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Abstract Neural mass models provide a useful framework for modelling mesoscopic
neural dynamics and in this article we consider the Jansen and Rit neural mass model
(JR-NMM). We formulate a stochastic version of it which arises by incorporating ran-
dom input and has the structure of a damped stochastic Hamiltonian system with non-
linear displacement. We then investigate path properties and moment bounds of the
model. Moreover, we study the asymptotic behaviour of the model and provide long-
time stability results by establishing the geometric ergodicity of the system, which
means that the system—independently of the initial values—always converges to an
invariant measure. In the last part, we simulate the stochastic JR-NMM by an effi-
cient numerical scheme based on a splitting approach which preserves the qualitative
behaviour of the solution.

Keywords Jansen and Rit neural mass model - Stochastic Hamiltonian system -
Asymptotic behaviour - Stochastic splitting schemes

1 Introduction

Neural mass models have been studied as models describing coarse grained activity
of large populations of neurons [1-7] since the 1970s. They have successfully been
used to fit neuroimaging data, understanding EEG rhythms [8] or epileptic brain dy-
namics [9], and are now also a major building block in the Virtual Brain [10]. For a
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summary on their history, applications and an outlook on their future possible use,
we refer to [11]. In general, neural mass models can be derived as a mean-field limit
from microscopic models [12] and involve just a few state variables such as average
membrane potentials and average population firing rates.

In this article, we focus on the Jansen and Rit neural mass model (JR-NMM) [13],
which has been introduced as a model in the context of human electroencephalog-
raphy (EEG) rhythms and visual evoked potentials [14]. It dates back to the work
of Lopes da Silva and Van Rotterdam [3, 5, 15]. The JR-NMM is a biologically
motivated convolution-based model of a neuronal population involving two subpop-
ulations, i.e. excitatory and inhibitory interneurons forming feedback loops, which
can describe background activity, alpha activity, sporadic and also rhythmic epileptic
activity.

The original JR-NMM is formulated as a set of three coupled second-order non-
linear ordinary differential equations (ODEs), i.e. these constitute a system of cou-
pled nonlinear oscillators, often rewritten as the six-dimensional system of first-order
equations. After introducing this system in Sect. 2, we rewrite the system in the for-
mat of classical mechanics, that is, as a damped Hamiltonian system with a nonlinear
displacement. Furthermore, in most of the literature, the JR-NMM includes a term
representing extrinsic input or background noise, which essentially is done by declar-
ing that input function to be a stochastic process. Mathematically this implies that the
solution process of the ODE system then also is a stochastic process inheriting the
analytical properties of the input process and requiring some framework of stochas-
tic analysis for its mathematical treatment. In Sect. 3 we discuss options for such
a framework and in this article we choose to formulate a stochastic JR-NMM as a
stochastic differential equation (SDE) with additive noise, in particular a stochastic
damped Hamiltonian system with a nonlinear term. Systems of SDEs of this or sim-
ilar form are well studied in the molecular dynamics literature, where they are often
called Langevin equations.! In this article we provide a range of results employing
various techniques available in the framework of stochastic analysis developed for
SDEs: In Sect. 4 we establish basic properties of the SDE such as moment bounds
and bounds on the path behaviour. Section 5 augments existing analysis of the dy-
namics of the deterministic JR-NMM, in particular we consider stochastic versions
of equilibrium solutions, i.e. invariant measures, as well as the long-time behaviour
of solutions of the SDE with respect to this invariant measure. These results may be
interpreted as starting points for studies of phenomenological stochastic bifurcations
or noise-induced transitions. Finally, in Sect. 6, we present efficient numerical meth-
ods designed for stochastic Hamiltonian problems and show that these numerical
methods, which represent discrete stochastic systems for any fixed step-size, respect
the properties previously established for the SDE system (subject to mild conditions
on the step-size). Thus the resulting numerical methods will not only be quite effi-
cient for future computational studies with the stochastic JR-NMM, they also provide
reliable computational results.

IThe term ’Langevin equation’ goes back to Langevin’s model of Brownian motion (1908) describing
the velocity of a Brownian particle in a fluid by what is now called an Ornstein—Uhlenbeck process.
However, for example, in the molecular dynamics literature the term refers to a class of models describing
the interaction of heavy particles with light ones [16], whereas in some of the physics literature it may also
refer to SDEs in general as in [17].
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2 Description of the Original Jansen and Rit Neural Mass Model

A detailed summary of the model derivation from the neuroscientific point of view
can be found in [18-20]. The main neural population, the excitatory and inhibitory
interneurons, are in each case described by both a second-order ordinary differential
operator, which transforms the mean incoming firing rate into the mean membrane
potential, and a nonlinear function, which transforms the mean membrane potential
into the mean output firing rate. For ¢ € [0, T'] with T € R™, the JR-NMM proposed
in [13] consists of three coupled nonlinear ODEs of second order

Xo(t) = Aa Sigm(x; (1) — x2(1)) — 2axo(t) — axo(t),
#1(1) = Aa[p() + C2 Sigm(Crxo(n)) ] — 2ai1 (1) — a’x1 (1), )
X2(t) = BbCy Sigm(C3x0(t)) —2bis(t) — b*xa(1),
which can be written as the six-dimensional first-order ODE system
Xo(1) = x3(1),
x1(1) = x4(2),

x2(1) = x5(1),

x3(t) = Aa Sigm(x1 (t) — xz(t)) —2ax3(t) — azx()(t), @
X4(t) = Aa[ p(t) + C2 Sigm(C1x0(1)) ] — 2axa(t) — a*x1 (1),
%5(t) = BbC4 Sigm(C3x0(1)) — 2bxs5(t) — bx: (1),

with initial value (x0(0), ..., x5(0))7 = x¢ € R®. Here, x; for i € {0, 1,2} describe

the mean postsynaptic potentials of distinct neuronal populations. The output sig-
nal y(t) := x1(t) — x2(¢t) describes the average membrane potential of the main
family, i.e. the principal neurons of the JR-NMM (see [18, 19, 21]). The function
p [0, T] — R describes the external input which may originate both from external
sources or the activity of neighbouring neural populations. We will discuss the mathe-
matical modelling of p in more detail at the end of this section. The sigmoid function
Sigm : R — [0, vmax], Vmax > O (as suggested in [4]) is given by

Vmax

and works as a gain function transforming the average membrane potential of a neural
population into an average firing rate (see [22, 23]). The constant v, denotes the
maximum firing rate of the neural population, vy € R is the value for which 50% of
the maximum firing rate is attained and r > O determines the slope of the sigmoid
function at vy.

System (2) includes 11 parameters A, B, a, b, C1, C2, C3, C4, Vmax, I, Vg and
typical values for these parameters, taken from [13, 19], are given in Table 1. The
parameters A, B, a and b model basic features of postsynaptic potentials. In partic-
ular, A and B denote the excitatory and inhibitory synaptic gain, respectively, and
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Table 1 Typical values established in the original JR-NMM [13] taken from [19]

Parameter  Description Typical value
A Average excitatory synaptic gain 325 mV
B Average inhibitory synaptic gain 22 mV
a~! Time constant of excitatory postsynaptic potential 10 ms

b1 Time constant of inhibitory postsynaptic potential 20 ms

C Average number of synapses between the populations 135

Cq Avg. no. of syn. established by principal neurons on excitatory interneurons C

Cy Avg. no. of syn. established by excitatory interneurons on principal neurons 0.8 C

C3 Avg. no. of syn. established by principal neurons on inhibitory interneurons  0.25 C

Cy Avg. no. of syn. established by inhibitory interneurons on principal neurons  0.25 C
Vmax Maximum firing rate of the neural populations (max. of sigmoid fct.) 551

Vg Value for which 50% of the maximum firing rate is attained 6 mV

r Slope of the sigmoid function at v 0.56 mV~!

a~! and b~! are corresponding time constants. The connectivity constants C; for
i €{1,2,3,4}, modelling the interactions between the main population and interneu-
rons, are assumed to be proportional to a single parameter C which characterises the
average number of synapses between populations (see [13]). The solution behaviour
of System (2) depends sensitively on the values of the parameters (we refer to the bi-
furcation analyses in [18, 19, 24]). Especially, changes in the connectivity constants
C; can result in drastic changes of the solution path.

