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1 Introduction

The manipulation of networks of neurons in the brain through the use of extrinsic
controls—neurocontrol—is a key problem in experimental neuroscience [1]. Such
capability has the potential to enable new and important study of questions in neural
coding or how the firing activity of brain cells determines their ability to carry and
process information [2]. Moreover, improving the use of neurostimulation may aid
the refinement of how such technology is used in clinical settings [3, 4].
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The use of stimulation in the study of neural coding is itself an established
paradigm in neuroscience. The general idea is straightforward: by inducing neural
activity and observing the consequent behavior of the organism, we can infer the
functional role of the region in question. For example, cortical microstimulation of
certain brain regions has been shown to induce behavioral changes in the context
of perceptual tasks such as visual decision-making [5, 6]. Recently, several key ad-
vances in neurostimulation technology, such as the advent of optogenetics [7], have
made neurocontrol possible at unprecedented spatial scales. Thus, experimentalists
are able to assess the functional role not simply of different neural populations, but
potentially of specific neurons and the timing of their spikes. That is, it may be pos-
sible to test the long-standing neural coding hypothesis that spike timing is crucial to
information processing [8].

Currently, however, these hardware instantiations are typically used in perturbative
paradigms wherein “pulses” of input are used to alter neural firing in a bulk manner
(see Fig. 1) that does not control the precise timing of individual neuronal spikes.
Formal control analysis or design in this context, though desired, is not well studied
[9]. Thus, there is a need for formal mathematical analysis regarding the fundamental
limits of such stimulation, particularly as it pertains to the feasibility of inducing
precisely timed spiking activity in neural populations (Fig. 1).

1.1 Prior Work in Neuronal Control

The control of neural activity has received substantial attention in the context of
oscillations and synchronization, spurred in large part by interest in clinical brain
stimulation for motor disorders [10, 11]. The objective in this class of neurocontrol
problem is generally the forced splaying of neural phases (i.e., desynchronization),
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Fig.1 Underactuated neurocontrol schema. Most neurostimulation modalities are underactuated, wherein
a single stimulation source impinges on orders-of-magnitude greater numbers of neurons. (A) The use of
such stimulation has historically been limited to perturbative paradigms, wherein pulse-type inputs are used
to create bulk population responses without fine temporal structure. (B) Increasingly, experimentalists seek
to induce more precise spiking patterns in specific subsets of the population, which may necessitate the
design of nuanced stimulation waveforms.
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wherein neurons are typically modeled using phase oscillator formalisms (e.g., [12—
18]). Alternatively, others have approached the problem of desynchronization from
the perspective of physiological and instrumentation constraints, favoring methods
involving strictly pulsatile stimulation [19-22].

In contrast, we consider herein the mathematical problem of asynchronous neu-
rocontrol (i.e., control neural spiking without overt rhythmicity), iln other words,
forcing a neuron to spike but not necessarily periodically. The other key distinction
of our work is that we consider a neuronal-level objective (i.e., spiking and spike tim-
ing) versus a population-level objective (i.e., synchronization or desynchronization).
We have previously provided early formulations of this problem and highlighted key
analytical challenges in the development of controllability analysis for spiking mod-
els [23, 24]. Other works regarding formal control design include optimal control
design for a single neuron [25] and using statistical modeling frameworks [26, 27].

1.2 Neurocontrol with Common Input

A key challenge associated with neurocontrol is underactuation, wherein a small
number of inputs (in many current implementations, a single input) impinges on an
orders-of-magnitude greater number of neurons [23], as schematized in Fig. 1. In
other words, individual neurons are not addressed via independent inputs, but rather
a common one. This challenge is ubiquitous across stimulation modalities and is,
perhaps, the major constraint that has restricted the use of neurostimulation to the
aforementioned perturbative paradigms. In the context of the discussed oscillatory
objectives, some progress has been made on solving control problems such as entrain-
ment and synchronization in the presence of underactuation [28-31]. However, this
issue is unresolved in the case of asynchronous timed spike control objectives, such
as those we consider herein. Current and foreseeable neurostimulation technologies
are likely to face the challenge of underactuation, especially for in vivo instantiations.

1.3 Specific Contributions

In this paper, we address the problem of time-optimal control of spiking in pairs of
Leaky Integrate-and-Fire (LIF) neurons, where the desired spiking is selective, that
is, certain neurons spike while others remain silent. We specifically focus on the case
where two neurons receive a common input, which, as mentioned before, is a key con-
straint in the practical design of neurocontrol methods. Our major contributions are in
the characterization of fundamental limitations for neuron-level control as revealed
through a formal mathematical analysis. This treatment leads to the postulation of
practical neurocontrol design strategies. Specifically, we provide:

1. The formal synthesis of time-optimal selective spiking solutions in pairs of LIF
neurons. The synthesis involves application of the Pontryagin maximum principle,
but with several nontrivial caveats due to the selectivity specification, which leads
to state constraints. We prove that the optimal solution in this case involves use
of the so-called boundary control, associated with the state constraints. Sufficient
conditions for optimality are verified.
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2. The formal synthesis for time-optimal control of longer sequences of spikes. Here,
the solution is derived via dynamic programming, but again with several nontriv-
ial developments due to nondifferentiability of the value function. In particular,
we prove the nonexistence of an optimal solution for specific classes of spike se-
quences.

