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Abstract Layer II stellate cells in the medial enthorinal cortex (MEC) express
hyperpolarisation-activated cyclic-nucleotide-gated (HCN) channels that allow for
rebound spiking via an Ih current in response to hyperpolarising synaptic input.
A computational modelling study by Hasselmo (Philos. Trans. R. Soc. Lond. B, Biol.
Sci. 369:20120523, 2013) showed that an inhibitory network of such cells can sup-
port periodic travelling waves with a period that is controlled by the dynamics of the
Ih current. Hasselmo has suggested that these waves can underlie the generation of
grid cells, and that the known difference in Ih resonance frequency along the dorsal to
ventral axis can explain the observed size and spacing between grid cell firing fields.
Here we develop a biophysical spiking model within a framework that allows for
analytical tractability. We combine the simplicity of integrate-and-fire neurons with
a piecewise linear caricature of the gating dynamics for HCN channels to develop
a spiking neural field model of MEC. Using techniques primarily drawn from the
field of nonsmooth dynamical systems we show how to construct periodic travelling
waves, and in particular the dispersion curve that determines how wave speed varies
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as a function of period. This exhibits a wide range of long wavelength solutions, re-
inforcing the idea that rebound spiking is a candidate mechanism for generating grid
cell firing patterns. Importantly we develop a wave stability analysis to show how the
maximum allowed period is controlled by the dynamical properties of the Ih current.
Our theoretical work is validated by numerical simulations of the spiking model in
both one and two dimensions.

Keywords Grid cell · Medial enthorinal cortex · h-current · Rebound spiking ·
Integrate-and-fire neural field model · Nonsmooth dynamics · Travelling wave ·
Evans function

1 Introduction

The ability to remember specific events occurring at specific places and times plays
a major role in our everyday life. The question of how such memories are estab-
lished remains an active area of research, but several key facts are now known. In
particular, the 2004 discovery of grid cells in the medial enthorinal cortex (MEC)
by Fyhn et al. [2], supports the notion of a cognitive map for navigation. This is a
mental representation whereby individuals can acquire, code, store, recall, and de-
code information about relative spatial locations in their environment. The concept
was introduced by Tolman in 1948 [3], with the first neural correlate being identi-
fied as the place cell system in the hippocampus [4]. Place cells are found in the
hippocampus and fire selectively to spatial locations, thereby forming a place field
whose properties change from one environment to another. More recently, a second
class of cells was identified that fire at the nodes of a hexagonal lattice tiling the sur-
face of the environment covered by the animal—these are termed grid cells [5]. As
an animal approaches the centre of a grid cell firing field, the spiking output of grid
cell will increase in frequency. The grid field size and spacing increases from dorsal
to ventral positions along the MEC and is independent of the animal’s speed and di-
rection (even in the absence of visual input) and independent of the arena size. In rats,
the grid field spacing can range from roughly 30 cm up to several meters [6]. Other
grid cell properties include firing field patterns that manifest instantly in novel envi-
ronments and maintain alignment with visual landmarks. Furthermore, neighbouring
grid cells have firing fields with different spatial phases, whilst grid cells with a com-
mon spacing also have a common orientation (overturning an original suggestion that
they have different orientations) [7].

May-Britt Moser and Edvard Moser shared the 2014 Nobel Prize in Physiology
or Medicine with John O’Keefe for their discoveries of cells (grid and place cells,
respectively) that subserve the brain’s internal positioning system. From a modelling
perspective grid cells have attracted a lot of attention, due in part to their relatively
recent and unexpected discovery, but also due to the very geometric firing patterns
that they generate. There are now three main competing mathematical models for
the generation of grid-like firing patterns: oscillatory interference models, continu-
ous attractor network models, and “self-organised” models—see Giocomo et al. [8]
and Schmidt-Hieber and Häusser [9] for excellent reviews. The first class of model
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uses interference patterns generated by multiple oscillations to explain grid formation
[10]. They have been especially fruitful in addressing the theta rhythmic firing of grid
cells (5–12 Hz) and their phase precession. Here spikes occur at successively earlier
phases of the theta rhythm during a grid field traversal, suggestive of a spike-timing
code [11]. The second class uses activity in local networks with specific connectiv-
ity to generate the grid pattern and its spacing. In this category, the models can be
further sub-divided into those that utilise spatial pattern formation across the whole
tissue (possibly arising via a Turing instability), such as in the work of Fuhs and
Touretzky [12] and Burak and Fiete [13], and those that rely only upon spatially lo-
calised pattern states (or bumps) in models with (twisted) toroidal connectivity as
described by McNaughton et al. [14] and Guanella et al. [15]. The third class pro-
poses that grid cells are formed by a self-organised learning process that borrows
elements from both former classes [16–18]. Recent experiments revealing the in vivo
intracellular signatures of grid cells, the primarily inhibitory recurrent connectivity of
grid cells, and the topographic organisation of grid cells within anatomically overlap-
ping modules of multiple spatial scales along the dorsoventral axis of MEC provide
strong constraints and challenges to all three classes of models [18–20]. This has led
to a variety of new models, each with a focus on one or more aspects of biophys-
ical reality that might underlie the functionality of grid cell response. For example
Couey et al. [21] have shown that a continuous attractor network with pure inhibition
can support grid cell firing, with the caveat that there is sufficient excitatory input to
the MEC, supposedly from hippocampus, to cause principal cells to fire. However,
recent optogenetic and electrophysiological experiments have challenged this simple
description [22], highlighting the importance of intrinsic nonlinear ionic currents and
their distribution amongst the main cell types in MEC.

Stellate and pyramidal cells constitute the principal neurons in layer II of me-
dial enthorinal cortex (MEC II) that exhibit grid cell firing. The former comprise
approximately 70% of the total MEC II neural population and are believed to repre-
sent the majority of the grid cell population. Even before the discovery of grid cells
stellate cells were thoroughly studied because of their rapid membrane time con-
stants and resonant behaviour. Indeed, they are well known to support oscillations
in the theta frequency range [23, 24]. Interestingly the frequency of these intrinsic
oscillations decreases along the dorsal-ventral axis of MEC II [25], suggestive of
a role in grid field spacing. The resonant properties of stellate cells have been di-
rectly linked to a high density of hyperpolarisation-activated cyclic-nucleotide-gated
(HCN) channels [26], underlying the so-called Ih current. The time constant of both
the fast and slow component of Ih is significantly faster for dorsal versus ventral
stellate cells, providing a potential mechanism for the observed difference in the res-
onant frequency along the dorsal-ventral axis. However, perhaps of more importance
is the fact the Ih current can cause a depolarising rebound spike following a hyper-
polarising current injection. Given that stellate cells are mainly interconnected by
inhibitory interneurons [21], this means that rebound can play an important role in
shaping spatio-temporal network rhythms. The inclusion of important intrinsic bio-
physical properties into a network has been emphasised by several authors, such as
Navratilova et al. [27] regarding the contribution of after-spike potentials of stel-
late cells to theta phase precession, and perhaps most notably by Hasselmo and col-
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leagues for the inclusion of HCN channels [28–31]. This has culminated in a spiking
network model of MEC that supports patterns whose periodicity is controlled by a
neuronal resonance frequency arising from an Ih current [1]. The model includes
many of the features present in the three classes described above, and is able to repli-
cate behaviour from several experiments, including phase precession in response to
a phasic medial septum input, theta cycle skipping, and the loss of the spatial peri-
odicity of grid cell firing fields upon a reduction of input from the medial septum.
Simulations of the model in one spatial dimension show that the spacing of grid
firing fields can be controlled by manipulating the speed of the rebound response.
We note that a change that affects the rebound response would also affect the reso-
nant properties of the cell. In contrast to continuous attractor models that rely on the
spatial scale of connectivity to control grid spacing, a change in rebound response
provides a mechanism of local control via changes in the expression levels of HCN
channels. This fascinating observation warrants a deeper mathematical analysis. In
this paper we introduce a spiking network model that shares many of the features
of the Hasselmo model [1], focussing on the formation of travelling waves that can
arise in the absence of (medial septum) input. Importantly our bespoke model is built
from piecewise linear and discontinuous elements that allows for an explicit analysis
of the periodic waves that arise in an inhibitory network through rebound spiking.
In particular our wave stability analysis demonstrates clearly that the maximum al-
lowed period is strongly controlled by the properties of our model Ih current. This
gives further credence to the hypothesis that HCN channels can control the proper-
ties of tissue level periodic waves that may underpin the spacing of grid cell firing in
MEC.