Subsequently, we will employ the Hamiltonian formulation of classical mechanics
to study coupled oscillators such as System (1) or (2). Let Q := (xo, x1,x2)T and
P := (x3, x4, x5)7 denote three-dimensional vectors, then System (2) can be written
as a damped Hamiltonian system with nonlinear displacement,

d
d_Q —VpH(Q, P),
t
(3)
dP
— = —VoH(Q, P)—2I'P +G(t, Q).

In this formulation, the system consists of a Hamiltonian part with Hamiltonian func-
tion H : R® — R,

1
H(Q, P):= 5 (IIPligs + 11" Clls),

a damping part with damping matrix I" = diag[a, a, b] € R**3, and a nonlinear part
given by the function G : [0, T'] x R3 — R3, with

G(t, Q) := (AaSigm(x| — x2), Aa[ p(1) + C2 Sigm(C1x0)], BbCy Sigm(C3x0)) " .

The Hamiltonian H(Q, P) may be interpreted as the total energy of an electrical
RCL parallel resonant circuit; see [22]. In particular, H (Q, P) is proportional to the
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sum of the inductive and capacitive energy of the neuronal population, respectively.
If the input p(¢) is a bounded deterministic function, the solution curve and the total
energy H(Q, P) are bounded (this is an immediate result of Theorem 4.2 in Sect. 4)
and the time change in the total energy is given by

d T T
EH(Q’ P)y=-2P'T"'P+ P G(t, Q).

In the original paper by Jansen and Rit [13], the external input p(¢) has been
used to represent spontaneous background noise as well as peak-like functions for
generating evoked potentials. In the latter case the extrinsic input has been modelled
as a deterministic periodic function (see also [25]) and with this type of input, the
solution of the System (1) (or (2) or (3)) remains a deterministic function and the
mathematical background to treat it is deterministic analysis. In the former case, i.e.
when p(t) represents spontaneous background noise and is modelled as a stochastic
process, the mathematical background immediately changes to be stochastic analysis.
In particular, the solution of the Systems (1), (2) or (3) becomes a stochastic process
and it inherits the mathematical properties of the input process p(¢). Within stochastic
analysis, (1), (2) or (3) may be interpreted in different frameworks, with consequences
depending on the specific choices of p(t).

(i) Random Ordinary Differential Equation (RODE) framework: RODEs are path-
wise ODE:s involving a stochastic process in their right-hand side, i.e. for a suf-
ficiently smooth function f : R™ x RY — R? and an m-dimensional stochastic
process £(t), a d-dimensional system of RODE:s is given by

X(0) = f(E®, x@),

with an appropriate initial value. One may then choose the stochastic input pro-
cess for example as a Wiener process or a coloured noise process, these pro-
cesses exist in the classical sense and have almost surely continuous paths. In this
framework standard deterministic analysis for e.g. guaranteeing existence and
uniqueness of solutions can be applied pathwise; see for example [26], Chap. 1.
However, the solution of this equation inherits the smoothness properties of the
driving stochastic process & (¢), independent of the smoothness of the function f.
Analysis of properties and dynamics of solutions of RODEs may be performed
pathwise by standard analysis techniques, bearing in mind that the low smooth-
ness of the solutions limits the applicability of many classical results, such as
Taylor’s theorem. We further refer to [27] for relevant results concerning random
dynamical systems. Another consequence concerns the numerical treatment: as
the order of convergence of classical numerical schemes for ODE:s is determined
by the smoothness of the solution of that ODE, when such schemes are applied
pathwise to RODEs, they usually converge with a lower order than their expected
one. In particular, they converge with order at most 1/2 when the input process is
chosen as the Wiener process or a coloured noise process, as their paths are only
Holder continuous of order less than 1/2. We refer to [28] and its references for
further information on numerical methods specifically designed for RODEs.
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(i1) Stochastic Differential Equation framework: If one were to choose the stochastic
input process in an RODE as above as a Gaussian white noise process, one would
need to deal with the fact that such a process exists only in the sense of gener-
alised stochastic processes; see [29], Sect. 3.2, or [30], Appendix I. In particular,
Gaussian white noise is usually interpreted as the (generalised) derivative of the
Wiener process, which itself is almost surely nowhere differentiable in the classi-
cal sense. It is much more convenient to work in the classical stochastic analysis
framework designed to deal with differential equations ‘subject to (white) noise’
and interpret Systems (1), (2) or (3) as a stochastic differential equation; see also
[29], Sect. 4.1. A considerable amount of results concerning analysis, dynamics,
numerics, statistics, etc. of SDEs is available and for stochastic numerics we refer
for example to [31], which also treats SDEs driven by coloured noise.

3 Jansen and Rit Neural Mass Model as a Damped Stochastic
Hamiltonian System with Nonlinear Displacement

Let (£2, F,P) be a complete probability space together with the filtration {F;};¢[0,7]
which is right-continuous and complete. We extend the model of System (2) by al-
lowing perturbation terms such as p(¢) not only in x () but in both x¢(¢) and x5 (¢) as
well. For this purpose, we define the functions u; : [0, T] — R and o; : [0, T] — R*
for i € {3,4,5}. The functions u; will be used for representing deterministic in-
put whereas o; will be used for scaling the stochastic components. In an analogous
way to the exposition concerning stochastic oscillators in [32], Chap. 8, or in [33],
Chap. 14.2, we symbolically introduce Gaussian white noise W; representing the
stochastic input into Eq. (1) as follows:

dXo(t) = X3(1) dt,
dXi(t) = X4(1) dt,
dX>(t) = X5(1)dt,
dX3(t) = [Aa[ps(t) + Sigm(X1 (1) — X2())] — 2aX3(t) — a*Xo(1)] dt
+03(t) dW3(1), 4)
dX4(t) = [Aa[pa(t) + C2 Sigm(C1 Xo(1))] — 2aX4(t) — a* X1 ()] dt
+ 04(1) dWa(1),
dXs(t) = [Bb[us(t) + C4 Sigm(C3Xo(1))] — 2bX5(t) — b* X (1)] dt
+o5(1) dWs(1),
with deterministic initial value (X (0), ..., X5(0)T =Xy € RO, Here, the processes
W;(¢t) for i € {3,4,5} are independent, F;-adapted Wiener processes on (£2, F, P).

Note that as the system above is an additive noise system the It and Stratonovich
interpretations of that SDE system coincide. As for the deterministic case in Sect. 2,
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we can use the (Q, P)-notation of classical mechanics

dQ(1)=VpH(Q, P)dt,

5
dP(t)=(~VoH(Q, P) —2I'P + G(t, Q))dt + Z(1) dW (1), ©

with initial values
T 3
0(0) = (X0(0), X1(0), X2(0))" = Qg € R* and
P(0) = (X3(0), X4(0), X5(0))" = Py e R?,

diffusion matrix
2 (1) = diag[o3(1), 04(1), 05(1)] € R¥?,

and nonlinear displacement

Aalus(t) + Sigm(X| — X»)]
G(t, Q) := | Aalpa(t) + C2 Sigm(Cy Xo)]
Bb[us(t) + C4Sigm(C3Xo)]

As before, we define the output signal as Y () = X1 (¢) — Xo ().

Systems of the type (5), typically called Langevin equations, have received con-
siderable attention in the literature of molecular dynamics (see [16] for an overview).
In particular, the long-time properties of such systems have been intensively studied
in [34-36]. We employ these techniques in Sect. 5 to study the long-time behaviour
of System (5).