3. The development of design methods for timed patterns of spikes. In this case, there
is no unique optimal solution. Nevertheless, we derive a greedy algorithm that can
provide near-perfect construction of patterns under specified conditions. Finally,
we evaluate the performance of our control design when the system is subjected
to noise and disturbances.

Our presentation and discussion on fundamental optimal control analysis and de-
sign work toward the overall goal of understanding the limits of neurocontrol. We
illustrate several interesting control phenomena that arise due to the peculiarity of
spiking dynamics. Specifically, the problem considered, although ostensibly simple,
leads to several interesting features in the optimal control synthesis due to state con-
straints.

2 Background and Methods
2.1 Definitions: Spike Sequence and Pattern Control

We begin by formally defining the notions of spike sequences and patterns, which
will facilitate our approach to spike timing control.

Definition 1 (Spike Sequence) In a population of N neurons, an M-spike sequence
is a vector

Yg=lo1,00,...,0ul, (nH

where o} € {1, 2, ..., N} indicates the neuron that produces the kth spike in the se-
quence.

Definition 2 (Spike Pattern) In a population of N neurons, an M-spike pattern is a
sequence with timing, that is,

Zp=[(01.1).(02.12). ... (oM. t1)]. (2)

where oy € {1, 2, ..., N} indicates the neuron which produces the kth spike at time
tr >0,wheret) <) <---<ty.

The goal of this paper is to provide a set of fundamental characterizations regard-
ing the time-optimal control of spike sequences and patterns.

2.2 Model Formulation

We proceed with the model formulation, starting with the base model and then adding
synaptic coupling between neurons.
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Fig. 2 The leaky
integrate-and-fire circuit. The

membrane potential rises under u(t) l

the stimulus u#(¢) until it hits the .
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is artificially reset to Viest and a
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possible voltage trace of the v Sp|ke

neuron under a rectangular pulse rest 4| |_> Vest

input.
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2.2.1 Base Model

The integrate-and-fire neuron is a well-established model in computational neuro-
science [32, 33]. The circuit of this model is shown in Fig. 2, where a capacitor C
and resistance R (modeling the capacitive and resistive properties of the cell mem-
brane) are in parallel, with u(#) being the external stimulus. Denoting the membrane
potential as v(t), the charge deposited on the capacitor is ¢ = Cv, and therefore the

current is given by Ic =C ‘31—';, leading to the linear dynamics

dv(r) ~ Viest — v(7)
d& R

where Vi is the resting potential, and x, = RC is the membrane time constant.
Here, Isy, denotes synaptic input entering from other neurons. We also introduce a
parameter 8 that encapsulates the effectiveness of the external input u(¢) for each
neuron.

Spike generation. In this model, a spike is said to be generated at time f, if the
membrane potential reaches a predetermined threshold voltage Vr. Upon emitting a
spike, the membrane potential is reset to Viest. Thus, spike generation is governed by
the discontinuous resetting rule

o

+,3u(t)+lsyns 3)

v(t;) =Vr - U(tj) = Viest 4

Model normalization. In what follows, we assume that Vieg = 0. This normalizing
assumption is not restrictive, since it can be readily achieved by a simple translation
in the coordinate system, that is, v <— (v — Viest), V1 < (V7 — Viest).-

2.2.2 Synaptic Coupling

We build an approximate model of synaptic coupling based on the standard formu-
lations in [33]. Key to this formulation is the notion of impulsive coupling, wherein
the major effect of sy, occurs during a brief time window following an afferent spike
(i.e., a spike from another neuron). Following a reduction of continuous synaptic
models (see Appendix A.1), we formulate /gy, as

Isyn(t) = psyn(t) Z 3@t —t5), 5
ts€T
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where 7 denotes the set of all afferent spike times, and gy (¢) is a synaptic constant
that depends on the specific parameters of the neuron. If all neurons remain below
the threshold, then /gy, = 0.

Thus, the effect of a synaptic event on the postsynaptic neuron can be understood
as an instantaneous rise in voltage that occurs only when a neighboring, connected
neuron fires a spike. Knowing this rise can allow us to insulate neurons from each
other in the spike control problem, formulated in the next section.

2.3 Problem Formulation: Minimum Time Selective Spiking

In this paper, we study three base problems pertaining to the design of u(¢) to create
structured spiking patterns in populations of two LIF neurons of the form (3). We
first consider the problem of time-optimal sequence control, that is, inducing target
sequences with minimal temporal spacing between the beginning and end of the se-
quence. It turns out that this problem amounts to an analysis of selective spiking. We
formulate a canonical version of this problem in two dimensions.