In Sect. 2 we introduce our model of a network of stellate cells in MEC II. The sin-
gle neuron model is a simple leaky integrate-and-fire (LIF) model with the inclusion
of a synaptic current mediated by network firing events, and a model of Ih based on
a single gating variable. For ease of mathematical analysis we focus on a continuum
description, so that the model may be regarded as a spiking neural field. Simulations
of the model in two spatial dimensions are used to highlight the genericity of spike
rebound mediated spatio-temporal patterns. To uncover the systematic way in which
a cellular Ih current can control the properties of patterns at the tissue level, we focus
next on a one-dimensional version of the model without external input. By further
developing a piecewise linear (pwl) caricature of the activation dynamics of a HCN
channel we show in Sect. 3 how explicitly to construct the dispersion curve for pe-
riodic travelling waves. This gives the speed of a wave as a function of its period,
and shows the possibility of a wide range of wave periods that could be selected.
Next in Sect. 4 we exploit techniques from the analysis of nonsmooth systems to
determine the Evans function for wave stability. Importantly an investigation of this
function shows that the maximum allowed period can be controlled both by the over-
all conductance strength of the Ih current as well as the time-scale for activation of
HCN channels. Finally in Sect. 5 we discuss natural extensions of our work, and its
relevance to further models of grid cell firing.
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2 The Model

The original work of Hasselmo [1] considered both simple resonant models as well as
spiking nonlinear integrate-and-fire Izhikevich units to describe MEC stellate cells.
The former incorporated a model for Ih using a single gating variable with a linear
dynamics whilst the latter were tuned to capture the resonant and rebound spiking
properties from experimental data. Synaptic interactions between cells in a discrete
one-dimensional network were modelled with a simple voltage threshold process.
These models were subsequently studied in more detail in [28], with a further focus
on two-dimensional models and travelling waves. Here, we consider a biophysically
realistic spiking model in a similar spirit to that of Hasselmo, but within a framework
that will allow for a subsequent mathematical analysis. In particular, we consider a
spiking model of stellate cells using a generalised LIF model that includes a nonlinear
Ih current. Moreover, we opt for a description of synaptic interactions using an event-
based scheme for modelling post-synaptic conductances.

We first consider a continuum description defined on the plane and introduce a
voltage variable V = V (r, t), where r ∈R

2 and t ≥ 0. The subthreshold LIF dynam-
ics is given by

C
∂

∂t
V (r, t) = −glV (r, t) + Ih(r, t) + Isyn(r, t) + Ihd(r, t), (1)

with a set of spike times at position r generated according to

T m(r) = inf
{
t | V (r, t) ≥ Vth; t ≥ T m−1(r) + τR

}
, m ∈ Z. (2)

Here τR is a refractory time-scale. Upon reaching the threshold Vth the membrane po-
tential is reset to the value Vr < Vth. The infimum operation ensures that a firing time
is determined by the first time that the voltage variable (at a fixed position) crosses
threshold (from below, remembering the IF reset process) subject to refractoriness.
To model the refractory process we hold the voltage variable at the reset value Vr
for a duration τR after a firing event. The left-hand side of (1) describes a membrane
current with capacitance C. The first term on the right-hand side of (1) represents a
leak with a constant conductance gl (and we have set the leakage reversal potential
to zero without loss of generality). The terms Ih, Isyn, and Ihd represent currents aris-
ing from HCN channels, synaptic input, and head-direction input, respectively. Ih is
a slow inward current with a reversal potential Vh that is substantially above resting
levels, but which requires hyperpolarisation to become active; that is, the activation
curve is monotone decreasing in V . Furthermore, the Ih current does not inactivate,
even with prolonged (minutes) hyperpolarisation. Thus it is often modelled with a
single gating variable nh such that Ih(r, t) = ghnh(r, t)(Vh − V (r, t)), where

τh(V )
∂

∂t
nh = nh,∞(V ) − nh. (3)

Here the shape for the activation function nh,∞ is the sigmoid:

nh,∞(V ) = 1

1 + exp((V − V1/2)/k)
, (4)
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Fig. 1 Connectivity function w

in (7), with σ = 25, β = 0.5 and
w0 = −10

and fits to experimental data give V1/2 ≈ −10 mV (with respect to rest) and k ≈ 10
[32, 33]. The time constant for activation and deactivation can vary from tens to hun-
dreds of milliseconds [34]; however, here we fix τh = constant for simplicity and ig-
nore any detailed dependence on voltage. To model synaptic interactions we consider
a simple effective anatomical model whereby stellate cells interact directly through
inhibition. In reality inhibitory interactions are actually mediated by interneurons
and there is no direct synaptic coupling between stellate cells. Introducing an overall
strength of synaptic conductance gsyn we then write Isyn(r, t) = gsynψ(r, t), where

ψ(r, t) =
∫

�

dr ′W
(
r, r ′)E

(
r ′, t

)
, (5)

where the function W represents anatomical connectivity, � ⊆ R
2 is the spatial do-

main, and the function E represents the shape of a post-synaptic response to a train
of incoming spikes. We write this in the form

E(r, t) =
∑

m∈Z
η
(
t − T m(r)

)
, (6)

for a given temporal filter shape η with the property that η(t) = 0 for t < 0 (so that
interactions are causal). For convenience we will work with normalised responses
such that

∫∞
0 dtη(t) = 1. As a concrete choice for the function W we shall take a

smoothed bump shape W(r, r ′) = w(|r − r ′|), with

w(x) = w0

2

[
tanh

(
β(σ − x)

)+ tanh
(
β(σ + x)

)]
, β, σ > 0. (7)

Here w0 < 0 in accordance with the predominantly inhibitory interactions of MEC, σ
controls the spatial scale of interaction, and β the steepness of the surround inhibition
function as shown in Fig. 1. The model is completed with the choice of the synaptic
filter η, which we shall take to be an α-function of the form

η(t) = α2te−αtH(t), (8)

where α−1 is the time-to-peak of the synapse, and H is the Heaviside step function.
Note that we work in a regime where the model is excitable, as we do not include
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any background drive that would be able to make the single neuron model fire in the
absence of synaptic coupling or head-direction input.

An animal’s speed v = v(t) and direction of motion Φ = Φ(t) generates in-
put to the MEC that is modelled by the head-direction current Ihd. For exam-
ple, this could be of the form Ihd(r, t) = v · rφ where v = v(cosΦ, sinΦ) and
rφ = l(cosφ(r), sinφ(r)) describes a head-direction preference for the orientation
φ(r) at position r [13]. Here l is a constant that sets the magnitude of the head-
direction current. The hidden assumption here is that head direction matches the
direction of motion. However, this is not necessarily true behaviourally, and head
direction cells may not code for motion direction [35]. Nonetheless it is a common
assumption in most grid cell models, and so we adopt it here too. Fuhs and Touretzky
[12] have shown that choosing an anisotropic anatomical connectivity of the partic-
ular form W(r, r ′) = w(|r − rφ − r ′|) can then induce a spatio-temporal network
pattern to flow in accordance with the pattern of head-direction information gener-
ated when traversing an environment. For continuous attractor network models that
can generate, via a Turing instability, static hexagonal patterns with regions of high
activity at the nodes of a triangular lattice, the induced movement of these hot-spots
over a given point in the tissue gives rise to grid-like firing patterns. In this case the
spacing of the firing field is hard to change, as it is mainly fixed by the spatial scale of
the chosen connectivity; however, the mechanism of inducing pattern flow is robust
to how the tissue pattern is generated. Thus, given the established success of the Fuhs
and Touretzky mechanism we will not focus on this here, and instead turn our atten-
tion to the formation of relevant tissue patterns and, in particular, how local control
of firing field spacing may be effected.