We briefly discuss the existence of a solution of Eq. (5). As the sigmoid function
Sigm is globally Lipschitz continuous, the existence and pathwise uniqueness of an
Fr-adapted solution is a standard result; see e.g. in [29], Theorem 6.2.2. In particular,
Q is continuously differentiable. In the current context, it makes sense to assume that
the functions p; and o; are smooth and bounded which we will do in the following.

We simulate the solution of Eq. (5) with the splitting integrator (24) proposed
in Sect. 6 and illustrate the output signal in Fig. 1. The coefficients and the noise
components are chosen in such a way that the simulation results of [14] for varying
connectivity constants C can be reproduced. The numerical values for the parameters
are given in Table 1. For the deterministic part of the external inputs we set 3z = us =
0 and w4 = 220, for the diffusion components we set 03 = o5 = 10 and o4 = 1,000
such that ‘weak noise’ is acting on the components X3 and X5; X4 receives a stronger
noise input. As in the original paper [14] we see (noisy) a-rhythm-like behaviour as
well as spiking behaviour for varying connectivity constants C. In Fig. 2 we provide
an illustration of changes in the system behaviour induced by including noise with
plots of the phase portrait of the output signal for the case C = 135 and C = 270.
The top two pictures show simulations of y of System (2), i.e. without noise, where
the solution curves quickly converge towards a limit cycle. The bottom two pictures
show a path of Y of System (5) and in particular for C = 135, the behaviour of the
path is markedly different from the deterministic case.
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X,~X, [mV]

1
t[s]

Trajectories of the output signal Y for varying coupling parameter C

Fig. 1 Output signal Y

4 Moment Bounds and Path Behaviour

We have already mentioned in Sect. 2 that the solution paths of Eq. (1) take values
in a bounded set. It is natural to ask in which sense this behaviour transfers to the
stochastic setting. We answer this question via a twofold strategy. On the one hand
we will study the time evolution of the moments of the solution, which describes the
average behaviour of all solution paths. On the other hand we will study the behaviour
on the level of single paths and estimate the probability that a specific path exceeds
a given threshold. Before we study these qualitative properties of Eq. (5) we provide
a convolution-based representation for the Q-component of Eq. (5) which simplifies
the corresponding calculations considerably.

4.1 Convolution-Based Representation of the JR-NMM

In this section we rewrite Eq. (5) using X = (Q, P)T as

dX(t)=(MX@®)+N(t, X)) dt + St)dW (1), (6)
where
_( O3 I3
M= <—F2 —2F>’

0
N(t, X (1)) = (G(I, é(m) and

S@t) = (g@é)) .
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Phase portrait of one single path of Y for the stochastic System (5)

Fig. 2 Phase portraits

Here, we denote by Q3, I3 € R3*3 the zero and identity matrix, respectively. More-
over, we define 03 := (0,0,0)7 and 15:= (1,1, )T.

Note that M is a block matrix with diagonal submatrices. Hence, we can calculate
an explicit expression for the matrix exponential,

me _ (e W+ It) eIt
© =\ —r2ery e Ty —rn
(@ k@®

Obviously, the matrix exponential fulfils e’ M = MeM". This allows one to repre-
sent solutions of Eq. (5) via the following convolution-based formula.
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Theorem 4.1 The component Q of the unique solution of Eq. (5) solves for t € [0, T']
the integral equation

!
0@)=93@)Qo+K()Py +/0 K(t —s)G(s, Q(s)) ds

1
+/ Kkt —s)X(s)dW(s). 8)
0
We call Eq. (8) the convolution-based representation of Q in Eq. (5).

Proof Applying Itd’s formula ([29], Theorem 5.3.8) to the JR-NMM in Eq. (6) and
using the commutativity of M and eM’ we obtain

de ™M xty=eMax@)— Me ™M X(t)dt
=e M (N(t, X(1))dt + St)dW (1)),

which reads in integral form

t t
X(t):eM’X(O)+/ eM(’_S)N(s,X(s))ds+[ MU= 8(s)dW (s).
0 0

Since the nonlinear part N only depends on Q the equation for Q is given by
Eq. (8). O

Remark 1 From the latter proof we also get a convolution-based representation for
P, however, this formula depends on Q. Indeed, for ¢ € [0, T,

t t
P(t):z?/(t)Qo—f—/c’(t)Po—}—/ K'(t —$)G(s, O(s)) ds—l—/ k't —s5)X(s)dW(s).
0 0

Remark 2 System (1) has originally been deduced by using convolutions of impulse
response functions with functions of the output from other subpopulations within the
neural mass (see [13, 18, 37, 38]). These response functions have the same shape as
the kernel « in Eq. (8), which thus can be interpreted as the stochastic version of this
kernel representation.

4.2 Moment Bounds

Using representation (8) we provide bounds on the first and second moment of Q;
analogous results can be derived for P. In the remainder of this section we will per-
form various componentwise calculations and estimations. For ease and consistency
of notation we define the following: Let x, y € R", then x <g y denotes x; < y; for
all 1 <i < n. Furthermore, for U,V € R"*k we denote the Hadamard product of U
and V as U © V, which is defined as the elementwise product (see [39, 40]) such that
each element of the n x k matrix U © V is given as

UoV),;=U;V; forl<i<n 1=<j=<k.
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In addition, we define U2° := U ® U and UY/?® 35 the elementwise root with
(UIR29); = /Uy;.

Theorem 4.2 Let p; : [0,T] — RT for i € {3,4,5} be nonnegative functions
bounded by ;i max € R, respectively, and Cg := (Aa (13, max + Vmax), Aa (4, max +
CaVmax), Bb(is max + C4vmax))T. Then E[Q(2)] is bounded in each component by

9(1) Qo + k(1) Py <0 E[Q(1)] <0 #(1) Qo + k(1) Po+ I' (I3 — 9(1)) Cg.

Proof We write

t t

Q(r):ﬂ(r)Qo+fc(r)P0+f K(t—s)G(s,Q(s))ds+/ Kt —$)Z(s)dW(s).

=:u(t)

=:(t) =w(t)

Note that E[u(f)] = u(¢) and that the expectation of an It6 integral is zero, i.e.
E[w(?)] = 0. Recall that Sigm : R — [0, vmax], thus 03 <o G(¢, Q1)) <¢ Cg
and also 03 <g E[G(¢, Q(?))] <e Cg. Applying the latter bounds to E[v(#)] =
fé k(t —s)E[G(s, Q(s))]ds and integration of « yield the desired estimates. O

Obviously, the bounds provided by Theorem 4.2 also hold for the deterministic
equation (3) which justifies our claim in the introduction.

Remark 3 The upper bound depends linearly on pt; max and the connectivity constants
C; whereas u(t) decays exponentially fast towards 03. In particular,

03 <o lim E[Q()] <o I'*Cq.

Similar calculations can be done for the second moments of the components of
Q(t). We obtain the following result.