Problem 1 (P1: Pairwise time-optimal selective spiking with synaptic guard) Con-
sider two coupled LIF neurons of the form (3):

vi| _[—ar 0 |[v by Isyn,
=00 ][]
= F (V.. Iyn) = AV + bu + Ly, (6)

where v=[v; »]T, a; = ﬁ, b; = g’ » @i, b; > 0, and Isy,, are impulsive synaptic
inputs of the form (5) for i= 1 2. Find the control input u(¢) such that

vi(t) =Vr, n) <Ve<Vr, Viel0,1], @)
with arbitrary initial condition v(0) € G, where
G={(1,v):0=<v; <Vr,0<v, < Vg}, (3)

and u(¢) solves the time-optimization
T
minimize J(u) = / drt O]
0

over all measurable functions u that take values in the control set, where I/ is this set
of admissible inputs.

Taken together, (7)—(9) imply that Neuron 1 produces a spike before Neuron 2 and
that, under (7), the spike occurs in minimum time.

Functional decoupling of the network via guard Vg. The parameter Vi in (7),
referred to as a synaptic guard, is key to selectivity. It ensures that Neuron 2 remains
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below threshold and, further, is insulated from the synaptic effect due to the induced
spike in Neuron 1, that is,

VG < Vr — Psyn;  Psyn = SUp Psyn (1), (10)
t

where psyn(2) is the synaptic contribution to the post-synaptic neuron (here, Neu-
ron 2) and is derived in Appendix A.1. The guard, in essence, keeps the nonselected
neuron sufficiently away from its own threshold so as not to produce an undesired,
collateral spike.

It is important to note that in solving (P1), it is sufficient to consider the dynamics
in (6) as

v=f(v,u,0) = f(v,u) = Av+ bu, an

since both neurons are below threshold for the duration of the synthesis. Despite
this simplification in the dynamics, the selectivity/guard criterion (7) poses a key
challenge, that is, it is not sufficient to simply fire Neuron 1 in minimum time, since
doing so may in general cause Neuron 2 to fire an undesired spike. Mathematically,
(7) functions as a state constraint that, as we will see, leads to several complications
in the optimal synthesis.

If the problem has a solution for either choice of neuron labeling, then the pop-
ulation is said to be pairwise feasible, that is, either neuron can be made to spike
selectively.

Problem 2 (P2: Pairwise time-optimal selective sequencing) For the two-neuron net-
work in (11), find the control input that achieves any M -spike target spike sequence
X's time optimally, that is,

minimize J(u) = /
ueld

T] ™
dt+--~+f dr (12)
0 T

M-1
such that
Voy (k) = V7,
v, (1) < Vg, Vte[u-1,wl,v(0) €q, o =2\oy, where 2 ={1,2}, (13)
k=1,...,M,and 7o = 0.

The key complication here is the nondifferentiability of the value function within the
dynamic programming, as well as the spike discontinuity (4).

Problem 3 (P3: Pairwise time-optimal selective patterning) Considering the same
model in (11), find the control that induces the spiking in the two neurons according to
the times specified in the target pattern X'p, constrained by the underlying sequence.
Mathematically,

M

% 2
milulierzgize J(“)=Z<(fk—fk—l)_/T 1dt) (14)

k=1 k—
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with the same constraints as described in (13) and 79 = 1o = 0. Note that #; are the
desired spike times, and 1 are the actual spike times.

3 Minimum Time Selective Spiking

We consider the minimum-time selective spiking problem P/. We assume, without
loss of generality, that the neurons are labeled so that the objective is to fire Neuron 1.
It turns out that the solution to this problem depends on the ratio (see Appendix A.2)

biay

= e (15)
bzal
which we treat in two separate cases corresponding to y; < 5—2
As we will show in the following sections, for y; > 5—2 that is, Case 1, selective

spiking can always be accomplished. However, if y; < “;—2, that is, Case 2, a solution
may not exist, and pairwise feasibility is not guaranteed.

3.1 Selective Spiking, Case 1: y; > :,/—g

Proposition 1 Consider the two-neuron network (11), where

V:
yi > V—é (16)

Assume that the set of admissible controls U forms a box constraint of the form U =
[0, U], and we take as given the initial conditions v;(0) < Vg, i = 1,2. The time
optimal feedback control u* € U for the selective spiking problem P1 for Neuron 1 is
given by

X U forvy < Vg,

= (I7)
Uare forvy =Vg,

where Uy = Z—; Vi is the unique control that keeps v (t) = Vg invariant. Moreover,
such a control always exists. Thus, optimal controls are either given by a constant
control at maximum value, u*(t) = U, if the state space constraint does not become
active, or if the corresponding trajectory meets the state space constraint, then opti-
mal controls are a concatenation of a segment for the maximum control until the state
constraint is reached followed by a constant boundary control u*(t) = uy until the
terminal value vi = Vr is reached.

Proof Necessary conditions for optimality for problem P/ are given by the Pon-
tryagin maximum principle. In the presence of state space constraints, these take a
rather complicated form (the multipliers associated with the state space constraint
are measures). The problem considered here, however, is simpler, and instead of ana-
lyzing those conditions, we shall define a synthesis of extremal controlled trajectories
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through a direct construction and then verify the optimality of the synthesis. In partic-
ular, there is no need to consider possible degeneracies that in principle are allowed
by necessary conditions for optimality (e.g., abnormal extremals, etc.).