To investigate the types of solution the spiking neural field model supports, we
perform simulations over a two-dimensional square domain. Since the action of the
head-direction current is merely to induce a flow of emergent patterns we restrict our
attention to the case without such input, i.e. Ihd = 0. See Appendix A for details of
our bespoke numerical scheme implemented on a GPU architecture, and Additional
file 1 for C++/CUDA code. We observe three general classes of coherent behaviour
that take the form of spatially periodic non-travelling structures (though which os-
cillate in time), travelling periodic waves, and lurching waves. The latter are also
generically found in neural systems with rebound currents, such as in models of tha-
lamic slices [36–38]. Unlike traditional smoothly propagating waves, which exhibit
a stationary profile in a co-moving frame, lurching waves consist of patterns of ac-
tivity in a localised region of the domain, which after some period of time, decay
and an adjacent region of the domain becomes active. These waves appear to ‘lurch’
across the domain. Whilst interesting in their own right, we focus in this article on the
analysis of smoothly propagating periodic waves, since these have been suggested by
Hasselmo [1] to play a dominant role in the formation of grid-like firing patterns in
MEC. We show an example of a non-travelling periodic structure in Fig. 2, at two
different time points to illustrate that the pattern is not static, but oscillates in time.
An example of a smoothly propagating travelling wave is shown in Fig. 3. The model
also supports more exotic spatio-temporal structures, including hexagonal patterns,
and for a movie showing a dynamic state with a hexagonal sub-structure see Addi-
tional file 2.

http://dx.doi.org/10.1186/s13408-017-0051-7
http://dx.doi.org/10.1186/s13408-017-0051-7
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Fig. 2 A simulation of spatially periodic non-travelling patterns in a two-dimensional spiking neural field
model with an Ih current, solved on a spatial grid of 1000 × 1000 points. Displayed is the voltage com-
ponent across the entire network at t = 7000 ms (left) and t = 10,000 ms (right). The model supports
periodic patterns of localised activity. Note that these patterns are not static, but oscillate in time. Param-
eters: C = 1 µFcm−2, τh = 400 ms, Vh = 40 mV, gl = 0.25 mS/cm−2, gh = 1 mS/cm−2, τR = 200 ms,
Vth = 14.5 mV, Vr = 0 mV, V1/2 = −10 mV, k = 10, gsyn = 15 mS/cm−2, w0 = −10, σ = 25, β−1 = 0,

and α−1 = 20 ms. The choice of a long refractory time-scale in the model is useful for eliciting a single
(rather than multiple) spike rebound response. Spatial domain � = [−L,L] × [−L,L] where L = 10σ .
See also the video in Additional file 2, showing the emergence of more exotic spatio-temporal structures,
including hexagons

3 Wave Construction

To understand more fully how Ih controls the emergent scale of periodic waves seen
in the simulations of Sect. 2 we now turn to a one-dimensional version of the model
defined on the infinite domain. As in Sect. 2, we consider Ihd = 0, in which case the
model is isotropic and (5) reduces to

ψ(x, t) =
∑

m∈Z

∫ ∞

−∞
dyw

(|x − y|)η(t − T m(y)
)
, x ∈R, t > 0. (9)

To reduce the model to a more mathematically convenient form we make two ob-
servations about the Ih current. The first is that Vh is typically larger than V , which
suggests the approximation Vh − V � Vh. The second is that the nonlinear activation
function nh,∞ can be approximated by a pwl function, as illustrated in Fig. 4. Here
we match the slope at V = V1/2, and otherwise saturate the function to one or zero,
so that

nh,∞(V ) =

⎧
⎪⎨

⎪⎩

1, V ≤ V−
1
2 − V −V1/2

4k
, V− < V < V+

0, V ≥ V+,

, V± = V1/2 ± 2k. (10)

http://dx.doi.org/10.1186/s13408-017-0051-7
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Fig. 3 Periodic travelling wave solutions in the spiking neural field model, solved on a spatial grid of
1000 × 1000 points. Displayed is the voltage component across the entire network at t = 7000 ms (left)
and t = 10,000 ms (right). Using different initial data, the spatially periodic pattern observed in Fig. 2
is replaced by a periodic travelling wave (moving downward in the figure). Parameters as in Fig. 2, with
w0 = −0.1

Fig. 4 Red line: Nonlinear
activation function for nh with
V1/2 = −10 mV and k = 10.
Green line: Piecewise linear fit
of nh,∞ given by Eq. (10)

Simulations of the model with the reduced form of the Ih are in qualitative agree-
ment with simulations of the full nonlinear model, and indeed wherever tested the
same repertoire of behaviour is always found. In both instances, travelling wave be-
haviour with a well-defined speed and period is easily initiated; Figs. 5 and 6 compare
simulation results arising in the fully nonlinear and reduced pwl model.

If we introduce the vector X = (V ,nh) ∈ R
2 then we may write the reduced model

in a more abstract setting, namely in terms of the pwl evolution equation that governs
the system behaviour between one spiking event and the next:

∂

∂t
X(x, t) = AX(x, t) + �(x, t), T m−1(x) ≤ t < T m(x). (11)

In (11), A is a 2 × 2 matrix that is defined in a piecewise constant fashion, with
dependence on the value of the voltage (in particular, which of the three domains
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Fig. 5 Simulations of a one-dimensional spiking neural field model with an Ih current solved on a spa-
tial grid of 5000 points. Left: simulations of the model with the full nonlinear dynamics for Ih. Right:
simulations of the model with the reduced pwl dynamics for Ih given by (10). Here we show the volt-
age traces at an illustrative set of locations throughout the system as a function of time. Note that each
single spike is mediated by rebound in response to inhibitory synaptic input. Parameters are as in Fig. 2
with β = 0.5, Vth = 14 mV. The activity propagates from bottom to top after an initial hyperpolarisation
current of −30 mV is given to a set of neurons (in yellow) from t = 1000 ms to t = 1250 ms

Fig. 6 Voltage traces observed
at x = 0, when the periodic
travelling wave is fully
developed. Top: simulations of
the model with the reduced pwl
dynamics for Ih given by (10).
Bottom: simulations of the
model with the full nonlinear
dynamics for Ih. All parameters
as in Fig. 5

detailed in equation (10) pertains), or whether the system is in the refractory state. In
the latter case, A is defined according to

A = AR =
[

0 0
0 −1/τh

]
, T m−1(x) ≤ t < T m−1(x) + τR, (12)

while for T m−1(x) + τR ≤ t < T m(x)

A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A0 =
[ −1/τ ghg

−1
l /τ

−1/(4kτh) −1/τh

]
, V− < V < V+,

A− =
[−1/τ ghg

−1
l /τ

0 −1/τh

]
, V ≤ V−,

A+ = A−, V ≥ V+,

(13)
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where we have assumed the ordering V− < Vr < V+ < Vth, introduced τ = C/gl, and
absorbed the factor Vh within gh. Similarly we define � according to

� = �R =
[

0
(1/2 − (Vr − V1/2)/(4k))/τh

]
, T m−1(x) ≤ t < T m−1(x)+τR, (14)

and, for T m−1(x) + τR ≤ t < T m(x),

� = gsyng
−1
l

τ
ψ

[
1
0

]
+

⎧
⎪⎨

⎪⎩

b0, V− < V < V+,

b−, V ≤ V−,

b+, V ≥ V+,

(15)

where

b0 =
[

0
(1/2 + V1/2/(4k))/τh

]
, b− =

[
0

1/τh

]
, b+ =

[
0
0

]
. (16)

We highlight that in (12)–(16) we have introduced the subscripts {R,0,−,+} to in-
dicate the state of the system, namely whether it is refractory (labelled by R) or is
not refractory and has a voltage in the range (V−,V+) (labelled by 0), (−∞,V−]
(labelled by −), [V+,∞) (labelled by +).