Theorem 4.3 Let the assumptions of Theorem 4.2 hold and assume X (t) to be
a constant matrix, X € R3*3, We define for x = (xl,xz,x3)T € R3 the function
15(x) := (A1 (x1), 17 (x2), 17 (x3)) T, where 1T denotes the indicator function of the

set RY. Using the functions u, v and w from Theorem 4.2, a bound for the second
moment of each component of Q(t) reads

E[Q*°(1]
<o w0 +2u(t) O 1 (u) © I' (I3 — ¥(1)) Co

1 20
+ |:1"2(]I3 — (1)) Cq + Er*/zz(ﬂg K1) (1) — ﬁz(t))l/213:| ,
In particular,

1 20
lim E[0*°(1)] <o <F_2CG + —F_3/2213) .
f—00 2
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Fig. 3 Time evolution of E[X]

Proof From the proof of Theorem 4.2 it immediately follows that
E[u®® ()] = u* (@), E[v®n)] < (1 - ﬁ(t))zch and  (9a)
1
E[w?® ()] = ZF_322(H3 + () (1) — 93(1) 15. (9b)

The last equality can be shown by applying the Itd isometry. For notational simplic-
ity we omit the dependence on ¢ in the following. By using the Cauchy—Schwarz
inequality we bound

E[lv O w] <g (E[‘UZO] @E[wze])(l/z)q
Applying the bounds (92a)-(9b), the desired result follows from
E[0%°] = 4 + E[v?°] + E[w*®] +2u © E[v] + 2E[v © w]
<o u?® +2u © 15 w) O E[v]

+ [(E[vze])(l/Z)e + (E[wzg])(1/2)®]2@. O

In Fig. 3 we employ Monte Carlo simulation to estimate E[ X (¢)] for varying cou-
pling parameter C. The results for the second moment E[X %(t)] are essentially the
same; see Fig. 4. Similar results can be obtained for X, and X3. The numerical ap-
proximations of the expectation (blue curves) stay well within the theoretical bounds
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(red curves), whereas single trajectories (purple curves) of course may exceed the
bounds of the average. Note that, for C = 68, 135 and 675, the approximations of
E[X(t)] rapidly converge towards fixed values for growing z. The same behaviour
can be observed for C = 270 on larger time scales. We will give a theoretical ex-
planation for this phenomenon in Sect. 5 when we study the long-time behaviour of

Eq. (5).
4.3 Pathwise Bounds

Theorem 4.2 states that on average the solution of Eq. (5) stays in some bounded
set. However, the theorem gives no information for single solution paths, which can
in principle attain arbitrarily large values with positive probability; see Lemma A.2
in the Appendix. In this section we want to quantify the probability of such large
values. The following theorem provides an upper bound on the escape probability of
the components of Q, i.e. the probability that for i € {0, 1, 2} the solution X; is larger
than a given threshold x/" € RF.

Theorem 4.4 Let the assumptions of Theorem 4.3 hold. For fixed t € [0, T'] we define
a Gaussian random vector Y (t) = (Yo(t), Y1(¢), Y2(t)) with

E[Y®)]=u@)+ (3 —9(1)Cc and
1
Cov[Y (] = ZF’322(]I3 + k()Y (1) — 9%(1)),
where its components Y;(t) are independent. Let Fy, ) denote the cumulative dis-
tribution function of Yi(t). Then the probability that the components X;(t) for

i €10, 1,2} exceed the given thresholds xfh € R" is bounded by

P(X; (1) = x{") <1~ Fy,i0 (x!").
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Fig. 5 Pathwise bounds of X

Proof From Eq. (8), the bound on G and again integrating «, we immediately see
that each path of Q is bounded by the stochastic process Y defined by

t
Y(0) = u) + (T3 - 9())Ca +/ Kt =)D dW ().
0

The process Y (¢) is Gaussian distributed with mean u(¢) + I —2(I3 — 9(1))Cg and
covariance matrix %F’SZ‘Z(Hg + k()9 (1) — 92(t)), which were calculated in The-
orems 4.2 and 4.3. Then, foreach t € [0, T'],

P(X; (1) = x") < P(Y;(1) = x") = 1 — Fy, ) (x!"). -

Remark 4 Theorem 4.4 can, for example, be used for calibration of the noise pa-
rameters in X. Let ¥ = diag[o3, 04, 05]. Suppose we want to choose o3 such that
the corresponding component X(¢) stays below some given threshold x(’)h with high
probability . Then a suitable choice of o3 is implicitly given by Fy, ) (x(’)h) =a.

In Fig. 5 we illustrate numerical trajectories of Eq. (5) and the corresponding
bounds for varying levels of «, i.e. for a given time point ¢, the probability of X (¢) to
be below the red, purple and black curve is at least 60, 90 and 99 percent, respectively.

5 Long-Time Behaviour and Stationary Solutions

A further property of interest of an SDE concerns the asymptotic behaviour of solu-
tion trajectories. The classical approach in ODE theory for analysing the long-time
behaviour of ODE systems is to study the stability of equilibrium solutions and limit

cycles. Even in the simplest case of constant input p(#) = p € R, the deterministic
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equation (3) can possess several equilibrium solutions (both stable and unstable) as
well as limit cycles with typically nontrivial basins of attraction (again we refer to
the bifurcation analyses in [18, 19, 24]). Thus, the choice of the initial value can have
large impact on the long-time behaviour of the solution curves of Eq. (3). From a
practical point of view, this fact may be problematic, as it is not at all obvious how to
estimate the initial value of the P-component.

In this section, we will analyse a stochastic counterpart of equilibrium solutions,
more precisely invariant measures, and study the long-time asymptotics of Eq. (5).
Our main tool is the theory of ergodic Markov processes, for convenience of the
reader we recapitulate the basic definitions.

Let (X (#))sef0,7] be the solution process of Eq. (5). Standard stochastic analysis
shows that X () is a Markov process and the corresponding transition probability
P, (A, x), i.e. the probability that X (¢) reaches a Borel-set A C RO at time 7, when it
started in the point x € RS at time # = 0, is given by

P/(A, x) :=P(X (1) € A|X(0) =x).

We use the definition provided in [41], Chap. 2, to characterise invariant measures.
For simplicity, let # be a probability measure on (R®, B(R®)) (in general 5 can de-
generate on some lower dimensional space). The measure 5 is called invariant if

ﬂ(A):/GIP’t(A,x)n(dx) V.AGB(]R6),V[€[O, T].
R

In particular, if we set the initial value (Qg, Py) to be a random vector with distri-
bution p, then there exists a Markov process X (#) which satisfies Eq. (5) and the
distribution of X (¢) is 5 for all ¢ € [0, T]. In this sense, the concept of invariant
measures can be seen as a natural extension of stationary solutions of deterministic
ODEs.

We are interested in the following questions:

(i) Does Eq. (5) have an invariant measure?
(ii) Is the invariant measure unique?
(iii) Do quantities of the type E[A#(X (¢))] converge towards stationary values for a
suitable class of functions 4 : R® — R and any initial value (Qg, Po)?

We answer these questions in two steps: In the first step we will show that Eq. (5)
fulfills a Lyapunov condition ensuring the existence of (possibly many) invariant
measures. The questions (ii) and (iii) will be answered positively via the concept
of geometric ergodicity. In classical mechanics and molecular dynamics, equations
with a similar structure as Eq. (5), termed Langevin equations in the corresponding
literature (see e.g. [16, 31, 36]), are well studied and we make use of relevant results
concerning the long-time behaviour. In particular, we follow the presentation in [34].

As in the bifurcation analyses for Eq. (3) mentioned before, we assume that the
deterministic parts of the perturbation as well as the diffusion matrix are constant, i.e.

wi():=p; eR, forie{3,4,5) and X () =X eR>. (10)

Thus, G does not depend on ¢ and we simply write G(Q).
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5.1 Existence of Invariant Measures and Geometric Ergodicity

The existence of invariant measures for Eq. (5) can be established by finding a suit-
able Lyapunov function. Heuristically speaking, the existence of a Lyapunov func-
tion ensures both that the solution trajectories stay in some bounded domain (except
for some rare excursions) and in the case of excursions, the trajectories return to the
bounded set. The following lemma shows that a perturbed version of the Hamiltonian
H in Eq. (5) can act as a Lyapunov function (see [42]).

Lemma 5.1 Assume a,b > 0 and let forn € N

1 3 n
Vi(Q, P) i= (1 + 5 IPI3 + 1T QIR + (P, FQ>> , neN.

Then V,, is a Lyapunov function for Eq. (5) in the following sense:

() Vu=1and V, — oo for |(Q, P)T ||ge — o0,
(i) Jay, <0, B, > 0 such that

LV, <a, Vi + Bn,

where L denotes the generator of Eq. (5),
1 92
._ pT T 2 T T 2
L:=P'Vo+[-0'T*-2P"'T'+G(Q) ]VP+§i§_3Gi yel

Here, Vo and Vp denote the gradient with respect to the Q and P component,
respectively.