Synthesis Construction. We want to solve the optimal control problem P/ on the
set G in (8). We first treat the problem in the absence of the state constraint and define
the Hamiltonian function as

HA,v,u)=14+x1- f(v,u)=14+ 1 (Av+ bu). (18)

According to the maximum principle, as long as no state space constraints are active,
the multiplier X is a solution to the adjoint equation

A1) = —1(D)A, (19)

and the optimal control minimizes the Hamiltonian over the control set [0, U]. The
solutions of (19) are of the form

A (1) = cre, Ao (1) = cre™! (20)

for some constants ¢ and ¢, and thus

X U if®d(@) <0,
uNoGuard(t) - 0 ifd() >0, 21
with
D (1) =b1A1(t) +bada(t) (22)

as the switching function. The terminal constraint is defined by ¥ (t, v) = v () — Vr,
and the transversality condition [34, Sect. 2.2] of the maximum principle implies that
A(t) =[v 0] where v is some multiplier. This gives us ¢ = 0, and thus the switching
function has a constant sign in the absence of the guard constraint. Hence the optimal
control is simply a BANG, that is, the maximal input.

With the state constraint (the guard), there can be switching in the optimal control,
and we need to consider two subcases: trajectories that do or do not hit the boundary
vy = Vi. For A with real eigenvalues, the optimal controls of linear single input
control systems are BANG-BANG with at most n — 1 switchings (where n is the
dimension of the system; here n = 2) [34], and we must have u > 0 at the spike time
(otherwise, v would be decaying). We thus consider controls only of the form

0 fort <7 where v () < Vr,
"= A (23)
U fort<t<r.

These define a smooth flow of extremal controlled trajectories as long as the state
space constraint is not violated. If the extremals hit the state constraint boundary,
then the control must switch to the boundary control u,,. that keeps the system from
exceeding the constraint:

a Ve

b (24)

Uare =

@ Springer
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However, we need to verify whether this boundary control u,,. will eventually bring
Neuron 1 to threshold. For vi = V7 and u = u,, we have

Vg
2

v =—a1Vr + b

>0, (25)

where the inequality holds by our assumption on y;. Now, if (25) holds, then in fact
v > 0 for all vy € [0, V7] under the boundary control, and v; will eventually reach
threshold.

Thus for appropriate initial conditions, applying the maximal input u(¢) = U pro-
duces a spike in Neuron 1 without hitting the Neuron 2 guard. For the remaining
initial conditions, we construct a control that applies maximal input until the guard
is reached and then drops to ug until vy hits threshold. Note that we do not need to
employ the zero control in (23), so we may take 7 = 0 (the possibility of additional
switching will arise in the next section under the alternative case for y;). Thus the
control (17) will produce a spike in Neuron 1 without inducing a spike in Neuron 2
across all initial conditions. This concludes the synthesis construction.

Proof of Optimality. The optimality of this control follows from regular synthesis-
type sufficient conditions for optimality, and we briefly outline the reasoning. The
value or cost-to-go function of this synthesis is continuous but not differentiable on
the curve that separates initial states for which the trajectory includes a boundary
segment from those that do not. The curve I" that separates these two regions is
defined by the set of initial conditions that hit the final condition v(t) = [Vr velr
under the BANG control u#(t) = U. To find this curve, we first explicitly compute the
time for v, to hit threshold,

by
1 U — 01(0)) 1 _1
7=—log| 2—«— ) = —log(E (v (0) , (26)
ai g( Z—}U—VT a (E( )

where for convenience we define
Ew)y=4%——. (27)

We then eliminate t by solving explicitly for v(¢) with the final condition vy (7) =
Ve

a9 b a
Vo = E(ui0)020) + ZU(1 - E(m©)7). (28)
to find the separatrix as
92 b 2
I'={veG:Ew) v+ —U(l-E()4)—Vs=0¢. (29)
az

We define the region I'_ as bounded between I” and v; = V7 inclusive, and the region
I'y =G\ I'_. Thus, I'y includes all initial conditions whose trajectories include a
boundary arc, whereas initial conditions in I can be driven to threshold directly at
maximum input.
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The value function corresponding to this synthesis is

_)V-(v) forvel-,

= (30)
Vi(v) forvell.

For trajectories without a boundary arc, the value is just the spike time under maximal
input, calculated as in (26),

1 -1
V_(v) = — log(E(v)™"). 31)
1
The calculation of the value V. (v) involves two steps: the time #, for Neuron 2 to

reach the guard voltage, plus the time #y for Neuron 1 to attain the threshold Vr
under the boundary arc control. By direct calculation,

V+ (v)= Ig +tn

by by
1 2U—w 1 @ Uarc — V1(tg)
=— log(;z7> +— log(%mig), (32)
a \2y_—vg) a Bt — Vr

where

by v\ o b by — v\ &
vW@:(ﬂ———J2m+iUO—<ﬁ———>2> (33)

by _ by _
azU 1) a2U V)

is the Neuron 1 voltage at the time 7, that is, when the trajectory hits the Neuron 2
guard.