3.1 Travelling Wave Analysis

We now seek travelling wave solutions of (11) of the form X̂(ξ, t), where ξ = t −x/c

and c is the (constant) wave speed. In this case (11) transforms to
(

∂

∂t
+ ∂

∂ξ

)
X̂(ξ, t) = AX̂(ξ, t) + �̂(ξ, t). (17)

A stationary travelling wave X̂(ξ, t) = Q(ξ) = (V (ξ), nh(ξ)) satisfies the travelling
wave equation

dQ

dξ
= AQ(ξ) + �̂(ξ). (18)

In terms of firing events a periodic wave is described by T m(x) = x/c + mΔ, where
Δ is the period of the wave such that Q(ξ + Δ) = Q(ξ). Substitution of this firing
ansatz into (9) allows us to determine the function ψ̂(ξ) = ψ(x, t)|t=T m(x) where
�̂(ξ) is obtained from (15) under the replacement of ψ by ψ̂ . The function ψ̂ is
easily determined as

ψ̂(ξ) = c
∑

m∈Z

∫ ∞

0
dsη(s)w

(∣∣c(s − ξ) + cmΔ
∣∣), (19)

and is Δ-periodic, and can therefore be expressed in terms of a Fourier series as

ψ̂(ξ) =
∑

p∈Z
ψpe−2πipξ/Δ, ψp = 1

Δ
w̃

(
2πp

cΔ

)
η̃

(
−2πp

Δ

)
. (20)
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In (20) tildes denote the Fourier integral representation, such that for a given function
a(x)

a(x) = 1

2π

∫ ∞

−∞
dk ã(k)eikx, ã(k) =

∫ ∞

−∞
dx a(x)e−ikx, (21)

and we have made use of the result that cΔ
∑

m eikcmΔ = 2π
∑

p δ(k − 2πp/(cΔ)).
For the bump function (7) and the α-function (8) we have

w̃(k) = w0
π

β

sin kσ

sinh(πk/(2β))
, η̃(k) = α2

(α + ik)2
. (22)

Thus, given the decay properties of (22) as a function of k, the sum in (20) can be
naturally truncated.

The formal solution to (18) can be constructed using variation of parameters as

Q(ξ) = G(ξ, ξ0)Q(ξ0) +
∫ ξ

ξ0

G
(
ξ, ξ ′)�̂

(
ξ ′)dξ ′, (23)

where G is a matrix exponential given by

G
(
ξ, ξ ′)= T

{
exp

(∫ ξ

ξ ′
dsA(s)

)}
. (24)

Here T is a time-ordering operator T A(t)A(s) = H(t − s)A(t)A(s) +
H(s − t)A(s)A(t). In general the issue of time-ordering makes it very difficult to
evaluate G. However, in our case A is piecewise constant and so we easily may
break the solution up into parts distinguished by the label μ ∈ {R,0,−,+}. In each
case trajectories are given explicitly by (23) with G(ξ, ξ ′) = G(ξ − ξ ′) and G = Gμ

where Gμ(ξ) = exp(Aμξ). A global trajectory may then be obtained by patching to-
gether solutions, denoted by Qμ, from each domain. It is in this fashion that we now
construct the shape of a periodic travelling wave in a self-consistent manner. Of use
will be matrix exponential decomposition eAt = P e�tP −1, where � = diag(λ+, λ−)

are the eigenvalues of A with associated eigenvectors q± = (1, (λ± − A11)/A12, )
T .

Here the eigenvalues of A are given explicitly by

λ± = 1

2

(
TrA ±

√
(TrA)2 − 4 detA

)
. (25)

Using (20) we may then write a domain specific trajectory for μ ∈ {0,+,−} in the
form

Qμ(ξ) = Gμ(ξ − ξ0)Qμ(ξ0) + A−1
μ

[
Gμ(ξ − ξ0) − I2

]
bμ

+ gsyng
−1
l

τ

∑

p∈Z
ψpPμ diag

(
Z+

μ (ξ, ξ0),Z
−
μ (ξ, ξ0)

)
P −1

μ

[
1
0

]
, (26)

where

Z±
μ (ξ, ξ0) = eλ±

μ (ξ−ξ0)e−2πipξ0/Δ − e−2πipξ/Δ

λ±
μ + 2πip/Δ

. (27)
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Fig. 7 Orbit of a periodic travelling wave. Parameters as in Fig. 5, with Δ = 450, c = 0.0669,
nh(0) = 0.3815 and ξ1 = 225.4223. The travelling wave starts at ξ = 0 where V = Vr is clamped and
nh evolves according to (29) until ξ = τR and the system is released from the refractory period (blue line).
Then it evolves clockwise according to (26) with μ = 0 until V (τR + ξ1) = V+ when it switches (red line)
to μ = + (green line). The orbit ends when V = Vth and V is reset. The green horizontal line for V > Vth
is not part of the solution. It is simply a marker for the spiking event (and the model does not generate an
explicit shape for an action potential). Black dotted lines represent (from left to right) V = V−, V = V+
and V = Vth

Here �μ = diag(λ+
μ,λ−

μ) with λ±
μ representing the eigenvalues of Aμ and

Pμ =
[

1 1
(λ+

μ − [Aμ]11)/[Aμ]12 (λ−
μ − [Aμ]11)/[Aμ]12

]
. (28)

When μ = R we adopt an alternative strategy (since AR is singular), remembering
that when the system is refractory then V (ξ) is clamped at the value V = Vr. In
this case, we only have to consider the evolution of the gating variable nh, which is
obtained from (3) and (10) to give

nh(ξ) = nh(ξ0)e
−(ξ−ξ0)/τh + (1/2 − (Vr − V1/2)/(4k)

)[
1 − e−(ξ−ξ0)/τh

]
. (29)

Now let us consider the form of a periodic wave which elicits a single spike for every
period, much like the ones seen in Fig. 5. An example of such a travelling wave orbit
in the (V ,nh) phase plane is shown in Fig. 7. The corresponding evolution of V (ξ)

and nh(ξ) is shown in Fig. 8.
Given the translational invariance of the system we are free to choose a travelling

wave origin such that ξ = 0 corresponds to the system immediately after firing. For a
duration τR it will then remain clamped at Vr with nh evolving according to (29) with
ξ0 = 0 (as shown in blue in Fig. 7 and Fig. 8). From here it then evolves according to
(26) with μ = 0, with initial data determined by QR(ξ0) = (Vr, nh(τR)), until V (ξ)

reaches V±, after which we set μ = − or μ = + in (26) and select appropriate initial
data for (26), depending on the value of V achieved first. For simplicity, and since this
is reliably observed in numerical simulations for a wide range of parameters (red line
in Fig. 7 and Fig. 8, though the argument is easily generalised), we assume V+ is the
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Fig. 8 Profile of the two components of the periodic travelling wave Q(ξ) defined by (26) and illustrated
in Fig. 7. Solid lines correspond to V (ξ) (left-hand axis) and dotted ones to nh(ξ) (right-hand axis).
Colour-code and parameters as in Fig. 7. Dotted black lines indicate the values where the system changes
dynamics

relevant choice. The final piece of the orbit is then obtained from (26) with μ = + and
initial data determined by Q+(ξ0) = Q0(ξ1 + τR) (green line in Fig. 7 and Fig. 8) and
evolving the system until V (ξ) = Vth. Denoting the time of flight for the trajectory
such that Vr ≤ V < V+ by ξ1, and that, for V+ ≤ V < Vth by ξ2, the period of the
orbit is given by Δ = τR + ξ1 + ξ2. We note that the orbit is discontinuous because
of the reset of the voltage variable after one period. Thus we have four unknowns
(nh(0), c, ξ1,Δ) related by three nonlinear algebraic equations

⎧
⎪⎨

⎪⎩

V (Δ) = Vth (firing condition),

nh(Δ) = nh(0) (periodicity condition),

V (τR + ξ1) = V+ (switching condition),

(30)

whose simultaneous solution determines the dispersion relationship for the wave
speed as a function of the period c = c(Δ). An example of a dispersion curve con-
structed in this way is shown in Fig. 9. Here we see that a wide range of allowed
wavelengths can co-exist (with differing speeds). Note that in Fig. 9 we also include
solutions that visit the region of phase-space where V < V−, and these solutions typ-
ically only occur for small values of Δ. Our constructive theory does not provide a
wave selection principle; however, by varying initial data in direct numerical sim-
ulations we were able to find solutions in excellent agreement with the theoretical
predictions up to some maximal value of Δ. The determination of this value is the
subject of the next section, where we show how to analyse wave stability.