Proof For a,b > 0, Property (i) is satisfied by construction and we only have to
prove (ii). In a first step we set n = 1 and analyse the action of £ on Vj. Note that V; is
quadratic, therefore the second derivatives in £ result in constants. Since PT? 0=
0T 2P, we obtain

LV, =PT(3r*Q+rp)

5
1
+[-0"' 2P T+ G [P+ T O+ of
i=3

1 5
:—PTFP—QTF3Q+§§<7[2+G(Q)T(P+FQ). (11)

The first two terms in Eq. (11) are quadratic and non-positive. As V; is quadratic and
non-negative, there always exist constants &@ < 0 and B > 0 such that the first three
terms in Eq. (11) can be bounded in the following way:

5
1 - ~
-PTrp-0'r’o+ 5 > ol <avi(Q.P)+B.
=3
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Furthermore, Young’s inequality implies

1
GQT(P+TQ) < §(||P||%R3 +1IQlgs) + > 1G(O)|2s,

where € > 0 can be chosen arbitrarily small. Thus, there exist & <« <0 and 8 > 0
sufficiently large such that

LVi(Q, P) =aVi(Q,P)+B. (12)

In a second step, we will extend this procedure to V,, for n € N. For brevity we use
the notation

d
._ 2 —
Ly:=— E of 2x2 and L;:=L- L.

L is a first-order differential operator and the action of £ on V), can be bounded in
the following way by using Eq. (12):

L1Vy=nV,_1L1VI <anV, +nBV,_1.

Applying £5 to V,, leads to

5 2 2
n 0°V] avi
£V=—E (v, — — DV, o —
2 2[_301 ( n 18X2 + @ Wa 2<8Xi> )

i

5
n
=3 E 0 (Va1 + (0 = DVyoo (X + 12,2 Xi-3)?),
i=3

where I ; denotes the entry of I" at the intersection of the ith row and jth column.
Note that

5
> o} (Xi+ Iiai2Xi-3)* <max{o3, 07,03 }ITQ + Pll3s.
i=3

This implies that there exist c, ¢;, > 0 such that

nn—1)

5
5 Va2 Y 0P (Xi+ io2i2Xi3) <cVio,

i=3
and thus
LoyVy <cpVy1.

As a consequence, there exist o, < 0 (possibly close to zero) and B, > 0 such that

LV, =LV + L2V, <anV, + nB+cn)Vi1 <oy Vi + B,

and Property (ii) follows. O
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Lemma 5.1 has two immediate consequences. First, applying Itd’s formula on V;,
we obtain the following bounds (see [34]).

Corollary 5.2 Let Assumption (10) hold and s,t € [0, T] with t > s. Then

E[Va(Q@), PO)IF®)] < eIV, (0), Ps)) + L2 (1 — e leult=),

|t |

In particular,

E[Va(Q®), P1))] = e™*"V,(0(0), P(O))+|:l(1 — eloulr),

nl

Second, the existence of a Lyapunov function ensures the existence of an invariant
measure (see e.g. [43], Corollary 1.11).

Corollary 5.3 Let Assumption (10) hold and let X (t) denote the solution of Eq. (5).
Then there exists an invariant measure § of X (¢).

Lemma 5.1 does not give any information on the uniqueness of the invariant mea-
sure. If we further assume that the three Wiener processes W; act on all components
of P,i.e.o; > 0fori € {3, 4, 5}, we can establish the uniqueness of the invariant mea-
sure. Furthermore, the Markov process X fulfills the property of geometric ergodicity
in the sense of [34]. We give a modification of the result in [34], Theorem 3.2, in-
cluding the nonlinear function G.

Theorem 5.4 Let o; > 0 for all i € {3,4,5}. The Markov process X (t) defined by
Eq. (5) has a unique invariant measure 1 on R®. Furthermore, let

H, = {h : R® — R Borel-measurable with |h| <V, }

Then for any n € N and any initial value X (0) = (Qq, Po) there exist positive con-
stants C,,, Ay, such that

‘E[h(X(t))] —/Rﬁhdn

< CyVu(X(0))e ™" VheH,,Vt=>0.

Proof The proof is the same as in [34]. The Lyapunov condition has been estab-
lished in Lemma 5.1, the corresponding results for the necessary smoothness of the
transition probabilities and the irreducibility of the Markov process are given in the
Appendix in Lemma A.2 and A.1. Both lemmas rely on the assumption that o; > 0
fori € {3,4,5}. 0

Theorem 5.4 has two implications for the numerical simulation of Eq. (5). First,
the actual choice of the initial value is insignificant as the impact of the initial value
on the distribution of X (¢) diminishes exponentially fast for growing ¢ and an ap-
propriate approximation of the system behaviour should be obtained with any choice
of (Qo, Py) provided that the system is simulated on a large enough time horizon.
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Fig. 6 Densities of the invariant measure of ¥

Second, due to the correspondence of the time averages and “space averages” of er-
godic systems (see [41], Theorem 3.2.4.), one can estimate quantities of the type
E[h(X(t))] (for ¢ sufficiently large) by computing the time average of a single path
of X (¢) on a large time horizon instead of using Monte Carlo estimation which re-
quires one to compute a large number of paths of X (¢). Of course, both aspects hold
only true if the numerical method reproduces the geometric ergodicity of the original
system (see Sect. 6).

The computation of the invariant measure for nonlinear systems is highly non-
trivial. One possibility would be to solve the corresponding Fokker—Planck equation,
which is a six-dimensional nonlinear PDE. A standard alternative is to use stochastic
simulation techniques to approximate the marginal densities of 5. Several possibili-
ties have been proposed in the literature how to estimate the distribution of the solu-
tion of SDEs; see e.g. [44] for an approach based on Malliavin calculus and kernel
density estimation (see [45], Chap. 2). We use the latter approach where we choose
the kernel functions to be Gaussian. The numerical samples are calculated as a long-
time simulation of a single path with the splitting integrator Eq. (24) proposed in
Sect. 6. In Fig. 6 we compare approximations of the stationary probability density
of the output signal Y for varying coupling parameter C. We observe the change
from unimodal densities (for C = 68, 135) to multi-modal densities C = 270 and to
the peak-like structure C = 675. This behaviour can be interpreted as a phenomeno-
logical stochastic bifurcation as discussed, for example, in [46] or a noise-induced
transition (see [47]).
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6 Numerical Simulation

In order to obtain an approximation of Eq. (5) which accurately reproduces the qual-
itative behaviour, it is highly important to construct numerical integrators which on
the one hand fulfil the properties of Eq. (5) derived in Sects. 4 and 5, and on the other
hand are computationally efficient such that large ensembles of trajectories can be
calculated in reasonable time.

We want to emphasise that the difficulty does not lie in the construction of a mean-
square convergent integrator for Eq. (5). In fact, as the coefficient functions of Eq. (5)
are globally Lipschitz continuous, any standard integrator (e.g. the Euler—Maruyama
method) converges in the mean-square sense. However, it has already been shown
for linear stochastic oscillators that the Euler—Maruyama method does not preserve
second moment properties of that system [48] and it is expected that this negative
result extends to nonlinear stochastic oscillators as well. The splitting methods fulfil
the following properties:

(i) The methods preserve the moment bounds proposed in Theorems 4.2 and 4.3.
Furthermore, for X' = O3, the numerical method preserves the bounds of the
exact solution.

(ii) The Markov process generated by the numerical method is geometrically
ergodic and fulfils a Lyapunov condition under very mild step-size restric-
tions.

6.1 Splitting Integrators for the JR-NMM

For convenience of the reader we provide a brief introduction to splitting integra-
tors. Further details can be found, for example, in the classical monograph [49],
Chapter II, for the deterministic case and [35, 50] for stochastic Langevin-type equa-
tions.