It is clear from the construction that V is continuously differentiable in the interior
of G away from the curve I". We now show that on I”, V remains continuous, but is
no longer differentiable. Substituting v, from (29) into (33) yields

vr=bu oy, vr—bu
vW@=——ﬁ—m+—UQ———%L)=W. (34)
V] — EU ai V] — aU
Hence (32) reduces to
by
1 vy — 22U
VW#t:—b(—Ji». (35)
* 8 az g Vo — b—zU

Substituting v, once again into (35), it follows that
1
Vi) = —log(E@) = V- (36)

However,
Vi 0V_

=0, 37
avzﬂ" 8U21[* ( )
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so that V is not continuously differentiable.

All controlled trajectories in the synthesis are extremals, and away from I”, the
value function V satisfies the Hamilton—Jacobi-Bellman equation for the uncon-
strained optimal control problem

0V (t,v) . 0V (t,v)
ot ov

f(t,v,u*) +L(t,v, u*) =0, (38)

where L is the Lagrangian of the problem (for time optimal control problems, as in
our case, L =1).

This conclusion follows from the method of characteristics (e.g., see [34]) but
can also directly be verified using the explicit formulas derived above. That V is
not differentiable on I" does not invalidate the proof of optimality, although the stan-
dard optimality argument based on dynamic programming (e.g., [34], Theorem 5.2.1)
does not apply. Here, we need to invoke regular synthesis constructions (see Ap-
pendix A.3) as they are described in [34, Sect. 6.3]. Since trajectories do not return
from the state space constraint into the interior of the state space, these arguments
could, for example, be undertaken by redefining the state space constraint as a second
terminal manifold, along with a penalty term that gives the time along the boundary
control until v; = Vr. Alternatively, the constructions in [35], where a regular synthe-
sis argument has been generalized to problems with order 1 state space constraints,
could be modified to apply to cases where the state space constraint is active at the
terminal time. Either way, straightforward modifications of regular synthesis type ar-
guments give the optimality of the above field of extremals. d

Example 1
We demonstrate minimum spike time control in an example of (11) with the fol-
lowing parameters:

R1=0.5G$2, R, =0.33 G£2,

C; =300 pF, C, =300 pF,

Vr =30mV, Ve =27 mV
U=25nA, =1, Br=1.2.

(39)

Note that these are idealized parameters used for illustrative purposes only, although
with biologically plausible units. Here, the condition y; > “;—g is satisfied, and we
can apply the above proposition to induce a spike in Neuron 1 in minimal time. Fig-
ure 3(a) shows the state space under this construction.

3.2 Selective Spiking, Case 2: y; < “f—g
We now consider the case of eliciting a spike in Neuron 1 when y; < “;—(T;

We showed in the previous section that for Case 1, a control solution always exists.
It will turn out that not all parameters allow a solution in Case 2, so this case reveals
the conditions for pairwise feasibility of sequences while providing the minimum
time spiking solution when it exists.
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Fig. 3 (a) State trajectories for selective spiking of Neuron 1 under Case 1 for several initial conditions.
Trajectories either reach threshold under maximal input, or reach the guard under maximal input and then
follow the boundary under a lower constant input until Neuron 1 reaches threshold. (b) State trajectories
for selective spiking under Case 2 for several initial conditions. For those trajectories that do not reach
Neuron 1 threshold (before hitting the guard) under maximal input, the input is zero until the trajectory
decays to the switching separatrix, and then bangs high until Neuron 1 spikes.

We might expect the solution in Case 2 to be qualitatively similar to Case 1, but
in fact there are no longer increasing trajectories that ride along the guard boundary:
under the boundary control (uyrc = azb\Z/G ), we find ¥ < 0 at v; = V7, that is, along
the guard, v (#) does not rise beyond a certain limit and fails to reach the threshold

Vr. Instead, we have the following:

Proposition 2 Consider the two-neuron network (11), where y| < x—g Assume that
the set of admissible controls is a box constraint U = [0, U]. The time optimal control
u* € U for the selective spiking problem P1 for Neuron 1, if such a solution exists, is

. 0 forvelly, (40)
U forvel_,

with I'y defined as before.

Proof We follow a similar analysis to the previous case, but identify the differences
in the optimal control structure from the solution in Sect. 3.1. Again, our approach
is to define a synthesis of extremal controlled trajectories, prove their optimality, and
finally give conditions for the existence of a solution for all v e G.

Synthesis Construction. The Hamiltonian and multiplier are similar to (18) and
(20). The minimum condition similarly results in (21) with the conclusion that the
optimal control is simply BANG at u*(r) = U for trajectories that do not hit the
guard under this control. Similarly to (28), there again exists a curve I" that separates
such initial conditions from those requiring switching, given by (29). Note that there
is no boundary segment in this case as uyrc cannot drive the voltage of Neuron 1 up
to threshold along the state constraint boundary (see Appendix A.2), and thus we are
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led to consider controls only of the form

n (41
U fort<t<rt,

y lO for t < f where vy (f) < Vr,
in the interior of G, and # = 0 is allowed. This concludes the synthesis construction.
Proof of Optimality. The value function for the region /_ equals the time taken by
Neuron 1 to reach the threshold V7 under the constant control U and takes the same
form as (31). For v € I';, the value function is calculated assuming that the control
is turned off for an interval [0, 7], during which the system decays from the initial
condition v(0) = [v; v2]7 to a point v(7) = [0; 02]” on the curve I". At this time the
control switches to the maximum value U, and the corresponding trajectory follows
the curve until the terminal condition v(z) = [V Vg]7 is reached. This gives