4 Wave Stability

To determine the stability of a periodic travelling wave we must not only treat per-
turbations of the state variables, but also the associated effects on the times of fir-
ing. Moreover, one must remember that because the model is nonsmooth (due to the
switch at V = V±) and discontinuous (because of reset whenever V = Vth) standard
approaches for analysing smooth dynamical systems cannot be immediately applied.
Nonetheless, as we show below, the wave stability can in fact be explicitly deter-
mined. We do this by constructing the so-called Evans function. This has a long his-
tory of use in the analysis of wave solutions to partial differential equations, dating



Journal of Mathematical Neuroscience  (2017) 7:9 Page 15 of 30

Fig. 9 Dispersion curve c = c(Δ) for a periodic travelling wave. Here c is the speed of a wave with
period Δ. For small periods and on the upper branch waves are constructed that visit the domain where
V < V−. Parameters as in Fig. 5. Solid lines represent periods where the system is stable while dashed
lines represent where it is unstable; red dots represent the maximum stable period of the orbit, highlighting
its increase with τh . Note that waves (on the lower branch of solutions) are stable for a large range of wave
periods, and that the actual value of (c,Δ) that would be observed in a simulation are dependent upon the
choice of initial data

back to the work of Evans on the stability of action potentials in the Hodgkin–Huxley
model of a nerve fibre [39], has been extended to certain classes of firing rate neural
field model [40], and is developed here for spiking neural fields.

We begin our analysis by exposing the spike-train that determines the synaptic
drive in (9) by writing it in the equivalent form

ψ(x, t) =
∑

m∈Z

∫ ∞

−∞
dyw

(|x − y|)
∫ t

−∞
dsη(t − s)δ

(
s − T m(y)

)
, (31)

where the firing times are defined according to the threshold condition
V (x,T m(x)) = Vth. We may relate spike times to voltage threshold conditions us-
ing the result that for fixed x

δ
(
t − T m(x)

)= ∣∣Vt

(
x,T m(x)

)∣∣δ
(
V (x, t) − Vth

)
, (32)

and Vt denotes partial differentiation of V with respect to t . Hence

ψ(x, t) =
∑

m∈Z

∫ ∞

−∞
dyw

(|x − y|)

×
∫ t

−∞
dsη(t − s)

∣∣Vt

(
y,T m(y)

)∣∣δ
(
V (y, s) − Vth

)
. (33)

Consider again travelling wave solutions of the form V (x, t) = V̂ (ξ, t), where ξ =
t − x/c. In this co-moving frame we can define a set of firing event functions ξm(t)

according to the threshold condition V̂ (ξm(t), t) = Vth. These event times can be
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related to the co-moving voltage threshold condition using the result that, for fixed t ,

δ
(
ξ − ξm(t)

)= ∣∣V̂ξ

(
ξm(t), t

)∣∣δ
(
V̂ (ξ, t) − Vth

)
. (34)

Substitution into (33) and using V̂ξ � Vt close to a periodic orbit we find

ψ(x, t) =
∑

m∈Z

∫ ∞

−∞
dyw

(|x − y|)
∫ t

−∞
dsη(t − s)δ

(
s − y/c − ξm(s)

)

= c
∑

m∈Z

∫ ∞

0
dsη(s)w

(∣∣c(s − ξ) + cξm(t − s)
∣
∣)≡ ψ̂(ξ, t). (35)

Noting that, for a periodic wave ξm(t) = mΔ, ψ̂ is independent of t and Eq. (35)
recovers Eq. (19) as expected.

We now analyse the stability of such a periodic wave by perturbations such that
ξm(t) = mΔ+ δξm(t), with |δξm(t)| � 1. Writing the corresponding perturbation of
ψ̂(ξ, t) as ψ̂(ξ, t) = ψ̂(ξ) + δψ̂(ξ, t) we find

δψ̂(ξ, t) = c2
∑

m∈Z

∫ ∞

0
dsη(s)w′(∣∣c(s − ξ) + cmΔ

∣∣)δξm(t − s). (36)

It remains to determine the relationship between δξm(t) and the perturbations of the
shape of the travelling wave. In Appendix B we show that we can relate δξm(t) to the
deviation in the voltage, denoted by δV̂ (mΔ, t), via the simple relationship

δξm(t) = −δV̂ (mΔ, t)

Vξ (mΔ−)
. (37)

Thus for solutions of the form δV̂ (ξ, t) = δV̂ (ξ)eλt , δV̂ (ξ) = δV̂ (ξ + Δ) we find
δψ̂(ξ, t) = δψ̂(ξ ;λ)eλt , with δψ̂(ξ ;λ) = δV̂ (0)f (ξ ;λ), and

f (ξ ;λ) = − c2

Vξ (0)

∑

m∈Z

∫ ∞

0
dsη(s)w′(∣∣c(s − ξ) + cmΔ

∣∣)e−λs . (38)

Returning to the more abstract setting given by Eq. (11) we linearise around the
travelling wave by setting X̂(ξ, t) = Q(ξ) + δX̂(ξ)eλt , with δX̂(ξ) = δX̂(ξ + Δ).
This yields the variational equation

d

dξ
δX̂(ξ) = A(ξ ;λ)δX̂(ξ) + δ�̂(ξ ;λ), δ�̂(ξ ;λ) = gsyng

−1
l

τ
δψ̂(ξ ;λ)

[
1
0

]
, (39)

where A(ξ ;λ) = A(Q(ξ)) − λI2 (and we use the argument of A to emphasise that it
depends on position along the periodic orbit). We may write the solution to (39) in
much the same way as for the periodic orbit problem given by (18), namely with the
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use of a variation of parameters formula, matrix exponentials and (38):

δX̂(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

GR(ξ ;λ)δX̂(0) 0 ≤ ξ < τR,

G0(ξ − τR;λ)δX̂(τR)

+ ∫ ξ

τR
dξ ′G0(ξ − ξ ′;λ)Jf (ξ ′;λ)δX̂(0) τR ≤ ξ < τR + ξ1,

G+(ξ − (τR + ξ1);λ)δX̂(τR + ξ1)

+ ∫ ξ

τR+ξ1
dξ ′G+(ξ − ξ ′;λ)Jf (ξ ′;λ)δX̂(0) τR + ξ1 ≤ ξ < Δ.

(40)

Here Gμ(ξ ;λ) = exp([Aμ − λI2]ξ) and

J = gsyng
−1
l

τ

[
1 0
0 0

]
. (41)

However, the evolution of perturbations through the switching manifolds V = V±,
the firing threshold V = Vth and the release from the refractory state requires care,
since in all these cases there is a jump in the Jacobian. The theory of nonsmooth
dynamical systems gives a prescription for handling this using so-called saltation
matrices dating back to the work of Aizerman and Gantmakher in the 1950s [41].
For a more recent perspective we recommend the paper by Leine et al. [42] and
the book by di Bernardo et al. [43], particularly in engineering applications, and the
paper by Coombes et al. [44] for applications in neuroscience. The 2 × 2 saltation
matrices for handling switching, firing, and refractoriness are constructed in Ap-
pendix C and denoted Kswitch, Kfire, and Kref, respectively. In essence they map per-
turbations through the region of nonsmooth behaviour to give δX̂(0+) = KfireδX̂(0),
δX̂(τR+) = δX̂(τR) + KrefδX̂(0), and δX̂((τR + ξ1)+) = KswitchδX̂(τR + ξ1). The
saltation matrices are given explicitly by Kswitch = I2 and

Kfire =
[

0 0
(nh,ξ (0+) − nh,ξ (0−))/Vξ (0−) 1

]
,

Kref =
[
Vξ (τR+)/Vξ (0−) 0

0 0

]
.