The main idea of splitting integrators is the following: Assume for simplicity we
want to approximate a deterministic ODE system

y=f», yO)=yeR"
for which the function f : R” — R” can be written as
d . .
F) =" fU).  where fUI:R" - R" for j € {1,....d).
i=1

Of course, there can be several possibilities to decompose f. The goal is to choose
U1 in such a way that the subsystems

y=fYy), jell,....a), (13)

can be solved exactly. Let go,[j ](yo) denote the exact flow of the Subsystem (13) with
initial value yg. Then the following compositions of flows define integrators of deter-
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ministic order one (Lie—Trotter splitting) and two (Strang splitting):

WET () = (o) 0+ 0 ok (),

VR () = (Paijp 00 @arn 0@l 00y 00 pllH) ().
This strategy can be extended to the stochastic setting (see [35] and the references
therein for splitting integrators in the field of molecular dynamics, [50] for quasi-
symplectic splitting integrators, [51] for variational integrators based on a splitting
approach and [52] for splitting integrators in a Lie group setting). In particular, split-
ting integrators have been applied efficiently to Langevin equations with a similar
structure as Eq. (5), see [35, 50], thus we extend this approach here to Eq. (5).

The main step in the construction of splitting integrators is to choose a suitable
decomposition of the coefficient functions of Eq. (5). The right-hand side decom-
poses into three rather distinct parts: First, a damped, linear oscillatory part, second,
a nonlinear and non-autonomous coupling part which does not depend on the P-
component, and third, a stochastic part which does only arise in the P-component.
Therefore,

doy _ VpH(Q, P) 03 03
(dP> B (-VQH(Q’ P) - 2FP> d (G(t, Q)) dr+ (E(t)dW(t)>

damp. lin. oscill. nonlin. coupl. stochastic

with the nonlinear term given by

Aaus(t) AaSigm(X1 — X»7)
G, 0) =G\ (1) +GY(Q) = | Aaus(t) | + | AaC, Sigm(CXo)
Bbus(t) BbC4 Sigm(C3Xp)

It makes sense to split the linear and the nonlinear drift contributions, thus providing
two options to incorporate the stochastic noise. This yields two different sets of sub-
systems and therefore two different sets of numerical methods. In the first case, the
stochastic subsystem defines a general Ornstein—Uhlenbeck process and we denote
the corresponding splitting integrator as Ornstein—Uhlenbeck integrator. In the sec-
ond case, the stochastic subsystem defines a Wiener process with drift and we denote
the splitting integrator as Wiener integrator.

In the following let 0 =1y < --- <ty = T with N € N be an equidistant partition
of [0, T'] with step-size At.

6.2 Ornstein—Uhlenbeck Integrator

The first variant is to include the stochastic contribution into the linear oscillator part,
which gives rise to the two following subsystems:

do"\ _ Ve H(QU, L) 0
(dP“J =\ voua, Pty —2rp ) “H  zmawn)

o™ 0
(ﬁm) = (G(,’ 3Q[2])) dt. (14b)
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For both subsystems we can easily derive explicit representations of the exact solu-
tions which can be used directly for the numerical simulation. Subsystem (14a) is
a six-dimensional Ornstein—Uhlenbeck process. Let X Uy = (Q[”(tl-), P )T
denote the solution of Eq. (14a) at time point #; fori € {0, ..., N — 1}, then the exact
solution at time point #;+1 > ¢; can be represented as

tit1 .
(Mg N — ,MAEy (1], k(tiv1 —$)X(s)dW(s)
XVt =e""X (h)+/z,- (K’(ti+1—s)2(s)dW(s))’ (15)

M

where eM2! is defined in Eq. (7). X!l is a Gaussian process with conditional expec-

tation
E[x" )1 F,] =M x W)
and the conditional covariance matrix (see [29], Theorem 8.2.6)
Cov(tiy1) = Cov[ XM (ti1), XMt )| F, ]
T
= E[(XM @0 —E[XM @ 0]) (XG0 — E[xM@4n)]) 1F,]
1
_ / ! Mi41=5) 52y (M=) g
1

In particular, the integral term in Eq. (15) can be simulated exactly. Indeed, it is

Gaussian distributed with mean zero and covariance matrix Cov(f;41), which is for
t > t; given as the unique solution of the matrix-valued ODE

dCov(1) 7, (O3 O3
— = M Cov(t) + Cov(t)M" + (@3 Ez(t)) , (16)
Cov(t;) = Og.

In the special case of a constant diffusion matrix X'(t) = X' € R3*3, the exact solution
of Eq. (16) can be explicitly calculated for ¢t > 0 as

Cov(t; + 1)

_ (}‘F‘322(]I3 + k()Y (1) — 92(1)) 1223(1) )
- I1223(1) I 22+ k(O (1) — k2(1))

In general, Eq. (16) has to be solved by numerical approximation, however, it only
needs to be precomputed once for the step-size At. In either case, we obtain

XMt y) =M x W) + & (A1), (17)

where &;(Atr) are iid six-dimensional Gaussian random vectors with expectation
E[&; (Af)] = 06 and covariance matrix Cov(At).

Subsystem (14b) is a deterministic system and the solution can be obtained by
integration with respect to time. As before let X121(z;) = (Q?1(#;), PP(#;))T denote
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the solution of Eq. (14b) at time point #;, then the exact solution at time point #; 41 > #;
is given by

0% (ti11) = 0% (1),
li41

PR, = PPa) + / G(s. 0P (s)) ds (18)

fi

lit+
= PPl + 16N (0P ) + [ Glyas,

ti

where we assume that the last integral can be calculated exactly.
Now, let (p;m’[l] and w;)u,[Z] denote the exact flows of Eq. (14a) and (14b) given via
Eq. (17) and (18), respectively. Let x € RS, then a one-step integrator is defined by

the composition of the flows
Ri) = (e o o™ (o). (19)
6.3 Wiener Integrator

The second possibility is to include the stochastic terms into the nonlinear contribu-
tion yielding the subsystems

do"] Ve H(Q, P
(dp[ll) = (‘VQM;[(”Q[I]’ p[l]) _2r pil dt, (20a)
doPT\ 0 0
(dp[21> = (G(t, Q[Zl)) di+ (E(t)dW(t)) : (20b)

Subsystem (20a) is a deterministic system. Let X M@y = (M), PM ()T denote
the solution of Eq. (20a) at time point ¢;, then the exact solution at time point #; 1 is
given by

XW(ti40) =M x M) 1)
The solution of subsystem (20b) is—by definition—given by

0P (1) = 0P (@),
PRI = PRI@) + arGT (@ ) (22)

tit1 lit1
+/ G'(s)ds +/ (s)dW(s),
t; t;

where the last term can be simulated exactly as a three-dimensional Gaussian random
vector with zero mean and covariance matrix ft” +1 ¥ 2(s)ds. In the case of a constant
diffusion matrix X (1) = ¥ € R3*3, the covariance matrix is given as At Y 2,

In analogy to the considerations above let ¢;" ‘M and 7 21 genote the exact flows

of Eq. (20a) and (20b) given via Eq. (21) and (22), respectively. Then, for x € RO, a
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one-step integrator for Eq. (5) is given by
¥R = (ex o NP ). (23)
6.4 Order of Convergence and Strang Splitting

As the noise in Eq. (5) is additive, standard integrators such as the Euler—Maruyama
method converge with mean-square order one. The same holds true for the splitting
integrators constructed above.

Theorem 6.1 Let 0 =1y < --- <ty =T be an equidistant partition of [0, T] with
step-size At, and let X°"(t;) and XV (t;) denote the numerical solutions defined by
Eq. (19) and (23) at time point t; starting at initial value (Qy, Py) € RO. Then the
one-step methods defined in Eq. (19) and (23) are of mean-square order one, i.e.
there exist constants C1, Ca > 0 such that for sufficiently small At the inequalities

E[| X @) — X1 | 26]? < €11,

E[| X (1) — X" 1) 56]"?

