency.

In summary, for the upper bound on the entrainment range, entrainment is lost
externally for small values of αf when the entrainment range is growing linearly as
a function of αf, whereas entrainment is lost internally in the range of αf where the
entrainment range is relatively constant as a function of αf. In both these ranges,
entrainment is lost through a saddle-node bifurcation of the return map in the Poincaré
section. Hence, the type of loss of entrainment does not necessarily correspond to the
type of bifurcation. Loss of entrainment just below the entrainment range exhibits
more complicated behavior which, for some αf values, cannot easily be classified as
internal or external. Finally, the derived phase model agrees with the neural model
on how entrainment is lost at different locations along the entrainment range. This
further illustrates that the derived phase model preserves entrainment information as
regards the more biologically detailed neural model.

6 Discussion

The lamprey central pattern generator for locomotion is considered to be a model
system for studying vertebrate locomotion because it is a primitive vertebrate with
relatively few neurons [37, 38]. Another advantage of studying the lamprey central
pattern generator for locomotion is that the spinal cord of the lamprey can be excised
from the animal, placed in a bath of the excitatory amino-acid D-glutamate and still
produce motor nerve activity similar to that of a swimming lamprey. Tytell and Cohen
[6] measured entrainment ranges for bending at different locations along a roughly
50-segment piece of spinal cord and found that entrainment ranges were larger in
middle of the piece than at either end.

The dependence of the effect of bending on location along the spinal cord could
be due to some combination of the properties of intersegmental coupling, as mod-
eled by Previte et al. [15], or differences in the local effect of bending, as suggested
by Hsu et al. [39]. Motivated by the work of Previte et al., we investigated the ef-
fect of intersegmental coupling on entrainment properties of both a neural model and
its phase-model approximation. As expected based on the theory of phase reduction
for weakly coupled oscillators, we saw the entrainment characteristics of the neural
model were closely approximated by the derived phase model in the limit of weak
coupling. This included entrainment ranges as a function of the forcing strength,
entrainment ranges as a function of the position, and also loss of entrainment. Ad-
ditionally, we computed entrainment ranges as a function of the forcing position with
different coupling schemes. For both the neural and the derived phase model we saw
monotonic and non-monotonic entrainment ranges as a function of the forcing posi-
tion for uniform and nonuniform coupling asymmetry, respectively. Entrainment is
also lost in the same way in both models as illustrated by Figs. 10 and 11. Compar-
ing the entrainment results for the neural and derived phase models indicates that the
derived phase model is able to capture all of the essential entrainment properties we
analyzed. Thus, with sufficiently weak coupling, entrainment can be studied in the
simpler derived phase model.
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Previous analytic results only considered internal loss of entrainment in a phase
model [13]. Previte et al. [15] characterized loss of entrainment for the sinusoidal
phase model, as either internal or external as described in Sect. 5. Previte et al. [15]
also showed that internal loss of entrainment is more likely when forcing strength αf
is strong relative to coupling strengths αr . Our simulations in Figs. 10 and 11 sup-
port this conclusion. For relatively weak forcing strength, αf = 0.5, entrainment is
lost externally for both the neural and the derived phase models. Alternatively, for
stronger forcing strength, αf = 2, entrainment is lost internally where oscillator 9 has
a different frequency than oscillator 10. These results support the claim that experi-
mental entrainment needs to be re-examined to determine how entrainment is lost at
the middle and ends of the chain [15]. Experimental procedures make it difficult to
classify exactly how entrainment is lost. Moreover, experimental entrainment ranges
plot the average frequency of the oscillators in the chain, which obscures more subtle
differences [15].

Although both chains of coupled oscillators, the neural and derived phase models
contain different levels of biological detail in comparison to the simpler sinusoidal
phase model. Despite these differences, entrainment results are qualitatively similar
across all three models. Entrainment ranges as a function of the forcing position are
plotted in Fig. 9 for both the neural and the derived phase models. We see similarly
shaped entrainment ranges as a function of the forcing position in our two models
as well as the sinusoidal phase model studied by Previte et al. [15]. This supports
the hypothesis that non-monotonic entrainment ranges are not an intrinsic property
of chains of coupled oscillators but rather a characteristic of a specific type of in-
tersegmental coupling. Specifically, nonuniform coupling asymmetry, in each model,
produces entrainment ranges that do not increase monotonically as forcing position
increases. Additionally, computational and experimental results have indicated cou-
pling asymmetry exists in the lamprey CPG, but the strength and direction of the
connections is still unknown [26, 40]. More recently, experiments have been con-
ducted that examine the distribution and connections of commissural interneurons.
These experiments show differences in the rostrocaudal distribution of commissural
interneurons [41] and differences in the synaptic organization of ipsi- and contralat-
erally projecting interneurons [42]. Ayali et al. experimentally showed differences in
CPG output between blocking short ascending and descending connections, which
further supports the idea of coupling asymmetry in the lamprey CPG [43]. From
these results and our simulations, we hypothesize that intersegmental connections in
the lamprey CPG exhibit nonuniform coupling asymmetry. This is an important in-
sight into the CPG since individual intersegmental connection strengths are extremely
difficult to measure experimentally.

Although the sinusoidal phase model agrees with the neural model for entrain-
ment ranges as a function of the forcing position for both uniform and nonuniform
coupling asymmetry, it does not capture all of the properties of entrainment ranges as
a function of the forcing strength. In the sinusoidal phase model, entrainment ranges
as a function of the forcing strength, αf, are linear with slope depending on forcing
position m and αk/α−k [15]. As seen in Fig. 8, the derived phase model, even for
stronger coupling, exhibits a nonlinear relationship between entrainment and forcing
strength. This is especially evident along the lower bound of the entrainment range
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in Fig. 8(left). In addition to capturing the relationship between forcing strength and
entrainment seen in the neural model, the derived phase model also captures the type
of bifurcations that occur in the neural model. Namely, saddle-node bifurcations and
Hopf bifurcations in the middle of the lower bound. The sinusoidal phase model only
loses entrainment through saddle-node bifurcations [15]. Thus, our work justifies us-
ing a slightly more detailed phase model to approximate the neural model in further
entrainment studies. We plan to further investigate entrainment of the lamprey CPG,
both experimentally and computationally, by adding noisy perturbations to the deter-
ministic bending signals.

In both the neural and the derived phase models, we chose parameter sets based
on previous work [15, 29]. However, the entrainment results of both models approx-
imately scale with the order of magnitude of coupling parameters. This is evident
in Fig. 8. The two panels compare entrainment ranges as a function of the forcing
position for two parameter sets which differ by a scale of 100. For the derived phase
model, plotted in blue, the entrainment range on the right is exactly 100 times the
entrainment range on the left. For the neural model, the entrainment ranges differ
slightly in shape but the same change in magnitude is evident. This scaling also oc-
curs in entrainment ranges as a function of the forcing position for both models. Thus,
our results could be generalized to other models and parameter choices depending on
the locomotion system being modeled.
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