(42)

If we now introduce the function Fμ(ξ, ξ0;λ):

Fμ(ξ, ξ0;λ) =
∫ ξ

ξ0

dξ ′Gμ

(
ξ − ξ ′;λ)Jf

(
ξ ′;λ), μ ∈ {0,+,−}, (43)

then Eq. (40) may be used to generate the perturbation after one period as δX̂(Δ) =
Γ (λ,Δ)δX̂(0), where

Γ (λ,Δ) = F+(Δ, τR + ξ1;λ)

+ G+
(
Δ − (τR + ξ1);λ

)
Kswitch

[
F0(τR + ξ1, τR;λ)

+ G0(ξ1;λ)
[
GR(τR;λ)Kfire + Kref

]]
.

(44)
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Fig. 10 Zeros of the Evans
function (45) with Δ = 460.
These occur at the intersection
(green dots) of G(ν,ω) = 0 (red
curve) and H(ν,ω) = 0 (blue
curve) where G is the real part
of E whereas H is the imaginary
part. Here we can see that all the
eigenvalues, except the zero
eigenvalue, have negative real
part, so that the periodic wave is
stable. Parameters as in Fig. 5

Enforcing that perturbations be Δ-periodic (i.e. δX̂(Δ) = δX̂(0)) we obtain the spec-
tral condition E(λ,Δ) = 0 where

E(λ,Δ) = ∣∣Γ (λ,Δ) − I2
∣∣. (45)

We identify (45) as the Evans function for the periodic wave. To determine (43)
in a computationally useful form we use a Fourier representation to represent (38)
(cf. (20) from (19)) as f (ξ ;λ) =∑p∈Z fp(λ) exp(−2πipξ/Δ) where

fp(λ) = − 1

Vξ (0)

2π

Δ2
ipη̃(−iλ − 2πp/Δ)w̃

(
2πp/(cΔ)

)
, (46)

for Re(λ+α) > 0. Then in a similar way to the construction of (26) we find the useful
representation for (43) as

Fμ(ξ, ξ0;λ) =
∑

p

fp(λ)Pμ diag
(
S+

μ (ξ, ξ0;λ),S−
μ (ξ, ξ0;λ)

)
P −1

μ J, (47)

where

S±
μ (ξ, ξ0;λ) = e(λ±

μ−λ)(ξ−ξ0)e−2πipξ0/Δ − e−2πipξ/Δ

λ±
μ − λ + 2πip/Δ

. (48)

The eigenvalues of the spectral problem can be practically constructed by con-
sidering the decomposition λ = ν + iω and simultaneously solving the pair of
equations G(ν,ω) = 0 and H(ν,ω) = 0, where G(ν,ω) = ReE(ν + iω,Δ) and
H(ν,ω) = ImE(ν + iω,Δ), subject to the constraint ν + α > 0. Figures 10 and 11
show the zero level sets of G and H in the (ν,ω) plane for two different points on
the dispersion curve of Fig. 9. The intercepts when ν + α > 0 provide the zeros of
the Evans function and here highlight clearly that, for Δ sufficiently large, the zeros
of the Evans function can cross to the right-hand complex plane signalling a wave
instability.

Figure 10 also shows that there is always a zero eigenvalue. It is simple to estab-
lish the persistence of this zero under parameter variation. Differentiating (18) with
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Fig. 11 Zeros of the Evans
function (45) with Δ = 470.
These occur at the intersection
(green dots) of G(ν,ω) = 0 (red
curve) and H(ν,ω) = 0 (blue
curve) where G is the real part
of E whereas H is the imaginary
part. Here we see a complex
conjugate pair of eigenvalues
with positive real part, so that
the periodic wave is unstable.
Parameters as in Fig. 5

respect to ξ gives

d

dξ

dQ

dξ
= A

dQ

dξ
+ d

dξ
�̂(ξ). (49)

From (38) and (19) we may establish that

δψ̂(ξ ;0) = δV̂ (0)

Vξ (0)

d

dξ
ψ̂(ξ). (50)

Hence for λ = 0 we see that a solution to (39) is the eigenfunction

δX̂(ξ) = dQ

dξ
, (51)

as expected from translation invariance of the system (so that a perturbation tangential
to the travelling wave orbit is neutrally stable).

5 Discussion

This paper is motivated by recent work in computational neuroscience that has high-
lighted rebound firing as a mechanism for wave generation in spiking neural networks
that can underlie the formation of grid cell firing fields in MEC [1]. We have presented
a simple spiking model with inhibitory synaptic connections and an Ih current that
can generate smoothly propagating activity waves via post-inhibitory rebound. These
are qualitatively of the type observed in previous computational studies [36, 37], yet
are amenable to an explicit mathematical analysis. This is possible because we have
chosen to work with piecewise linear discontinuous models, and exploited method-
ologies from the theory of nonsmooth systems. In particular we have exploited the
linearity of our model between events (for firing, switching, and release from a re-
fractory state) to construct periodic solutions in a travelling wave frame. To assess
the stability of these orbits we have treated the propagation of perturbations through
event manifolds using saltation operators. Using this we have constructed dispersion
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curves showing a wide range of stable periods, with a maximum period controlled
by the time-scale of the rebound current. This gives further credence to the idea that
the change in grid field scale along the dorsal-ventral axis of the MEC is under local
control by HCN channels.

A number of natural extensions of the work in this paper suggest themselves. We
briefly outline them here, and in no particular order. For simplicity we have focussed
on the analysis of waves in a homogeneous model with only one spatial dimension.
The analysis of the corresponding travelling waves, with hexagonal structure, in two
spatial dimensions is more challenging, though is an important requirement for a
complete model of grid cell firing. Moreover, the assumption of homogeneity should
be relaxed. In this regard it would be of interest to understand the effects of a hetero-
geneity in the time constants (for voltage response, synaptic time-scale, and the time-
scale of the Ih current) on the properties of spatio-temporal patterns. Furthermore,
it would be biologically more realistic to consider two sets of inhibitory interneu-
rons, as in [1, 28, 30]. As well as depending on the Ih current, grid field spacing
changes as a function of behavioural context. This is believed to occur through the
activation of neuromodulators [32], and simple regulation of our Ih current model
would allow a systematic study of this, even before considering the more important
issue of structured input. The work in this paper has focussed on spontaneous pat-
tern formation that occurs in the absence of such input. Given the importance of the
head-direction input for driving grid cell firing fields it would be natural to consider
a mathematical analysis for the case with Ihd �= 0. For the standard Fuhs–Touretzky
mechanism of inducing firing patterns this would further require the treatment of
an anisotropic interaction kernel with a dependence on a head-direction preference
map. One way to address this would be via a perturbation theory around the limit-
ing case treated in this paper, and use this to calculate a tissue response parametrised
by the animal’s speed and direction of motion. The same methodology would also
allow an investigation of phase precession during a grid field traversal. Our simula-
tions have also shown the possibility of ‘lurching waves’ and it would be interesting,
at least from a mathematical perspective, to analyse their properties (speed and sta-
bility) and compare them to the co-existing smoothly propagating waves. It would
further be pertinent in this case to pay closer attention to any possible nonsmooth
bifurcations that could give rise to wave instabilities, such as grazing bifurcations.
Finally we note that grid cells are grouped in discrete modules with common grid
spacing and orientation [20]. It has recently been suggested that coupling between
modules or via feedback loops to the hippocampus may help to suppress noise and
underpin a robust code (with a large capacity) for the representation of position [45].
Another extension of the work in this paper would thus be to consider the dynamics
of networks of interacting modules, paying closer attention to the details of MEC
microcircuitry [46].
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Appendix A: Numerical Scheme

Here, we describe the numerical scheme that we have developed to evolve the spiking
neural field model. Given the large computational overheads for simulating the latter
we have focussed on implementing the algorithm on a GPU system. In essence, we
exploit the piecewise linear nature of the dynamics to obtain trajectories in closed
form and then use a root-finding scheme to find the timings of events (switching, fir-
ing or refractory). The dynamics is updated at an event (generating synaptic currents
and resetting at firing events, changing the gating dynamics at switching events, and
releasing from reset at refractory events), and the process repeated. For clarity we
describe our approach for two spatial dimensions as it is easily adapted to treat just
one spatial dimension.