. 1 V1 1 .
Vi) =1i+1tp=—log| — | — —log(E()). (42)
aq V1 aq

where

612

3 a 3 a b a

ﬁ2=<ﬂ> "v; and (E(ﬁl)ﬂ> "+ 2U(1—E@)@) — Ve =0 (43)
V1 V1 ayn

using the fact that [0 5]7 lies on I". Here we cannot get an explicit expression
for V4 in terms of the initial condition [v; v2]7 because of the transcendental form
of (43).

Note that, for this synthesis, the state space constraint does not become active.
It is clear from the construction that the corresponding values satisfy the Hamilton—
Jacobi—Bellman equation away from I". However, this problem is nonstandard in
that the value function may no longer be continuous on /", with the only exception at
v =0, that is,

Vi(v)=V_(v) forve suchthatv; =0. (44)

In general, there may exist a unique point on the curve I" (in our problem with u = 0)
where the vector field v = Av is tangent to I” while pointing in the opposite direction.
As aresult, v = Av points into the region Iy and into the region I'_, above and below
this point, respectively. This generates a loss of small-time local controllability that
causes the value function to become discontinuous along I" above this point. For, if
the initial condition lies to the right of Iy above this point, then optimal trajectories
must decay below the point in order to reach the terminal manifold. We see this in
Fig. 3(b), where the OFF segment in the extremal cannot simply converge to the
separatrix 1", no matter how close it is to I". This issue of controllability makes
the value function discontinuous. The value is still lower semicontinuous on the full
state space. In fact, the value of this synthesis satisfies Sussmann’s weak continuity
requirement [34, Definition 6.3.3]. Although the discontinuity of the value impedes
on the application of most HIB-type sufficient conditions for optimality, this is not the
case for regular synthesis-type constructions (see Appendix A.3), and the optimality
of the synthesis follows from Theorem 6.3.3 in [34].
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Existence of Solution. However, the control approach in (41) will fail if trajectories
starting in I} do not in fact hit the separatrix at some time during the initial off-
control. A necessary and sufficient condition for trajectories to hit the separatrix is
that I” intersects the positive v, axis. When this condition holds and v(0) lies above
I", then there must be a time  where the trajectory hits I" under u = 0. Conversely,
suppose I" does not intersect the positive v, axis. The slope of I', considering vy as
a function of vy, must be less than the slope of the decaying trajectory for there to
be an intersection (ignoring the degenerate parameter choice for which tangency is
possible). Taking the ratios v2/v; for u =0 and u = U (recalling that I is itself a
solution with maximal input) and rearranging the result show that the slope condition
can be met only if vy > yjv;. However, by our assumption y; < Vr/ Vg, no point
on I" meets this inequality (the curve lies entirely below the line from the origin to
[Vr Vg]T). In fact, since v;, i = 1, 2, is monotonic in u, it follows that there is no
admissible control that can push a solution across I, so that the latter serves as a
barrier to Neuron 1’s threshold for all initial conditions in I} (at least, without first
crossing the Neuron 2 guard). So in this case, selective spiking of Neuron 1 is not
possible.

Thus, the condition for the existence of a time-optimal solution for selective spik-
ing of Neuron 1 is that the v; intercept of I" is positive, which occurs when

Ve Ve \ @
4T (=) (45)
U byU O

Example 2 We use the same parameter values as in (39) but swap the roles of Neu-
ron 1 and Neuron 2, that is,

R;=05GR2, R =033G%2,
C,=300pF,  C;=300pF,
Vr=30mV, Vg=27mV,
U=25nA, B=1, pi=12.

(46)

Now, y1 < Vr/Vg. Moreover, condition (45) holds, so that the switching separatrix
intersects the positive vy axis. Thus a time-optimal solution for selectively spiking
Neuron 1 always exists. Figure 3(b) shows example trajectories.

3.3 Geometric Interpretation of Cases and Pairwise Feasibility

Thus far in our discussion we assume, without loss of generality, that a selective spike
is desired in Neuron 1. Now for pairwise feasibility, that is, to analyze when time-
optimal selective spiking of either neuron is possible (from any initial condition), both
neurons must be associated with either Case 1 or Case 2. To do this, we introduce
braj 1
e=1—=—. (47)
biaa  n
We associate Neuron 1 with y; and Neuron 2 with y» to determine the case (Sects. 3.1
and 3.2) to which these neurons belong. We say Neuron 1 is Case 1 or 2 when y; > X_(T,
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ory; < x—g, respectively, and similarly for Neuron 2 with the same inequality relation
on y;. Since we have Vr > Vg, this allows for three possible scenarios,