< AL,
hold for all time points t;.
Proof The result can be proved in the same way as in [50], Lemma 2.1.. O

For deterministic ODE systems the convergence order of splitting methods can be
increased by using composition based on fractional steps (see e.g. [49], Chapter II).
We will illustrate this approach for the method based on the subsystems (20a) and
(20b), the other method can be treated analogously. Using a Strang splitting we can
compose the integrator

2
YR @) = (pxs oomiTopxl)(x), xRS, (24)

For ¥ = 03, Eq. (24) is a second-order method for the deterministic Eq. (2), however,
the mean-square order of Eq. (24) is still one. To increase the mean-square order one
has to include higher-order stochastic integrals to reproduce the interactions of the
Subsystems (20a) and (20b) (see [50], Sect. 2, for details). Note that even without
including the higher-order stochastic integrals the Strang splitting integrator given
by Eq. (24) performs considerably better in our numerical simulations than the Lie—
Trotter methods, thus we recommend to use this type of integrator. We have not yet
studied the reason for this improved performance, but expect that the symmetry of
the Strang splitting or the weak noise acting on the system may contribute.

We illustrate the mean-square convergence of our proposed methods in Fig. 7 and
compare the Strang splitting Eq. (24) with the standard Euler-Maruyama method for
the coupling parameters C = 68 and C = 135. As expected, both methods have mean-
square order one, however, for C = 135 the mean-square error (MSE) of the splitting
method is significantly smaller than the MSE of the Euler—Maruyama method. Ob-
viously, one might use smaller step-sizes for the Euler-Maruyama method; however,
this quickly becomes highly inefficient, e.g. for the JR-NMM for multiple populations
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Fig.7 Mean-square convergence of the splitting method
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or when the Euler—Maruyama method is embedded in a continuous-time particle fil-

ter.

Figs. 8 and 9 also demonstrate the efficiency of the splitting scheme, as the correct
(as not only observed from both methods with small step-sizes, but also based on our
analysis of the method’s properties) results can still be produced with much larger
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Fig. 9 Densities of the invariant measure of ¥

step-sizes than those required for the Euler—Maruyama method. The other important
feature of the proposed method is its reliability. Figure 8 shows several plots of the
phase portrait of one single path of the output Y, with the splitting method and the
Euler—Maruyama method and different step-sizes. It can be observed that the phase
portrait obtained with the latter method changes markedly with increasing step-size.
These phase portraits have been computed for the coupling parameter C = 1335, initial
value X (0) =0, 03 =05 = 1, 04 =200 and Ar € {107*,1073,2 - 1073}. Figure 9
corresponds to the upper right plot in Fig. 6, which itself can be interpreted as a
computational study of a phenomenological stochastic bifurcation for varying cou-
pling parameter C. It shows the densities of the invariant measure of Y for C = 135,
03 = 05 = 10 and o4 = 10° and compares the Strang splitting scheme with the Euler—
Maruyama method over the time-step-sizes Ar € {1073,2 - 1073,5 - 1073}. The
Euler—Maruyama method with moderately small step-sizes would report a change
from a unimodal to a bimodal density for the parameter C = 135, whereas the correct
value of C for this change to happen should be much larger.

@ Springer



Journal of Mathematical Neuroscience (2017) 7:8 Page 27 of 35

6.5 Moment Bounds and Geometric Ergodicity

The following two lemmas represent the properties presented in Sect. 4 for the numer-
ical approximation schemes defined by Eq. (19) and Eq. (23). Let X°* = (Q°", P°%)
and XV = (QV, P¥) denote the numerical solutions defined by Eq. (19) and Eq. (23),
respectively. We start with proving analogous bounds to those in Theorem 4.2 for the
expected value of Q° and Q¥. It is well known already in the deterministic set-
ting that the Euler scheme does not preserve such properties, see [49], Chap. 1, in the
stochastic case negative results for the Euler—Maruyama method for (simple) stochas-
tic oscillators have been observed in [48]. Note that the following two lemmas also
hold when commuting the compositions in Eq. (19) and Eq. (23).

Lemma 6.2 Let pj : [0,T] — RT for j € {3,4,5} be non-negative functions
bounded by 4 j max € R, respectively. Then fori € {0, ..., N}, E[QY(t;)] (and also
E[Q°(#;)]) is bounded in each component by

9 (1) Qo + k(1)) Py <0 E[ Q™ ()] <o 9 (1) Qo + & (t:) Po + ' *C.

Proof We prove the result for the numerical method %, ¥°" can be treated analo-
gously. Bearing in mind the notation in Sect. 4, we obtain from Eq. (23) that

E[X" )] =" ME[X" (-] + " ME[N (11, X™ (1) ] At
— eMtiX(O) + ZeMtk]E[N(ti—ka Xw(ti—k))]At’
k=1

and in particular its Q-component reads

E[QY(#:)] =9 (1) Qo + « (1) Po + ZK(tk)E[G(tifky XY (1i-p))] At (25)
k=1

From the proof of Theorem 4.2 we obtain 03 <g E[G(¢j—, XV (t;—¢))] <¢ Cg-
Obviously, the lower bound of E[QY (7;)] is fulfilled for any time step-size At. To
prove the upper bound it remains to show that

i
Zx(tk)At <o '
pat

From the decomposition

S k@A = (I3 — e T2 NI — e T (AD AL — k(AR (1)
k=1

i
+e It Zx(tk)At
k=1
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we derive the formula
i
S k@A = (I3 —e T2 (I3 — e T (An Al
k=1

— (I3 — e 2 e ane @),
which is in each component smaller than "~ for any time step-size Az. g

Remark 5 Another viewpoint of Eq. (23) is to apply the rectangle method (using the
left boundary point of the integral) in order to approximate the convolution-based
formula Eq. (8) in the form

Ot + A1) = 9 (A Q(t) + k(AP (1)

t+At
+/ /c(t+At—s)G(s, Q(s))ds
t

t+At
+/ k(t+ At —s)X(s)dW (s).
t

Moreover, Eq. (25) permits better insight into the distinction of the numerical
schemes: The sum in Eq. (25) corresponds to the rectangle method in order to approx-
imate the convolution integral E[v(¢)] defined in the proof of Theorem 4.2, where the
right boundary point is used in each approximation interval. Analogously, when com-
muting the composition in Eq. (23) one obtains the rectangle method evaluating the
left boundary points. In the case of the Strang splitting scheme given by Eq. (24), the
function « is evaluated at the midpoints (fx + fx41)/2.

Remark 6 1t can be shown analogously that the second moment E[(Q¥(#;))*®] (and
also E[(Q°"(#;))*®]) is bounded by

E[(QY(1))*°] <o ®® @) + 2u(t) © 15 (u(t)) © T 2Cq

-2 | 20
+(rCo+ 5z

The last point we discuss in this article is the geometric ergodicity of the discrete
Markov processes X" and XV defined by Eq. (19) and (23). In analogy to Sect. 5
we assume that Assumption (10) holds. Due to the global Lipschitz continuity of the
coefficients of Eq. (5), one would expect that standard numerical methods such as
the Euler—-Maruyama method are again geometrically ergodic for small enough step-
sizes At (see [34], Theorem 7.3). The advantage of our proposed splitting integrators
is that we can directly prove a discrete analog of Lemma 5.1, i.e. a discrete Lyapunov
condition for the same Lyapunov function under very mild restrictions on Az. We
formulate the result for the Wiener integrator, the Ornstein—Uhlenbeck integrator can
be treated analogously.
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Lemma 6.3 Let O < ty--- <ty = T be an equidistant partition of [0, T] with
step-size At < 1/Q2||I"||L>) and let XV denote the numerical solutions defined by
Eq. (23). Then the functional V (X) := V1(Q, P) defined in Lemma 5.1 is a Lyapunov
Sfunction for XV, i.e. there exist constants o € (0, 1) and B > 0 such that

E[V(XY (D)) F, ] <@V (XY (1) + B.