A.1 Algorithm

We solve the system over a 2D discretised grid of size L × L with N (numeri-
cal) cells in each spatial dimension and enforce periodic boundary conditions. Cells
are equi-spaced with a spatial separation of Δx = 2L/N and the state of the cells
in the network are evaluated over T + 1 time steps, discretising time as ti = i�t ,
i = 0, . . . , T . To evaluate these states, we analytically integrate (11) to provide a
closed-form expression for the trajectory of the system. Our closed-form expression
allows us, for cell j , to write its state at time ti+1 as a function of its state at time ti :

Xj(ti+1) = ϕ�t

(
ti ,Xj (ti)

)
,

where ϕh is the evolution operator acting over a time h. Note that this expression
assumes that no firing events have occurred between ti and ti+1, but can account for
switching events, as detailed below. We shall describe later how the algorithm handles
firing events.

For convenience, we shall divide the state space of an individual cell into three
regions, based on the instantaneous value of V : Region I, with V ≤ V−; Region II,
with V− < V ≤ V+; and Region III, with V > V+. In addition, we define Region IV
to be that where the cell is in the refractory state (recall that a cell is in the refractory
state at time t if T m−1 ≥ t + τR, where T m−1 < t is the last spiking time of that cell).
In each of these regions, the equation governing the dynamics for the gating variable
nh is different, and this needs to be reflected in our algorithm.
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At a given time t , each cell in the network is in precisely one of the regions outlined
in the preceding paragraph. We store a global array that tracks which region each
of the cells is in and use this to select the appropriate equation to integrate, based
on those presented in (13). Over an interval �t , the region of a subset of the cells
may change as the local voltage variable, V , crosses switching manifolds. Note that
the continuity of trajectories restricts which transitions between regions are possible
(for example, a transition between Region I and Region III is not permitted). Our
evolution operator ϕh must account for this.

We identify where switching events occur by comparing the region of all of the
cells before and after the operator ϕ�t is applied. Where switching events have oc-
curred, we locate the switching time for cell j by searching for roots of the transcen-
dental equation X1

j (s) − Vx = 0, ti ≤ s < ti+1 using Newton’s method, where the
superscript denotes that we only consider the V component of the state vector Xj

and Vx is the switching manifold that has been crossed. We remark that the Fréchet
derivatives for use in Newton’s method are obtainable in closed form, and so the
application of Newton’s method does not rely on numerical finite difference approx-
imations for these derivatives.

After the switching time, s, has been found, the state of the cell is updated via
Xj(s) = ϕ�s(ti ,Xj (ti)), where �s = s − ti , according to the governing equation for
that region. Following this, the regional variable is updated to reflect the fact that
the cell has transitioned to a new region. Finally, the remainder of the update step is
taken, according to Xj(ti+1) = ϕ�s∗(s,Xj (s)), where �s∗ = ti+1 − s, by integrating
the governing equation for new region. It is possible that between times s and ti+1,
the cell passes through other switching manifolds, in which case, the procedure for
identifying switching times and updating the region variable is repeated as many
times as necessary.

Cells in Region IV are in the refractory state, governed by (12) and (14), in which
the voltage variable is held fixed at V = Vr for a total duration of length τR. To
account for this, we introduce for each cell, a counter that tracks how much time a
cell has spent in the refractory period. Following a firing event, the spiking cell enters
the refractory state, whereupon this counter is reset to zero (and the cell’s region is
changed to Region IV). The cell will remain in the refractory state until the counter
reaches τR. At this time, the region variable for that cell is updated to the appropriate
value, based on the location of Vr relative to V− and V+. For computational efficiency,
we can take advantage of the fact that V is unchanging in the refractory period by
replacing the voltage dynamics with V̇ = 1, thus letting V implement our refractory
time counter in Region IV. Thus, if the cell spikes at time T m, we have V (T m) = 0
upon entering Region IV. To ensure continuity of solutions upon exiting the refractory
period, we must also ensure to set V (T m + τR) = Vr.

Since cells are independent of one another outside of firing times, this above com-
putation to update the state of the system can be performed in parallel across the
GPU architecture in the absence of firing events. Where firing events occur, we must
ensure that we correctly update the state of the network at the firing time to reflect
the coupling in the network. As for the switching times, we determine firing times by
searching for roots of the transcendental equation X1

j (s) − Vth = 0, ti ≤ s < ti+1 us-
ing Newton’s method. We then amalgamate all firing events between times ti and ti+1
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and find the minimum firing time, t∗, of this list. The states of all cells are updated to
this time from ti :

X−(t∗) = ϕ�t∗
(
ti ,X(ti)

)
,

where �t∗ = t∗ − ti and the superscript denotes that this corresponds to the state of
the network in the limit as t approaches t∗ from the left. Following this, the reset con-
ditions are applied across the entire domain. Our approach allows for simultaneous
firing events to occur by also applying reset conditions for all events that occurred
with the time interval [t∗, t∗ + ε), where ε is a small positive real number. After the
reset conditions have been applied, the state of the network is updated again as

X(ti+1) = ϕ�t∗c
(
t∗,X+(t∗)

)
,

where �t∗c = ti+1 − t∗ and the superscript denotes that the state is evaluated after the
reset conditions have been applied. Note that during the completion of the timestep,
we must again check to see if other cells have reached threshold, and apply reset
conditions as necessary. At the completion of a timestep, the state of the network is
saved and the state at the next time step is computed.

We note that a further improvement in computational efficiency can be achieved
in the limit of high gain for the kernel function (7). Namely in the limit β → ∞ the
bump function becomes a Top-hat function:

w(r) =
{

w0, r ≤ σ,

0, r > σ.
(52)

Thus, cells are only coupled with a single strength w0, over a finite distance, σ , and
we need only consider the behaviour of other cells within this distance when applying
reset conditions.

A.2 Implementation

To take full advantage of the parallel capabilities of GPUs, we must sensibly organise
the processes associated with simulating the network through the construction of ap-
propriate kernels to best to perform tasks in parallel. In addition to this, the memory
associated with state variables must be managed appropriately given that memory
access can present a significant bottleneck during GPU-based computations.

As discussed in the preceding section, the evolution operator ϕh has to account
for the differing functional forms of the governing equations as V crosses thresh-
olds. This is done by using Newton’s method to find the times of any crossings and
then by ‘patching’ together solution orbits on either side of the threshold crossing
time. Associated with Newton’s method is a tolerance for finding the crossing times,
which must be specified along with other parameters. In our implementation, we take
advantage of the double precision capability of our GPU. Since we are using closed-
form solutions for the orbits of our system, the only source of numerical error other
than machine error arises due to the tolerance selected when computing the threshold
crossing times for V . In all of our simulations, we prescribe this tolerance to be 10−10

so that we have precise specification of these times.
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During an update step, there may be multiple cells that reach the firing threshold
at differing times. To preserve the correct dynamics in spite of this, we need to update
the state of the network to the minimum of this set of firing times. To identify this,
we define a variable that stores the minimum firing time across the network, which
is updated by the subset of spiking cells as firing events are found. Without interven-
tion, this procedure can lead to race conditions, in which one spiking cell will query
the stored value of the minimum firing time (to compare with its own), whilst another
spiking cell is replacing that same value. Race conditions mean that we cannot guar-
antee that the value stored in our firing time variable truly represents the minimum
over all firing events. To address this problem, we use atomic events, which allow
only one cell to read from and write to the stored firing time variable at once. In this
way, we are guaranteed to find the true minimum across the set of firing times.

In Algorithms 1 and 2, we detail how to evolve the dynamics of the 2D network.
Note that all of the for loops, and the use of ϕh to update the state of the network are
performed in parallel using the GPU. The full code for our simulations, written in the
C++/CUDA programming language, is available in the supplementary material.