1. y1 > X—CT;, Yy < g—g: Neuron 1 is Case 1, and with y» being the reciprocal of y;, we
have Neuron 2 is Case 2.
2. Y1 < “;—2, V2 > %: Neuron 1 is Case 2 and Neuron 2 is Case 1, and the structure
of the solution is identical to the previous scenario.
3. < % Y < “;—g: Both Neurons are Case 2, and this happens when “j—‘[j <y2=
Vr
Vg *
As we will show in the following sections, for one of the neurons belonging to Case 1,
pairwise selective spiking can be accomplished. However, if y1 2 < x—g, that is, both
neurons are Case 2, a solution may not exist, and pairwise feasibility is not guaran-
teed.
To provide an additional geometric interpretation (see Appendix A.2) of these
conditions, we introduce the quasi-static equilibrium line

v(00) := {(v1, v2)|baa1v1 = brazva}, (48)

which defines the set of points for which v = 0 (for each u € Uf).
In a pair of neurons, the following two possible parameterization scenarios can be
encountered.

3.3.1 Neuron I and 2 Correspond to Different Cases

Here we discuss the pairwise feasibility for when Neuron 1 is Case 1 and Neuron 2
is Case 2. It is important to note that the result extends to the reverse scenario, that is,
Neuron 1 is Case 2 and Neuron 2 is Case 1.

Here, the line of quasi-static equilibrium in (48) intersects the line v; = V7 before
it intersects v» = V5. Thus, Neuron 1 can always increase along the Neuron 2 guard
boundary. Conversely, Neuron 2 cannot increase along the Neuron 1 guard beyond the
point of intersection between v(co) and v = V. As we showed before, in this case,
selective spiking of Neuron 1 is always possible. Thus, pairwise feasibility reduces
to condition (45) modulo a swapping of labels. Specifically, we have the following:

Lemma 1 Consider the two-neuron network (11), where Neuron 1 satisfies Case 1,
and Neuron 2 satisfies Case 2. Then, the network is pairwise feasible if and only if

v\ Ve \“
-2 s (122G (49)
bU U
Proof The proof follows immediately from Proposition 2 and (45), with a swapping
of labels.
Thus, it follows that if (49) does not hold, a time-optimal solution for Neuron 2

does not exist (for all initial conditions), and thus the neurons are not pairwise feasi-
ble. O
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3.3.2 Neuron I is Case 2; Neuron 2 is Case 2

If both neurons are Case 2, then pairwise feasibility would necessitate (49) holding
to within a swapping of labels (i.e., so that either neuron can be selectively spiked).
Clearly, this is impossible (see Appendix A.2) except for the limiting case where
Ve = Vr, that is, the neurons are not guarded. In such a scenario, the optimal solution
may produce simultaneous spiking of both neurons depending on the initial condition.

4 Minimum Time Sequence Control

We now use the above results to analyze longer pairwise spiking sequences Xg to
solve the problem P2. Based on the results of the previous section for pairwise fea-
sibility, that is, to allow all possible spike sequences for two neurons, we make the
following assumption hereon.

Assumption 1 The pair of neurons are parameterized so that Neuron 1 satisfies
Case 1, Neuron 2 satisfies Case 2, and Lemma 1 holds.

This assumption ensures that the selective spiking solutions for the two neurons are
given by Proposition 1 and 2, respectively.

We now analyze all the possible length 2 sequences, that is, [1, 1], [1, 2], [2, 1],
and [2, 2], and recognize how we can use the basic characterizations developed in
Sect. 3.1 and 3.2 to synthesize a time-optimal strategy for these sequences. We em-
ploy a dynamic programming approach where, using the time-optimal solution for
the second spike in neuron i, we define a terminal cost and then solve the resulting
optimal control problem for the first spike in neuron j, i, j € {1, 2}. Whereas the op-
timal synthesis for some of these sequences can be generalized from the solution of
P1, we shall see that for the target sequence [2, 1], no time-optimal control solution
may exist.

4.1 Synthesis of All-2 Spike Sequences

Without loss of generality, consider the spike sequence X's = [1, 1] that we want to
achieve in minimum time. We will use the concept of dynamic programming to solve
the following problem:

71 153
min J(u):/ dt—i—/ dr
0 7]

st. v= f(v,u) = Av+ bu,

O<u(r)<U, (50)

vi(t)) =Vr, vi(n*) =0,

vi(r2) = Vr, 0n() < Ve fortelr, ]
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(b) Sequence [1,2]

(P1) Neuron 1
(a) .
7
20
>N ) Nzn
10 O Spike Neuron 1 =0
o / W Spike Neuron 2
] T 26 3
0 10 20 3ol 10 20 30
Z .
s

>N (C) Sequence [2,2]

v, o s 1w 15 2 2
V1

Fig. 4 Optimal Synthesis for Sequences [1, 1], [1, 2] and [2, 2] is shown in (a) (b) (¢) for the nominal
parameters (39). In these depictions, the state space is repeated to indicate the reset condition. (a) Syn-
thesis for [1, 1], showing both parts of the dynamic programming. The terminal cost is increasing and
differentiable. The optimal trajectories from several initial conditions are shown. (b) Optimal trajectories
for sequence [1, 2]. (¢) Optimal trajectories for sequence [2, 2]. In this case, all initial conditions collapse
onto a single manifold associated with the second spike.