Proof For the sake of simplicity we set a = b, which implies e~/"x = e~ x for

any x € RR3. Furthermore, we denote 0 := Q(t), P := P(t;) to shorten notation. The
one-step approximations Q(#;4+1) and P(f;41) can be written as

FO@tiy) =Fe {3+ I'ADQ + Fe A At(P + AtG(Q) + Z¢),
P(tip1) =e AN Q+ P) + e M AtG(Q) + e *AM ZE — T Q(ti41),

where & ~ N'(03, I3) is a three-dimensional Gaussian vector independent of Fi. By
elementary calculations and application of Young’s inequality we obtain

1 2
S 1P + T QG s

=<

_ € _
NI Q + Pligs + e MM AR Q + Pl

| —

1 1
+ 316G @ s + 3 e (416(2) + 28) |y
+e 2 Q + P, DE)ps.

where € > 0 is a parameter which can be freely chosen. Thus, one can find C; > 0
sufficiently large such that

1
SE[PG) + o) |17 ]

1 _ 1 2
< e M|FQ+ Pl + —[G(Q) |3
2 2e
€
+ Ee—““A’AzZHFQ + Pz +C.
In the same spirit we can find C, > 0 such that
2
E[|I Qi+ 1) |51 F4 ]
<e MMM Q|2; +a’e M AT Q + Pllgs
o 1, 1
+ e MMAL Q)2 + zae XM AT Q + plks + 5| GO |2
€ €

+éa?e AP (I QI35 + a* AP TQ + Pis) + C2
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with free parameters €, € > 0. Combining the bounds above we can find a suitable
a € (0, 1) if for any given At there exists a choice €* such that

2
e el (1 + €A +2a° AP + —a’ At + €a4e2“A’At6) <1, (26a)
€

e (1 + & At +éa’e M AR < 1. (26b)

Note that € and € can be chosen arbitrarily small, therefore the corresponding terms
can be neglected. Now let At < 1/(2a), then Eq. (26a) and (26b) are fulfilled
for

2a% —4a> At i 2a

<< —
2a — 4a? At + 4a3 At 1 —2aAt

which implies the result. g

In analogy to Sect. 5, geometric ergodicity of the (discrete) Markov processes X%
and X° can be established by proving smoothness of the transition probabilities and
irreducibility of the processes. Both properties can be proven in exactly the same way
as in [34], Corollary 7.4, thus we only sketch the proof for XV:

(i) Smoothness of the transition probability densities: Due to Assumption (10) the
transition probability of two (or more) consecutive steps Y3, o ¥, of our inte-
grator has a smooth density.

(ii) Irreducibility: As in the time-continuous case in Sect. 5 we have to establish a
reachability condition, i.e. the numerical method starting at x € R® can reach any
y € R® after a fixed number of steps. For our splitting method, two consecutive
steps are sufficient to reach any point y by suitably choosing the vectors & (At)
such that

y= (¥R, o ¥N,)(x). 27)

In fact, Eq. (27) is a six-dimensional system of equations with six degrees of
freedom (three Gaussian random variables for each step ¥),) which can always
be solved under Assumption 10.

To summarise, the numerical approximations X°" and X% are geometrically ergodic
with respect to a unique invariant measure %}, and n}, under mild restrictions on
the time-step-size Ar. Furthermore, as X°" and X" converge towards X in the mean-
square sense, 74, and p, are convergent approximations of the original invariant
measure 3 (see [53], Theorem 3.3, for details). Thus, our numerical approximations
of the marginal densities in Sect. 5 (see Fig. 6) are supported by the theory.

7 Summary and Conclusions

We proposed a version of the original JR-NMM incorporating random input, as a
stochastic Hamiltonian system with nonlinear displacement, and discussed a range
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of properties based on results available in the framework of stochastic analysis, in
particular properties such as moment bounds and the existence of invariant measures.
The latter represent a step towards analysing the dynamical properties of a stochas-
tic formulation of the JR-NMM. Furthermore, we presented an efficient numerical
scheme based on a splitting approach which preserves the qualitative behaviour of
the solution of the system. We have also discussed the advantages of applying such
a scheme designed according to the obtained features of the stochastic JR-NMM for
future computational studies in contrast to applying other numerical methods such as
the Euler—Maruyama scheme. By a suitable introduction of noise our results can be
generalised to both the extension of the JR-NMM to multiple populations [37, 54-57]
and the extension to multiple areas, e.g. the 2-column model in [13] or the multi-area
neural mass model in [56].
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Appendix

For completeness we give auxiliary results establishing the necessary smoothness
properties of the transition probability densities as well as the irreducibility of the so-
lution process X of Eq. (5). The proofs are in principle the same as in [34]. Although
the Langevin equation treated there did not involve a nonlinear displacement such as
the sigmoid function, the smoothness and boundedness of the sigmoid function al-
lows us to use the same arguments. The following lemma establishes the smoothness
properties of the transition probability densities by proving the hypoellipticity of the
generator L. For further details we refer to [34, 36].

Lemma A.1 The generator L, its formal adjoint LT, /9t — L and 3/9t — LT are
hypoelliptic.

Proof In order to apply Hormander’s theorem we have to show that the Lie algebras
based on the operators in question have maximal rank 6 resp. 7 (see [36] and for a
more general discussion [58], Chap. 2). We show this for the generator £, the other
operators can be treated analogously. Using the notation from Sect. 4.1, we consider
the following six-dimensional vector fields:

foX)=MX+NX), g= <203’ ) fori e {1,2,3),

(1)
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where X. ;) denotes the ith column of X. For six-dimensional vector fields U, V :
RS — R® with Jacobians U, 3V we define the Lie bracket [U, V] := (3U)V —
(@V)U. According to [34] it suffices to show that

dim(span{gi. 2. g3. [ fo. g11, [ fo. &21. [ fo. g31}) =6.

R R N o=

the statement directly follows from Assumption (10) and o; > O for i € {3, 4, 5}. Note
that the nonlinear term N does not play any role in the computation as its Jacobian
is only non-zero at the derivatives corresponding to the Q-component, which are
multiplied with the first three components of the vectors g;. However, these three
components are always zero. g

Irreducibility can be established via a control type argument. For this purpose, let
P, (A, x) denote the transition probabilities of the Markov process X.

Lemma A.2 The solution process X = (Q, P) of Eq. (5) is irreducible, i.e. for arbi-
trary open sets A € RO, initial values x € R® and t € [0, T

P;(A,x) > 0. (28)

Proof It suffices to consider open neighbourhoods A = B, (X;) of arbitrary terminal
values X, € R® for some time point 7 € [0, 7']. Now, Property (28) can be established
in the following way: Let X (¢) be the solution of the controlled JR-NMM

o)
P(1)

05

dxX () =d( > = fo(X)dt + <E>dW(t), (29)

where W : [0,7T]— R3isa continuously differentiable function. If
P( sup [X(0) - R(@] <e) >0, (30)
0<t<T

then Property (28) holds as long as X (t) = X;. Now, let Q(t) be a smooth curve

such that
0(0) 0(v)
5 =x and 5 =X;.
(% (0>> (%(r))

The control W (¢) is given via the second-order differential equation

dw d’0 d0 ~ N
— =y Y =42r=4+r?0+¢ ,
dt <dt2 + dt HITO (Q)>
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which has a unique solution as G is globally Lipschitz. Consequently, the point X; is
reachable for solutions of the controlled System (29). Condition (30) (and therefore
irreducibility) is now an immediate consequence of the Stroock—Varadhan Support
Theorem (see [59]). Il
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