Appendix B: Perturbations at Switching Conditions

The model undergoes switching in its dynamics as the voltage variable passes through
the values V +, V−, and Vth. With the introduction of a set of indicator func-
tions h(X(ξ, t);μ) = V (ξ, t) − Vμ, where μ ∈ {+,−, th} we can define the trav-
elling wave coordinate values at which these switching events occur according to
h(X(ξ, t);μ) = 0. Now suppose that we have two trajectories: an unperturbed tra-
jectory X(ξ, t) = (V (ξ, t), nh(ξ, t)) and a perturbed trajectory X̃(ξ, t) such that
δX(ξ, t) = X̃(ξ, t) − X(ξ, t), with δX small. Moreover, let us consider the unper-
turbed trajectory to pass through the switching manifold when ξ = ξm(t), m ∈ Z.
Similarly we shall consider the perturbed trajectory to switch when ξ = ξ̃m(t) =
ξm(t) + δξm(t). The indicator function for the perturbed trajectory may be Taylor
expanded as (suppressing the dependence on μ for clarity):

h
(
X̃
(
ξ̃m, t

))= h
(
X̃
(
ξm + δξm

)
, t
)

= h
(
X
(
ξm + δξm, t

)+ δX
(
ξm + δξm, t

))

� h
(
X
(
ξm, t

)+ Xξ

(
ξm− , t

)
δξm

)

+ ∇Xh
(
X
(
ξm + δξm, t

)) · δX(ξm + δξm, t
)

� h
(
X
(
ξm, t

))+ ∇Xh
(
X
(
ξm, t

)) · Xξ

(
ξm− , t

)
δξm

+ ∇Xh
(
X
(
ξm, t

)) · δX(ξm, t
)
. (53)

Here we have introduced the notation X(ξm± , t) = limε↘0 X(ξm ± ε, t), to make sure
that the partial derivative in ξ is well defined. Using the fact that h(X̃(̃ξm, t)) = 0 =
h(X(ξm, t)) we obtain

∇Xh
(
X
(
ξm, t

)) · [δX(ξm, t
)+ Xξ

(
ξm− , t

)
δξm

]= 0. (54)
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Algorithm 1: Evolution of 2D network
Input : Parameter set for network
Output : Text files containing state of network at discrete time points
Comments : X(t) denotes the state of the network at time t

R denotes the region of cells in the network at time t

M denotes the number of firing events that occur between time points
T denotes the list of firing events
t∗ denotes the minimum spike time between two time points

Pseudocode:
Initialise network to give X(t0), R

for i = 0, T − 1 do
Set s ← ti
Set h = �t

while s < ti+1 do
Set M = 0
Set t∗ ← ti+1
Empty T
Compute Y,R = EvolutionOperator(s,X(s), h,R)

for j = 1,N × N do
if Y 1

j > Vth then
Find spike time t∗j using Newton’s method

Add tuple (j, t∗j ) to T
Set M ← M + 1
if t∗j < t∗ then

Set t∗ ← t∗j
end

end
end
if M > 0 then

Set h = t∗ − s

Compute Y,R = EvolutionOperator(s,X(s), h,R)

for m = 1,M do
if t∗m − t∗ < ε then

Apply reset conditions for cell m on state Y

end
end
Set s ← t∗
Set X(s) ← Y

Set h = ti+1 − s

end
end
Set X(ti+1) ← Y

Write X(ti+1) to a text file
end
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Algorithm 2: EvolutionOperator

Input : Time: t

Global state of the network: X

Length of step to take: �t

Global region of all cells in network: R

Output : State of the network at updated time: X(t + �t)

Region of all cells in network at updated time: R(t + �t)

Comments : This code is implemented in parallel using the GPU
Pseudocode:
for j = 0,N × N − 1 do

Set s ← t

Set h ← �t

Load local state of cell j as Xj from global state X

Load local region of cell j as Rj from global region variable R

while s < t + �t do
Compute Yj = ϕh(s,Xj (s)) using appropriate governing equations for
region
Set R+

j ← region at time s + h (after update)

if Rj �= R+
j then

Find switching time ts using Newton’s method
Set h = ts − s

Compute Yj = ϕh(s,Xj (s))

Set s ← ts
Set X(s) ← Y

Set h = t + �t − s

Set Rj ← R+
j

end
end
Write local state Yj to global state X

Write local region Rj to global region R

end
return X, R

Using the result that ∇Xh(X;μ) = (∂V , ∂nh)(V − Vμ) = (1,0) the above can be re-
arranged to give the perturbation in the switching coordinate in terms of the difference
between the perturbed and unperturbed trajectories as

δξm(t) = −δV (ξm, t)

Vξ (ξ
m− , t)

. (55)

Appendix C: Saltation Matrices

Saltation matrices allow us to handle any jumps in the system (or its linearisation)
when it changes from one dynamical regime to another. As well as occurring at the
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switching manifolds this also happens when the voltage is unclamped and released
from the refractory state. Using the notation of Appendix B let us first consider the
deviation between the two trajectories at a switching event defined by ξ = ξs, with a
set of perturbed switching events at ξ = ξs + δξ , as

δX(ξs + δξ, t) = X̃(ξs + δξ, t) − X(ξs + δξ, t)

� X̃(ξs, t) + X̃ξ (ξs, t)δξ − [X(ξs, t) + Xξ(ξs, t)δξ
]

= δX(ξs, t) + [X̃ξ (ξs, t) − Xξ(ξs, t)
]
δξ. (56)

If δξ > 0 then the unperturbed trajectory will already have transitioned through the
switch (from below), in which case the two trajectories are governed by different
dynamics. A similar argument holds for δξ < 0. Thus we may write

δX(ξs + δξ, t) � δX(ξs, t) + [Xξ(ξs−, t) − Xξ(ξs+, t)
]
δξ. (57)

Combining (55) and (57) gives
[
δV (ξs + δξ, t)

δnh(ξs + δξ, t)

]
=
[
δV (ξs, t)

δnh(ξs, t)

]
− δV (ξs, t)

Vξ (ξs−, t)

[
Vξ (ξs−, t) − Vξ (ξs+, t)

nh,ξ (ξs−, t) − nh,ξ (ξs+, t)

]
. (58)

We may write the above in matrix form as

[
δV (ξs + δξ, t)

δnh(ξs + δξ, t)

]
=
⎡

⎣
1 − Vξ (ξs−,t)−Vξ (ξs+,t)

Vξ (ξs−,t)
0

−nh,ξ (ξs−,t)−nh,ξ (ξs+,t)

Vξ (ξs−,t)
1

⎤

⎦
[
δV (ξs, t)

δnh(ξs, t)

]
, (59)

or equivalently as δX(ξs + δξ, t) = K(ξs)δX(ξs, t) with

K(ξs) =
[

Vξ (ξs+, t)/Vξ (ξs−, t) 0
(nh,ξ (ξs+, t) − nh,ξ (ξs−, t))/Vξ (ξs−, t) 1

]
. (60)

Now since the voltage is clamped immediately after a firing event (so that
Vξ (ξs+, t) = 0) and the dynamics for nh jumps (since it depends on V which is
discontinuously reset from Vth to Vr) then the saltation matrix for firing is given by

Kfire(ξs) =
[

0 0
(nh,ξ (ξs+, t) − nh,ξ (ξs−, t))/Vξ (ξs−, t) 1

]
. (61)

At a switching event whenever V = V± we note that the voltage and gating dynam-
ics are both continuous. Thus the saltation matrix for switching is given simply by
Kswitch(ξs) = I2, namely there is no effect.

The use of saltation matrices to propagate perturbations through the refractory
state is a little more subtle than through switching and firing events, since the former
occur over a finite time-scale τR whilst the latter are instantaneous. In this case the
perturbation δξ at a firing event ξ = ξf is propagated for a time τR before a new
dynamical regime is encountered. From (55) δξ = −δV (ξf, t)/Vξ (ξf−, t). Setting
ξs = ξf + τR and combining the above with (57) gives

δX(ξs + δξ, t) � δX(ξs, t) − δV (ξf, t)

Vξ (ξf−, t)

[
Vξ (τR−, t) − Vξ (τR+, t)

nh,ξ (τR−, t) − nh,ξ (τR+, t)

]
. (62)
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Hence we see that δX(ξs+, t) = δX(ξs, t) + Kref(ξs)δX(ξf, t) where

Kref(ξs) =
[
Vξ (ξs+)/Vξ (ξf−) 0

0 0

]
. (63)

Here we have used the fact that Vξ (ξs−, t) = 0 (since the system is in its refractory
state), and that the dynamics for nh is continuous at ξ = ξs.
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