We will start from the last spike, Neuron 1, for this example and solve the minimum
time problem P/ for all the initial condition for Neuron 2, namely v; € [0, V], v1 =
0, and use the solution of P/ as the terminal cost ¢(v(t1)) for the previous spike,
Neuron 1 again, in our case. So we will solve the following optimal control problem:

min  J(u) =/ 1dt-}-<,0(v2(751))
0

st. v= f(v,u) = Av+ bu, 51)
O<u@®)=<U,
vi(t) = Vr, 0 () < Vg fortel0,1].

Now we will seek synthesis for all possible two spike sequences using (51).
4.1.1 Spike Sequence [1, 1]

The optimal synthesis for the sequence X's =[1, 1] is given in Fig. 4(a). We highlight
the solution of P/ for Neuron 1 on the top left, the terminal cost ¢ (v2(71)) in the
middle, and in the bottom, we show the solution of (51). On the right, we construct
the complete synthesis for the whole sequence.

Given an arbitrary initial condition [v] n]7, the time-optimal solution of the first
part without any terminal cost (i.e., ¢(v2(t1)) = 0, given by Proposition 1) has the
property that, among all admissible controls, it leads to the smallest possible value
for the terminal state v, (71). Since the function ¢ (v2(71)) is strictly increasing, this is
then also the optimal solution for the combined problem and thus allows us to simply
concatenate two solutions of P/ for Neuron 1. Overall, the optimal control is simply
given by the BANG control U until v, reaches the guard, after which the boundary
control is used exactly as in the single spike problem.
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4.1.2 Spike Sequence [1,2]

However, such monotonicity arguments do not work in the other cases. Figure 4(b)
shows the synthesis of optimal controlled trajectories for the sequence X's = [1, 2].
The terminal cost ¢ (v2(t1)) is calculated as the value function from the solution of P/
for Neuron 2 and is a strictly decreasing function of v (since the higher the voltage
v, the lower the time to induce a spike in Neuron 2). Thus, in principle, it might
be possible for the solution of the first part to deviate from the solution of P/ for
Neuron 1 if the loss in doing so would be made up by the gain in the penalty function
@(v2(11)) at the terminal point. Consider the switching function

D(t) = 1by + Aaby. (52)
If there is a switching at t = f, then we have

@ (i) =11 (D)b1 + A2(D)by =0,

(53)
M (Db = = ()b
Also, for a switching structure OFF-BANG, we must have
& () <0. (54)
Now we use (53) for computing the derivative of the switching function
@ (7) = ha(Hb2(az — ap). (55)
From the nontriviality [34, Sect. 2.2] and transversality conditions we have
Aa(T1) = M <0, (56)

dvn

since the terminal cost is a decreasing function of v;. Also, we have previously de-
rived that the adjoint variables are solutions of linear homogeneous differential equa-
tions that do not change sign in ¢ € [0, 71]. So we have A2 (F) < 0 as well. Using these
and assuming that a, < ap, from (55) we get

&) > 0. (57)

This violates the necessary condition in (54) for an OFF-BANG switching. Note that
for the case a; < ay, OFF-BANG switching cannot be ruled out using this argument,
and the synthesis has to be constructed by direct computation. In our example with the
parameters from (39), it turns out that the optimal solution is simply BANG/BANG-
BOUNDARY (17), that is, the terminal cost ¢(v;) has no effect on the solution of
(51). Thus the time optimal synthesis for X's = [1, 2] is a combination of the individ-
ual synthesis for Neurons 1 and 2.
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4.1.3 Spike Sequence [2,2]

Similar controllability properties also allow us to give a short solution for the se-
quence Xg = [2, 2]. The optimal synthesis is shown in Fig. 4(c). In this case, the
terminal cost ¢(vy(71)) is a function of vy, and it is also strictly increasing in v
(since the higher the value of vy, the higher the time to ensure selective spiking in
Neuron 2). From the analysis of transversality condition and the switching function
like in the previous sequence (54) we can show that OFF-BANG is optimal for the
first spike in Neuron 2 with a; < a; and suboptimal for a; < a; if there exists a
switching. Indeed, for the first Neuron 2 spike and initial conditions under the sepa-
ratrix, the optimal control is OFF-BANG. But for initial conditions on the v, axis, the
optimal control is simply BANG. In the example, the overall construction is achieved
by concatenating the solutions of P/ for Neuron 2 vertically. Since Neuron 2 is reset
to 0 after firing, the initial condition for the second problem is given by [v;(z1) 0]7.

4.1.4 Spike Sequence [2, 1]

Proposition 3 Under Assumption 1, no time optimal control solution exists in gen-
eral for a target sequence X containing the subsequence (2, 1].

Proof The synthesis is more involved for this sequence. The terminal cost for the first
Neuron 2 spike is the value function from (30) with v, = 0, that is,

¢(v1(z1)) = VV)luy=0, (58)

which is a decreasing function in vy, and ¢(v(t1)) is not differentiable with respect
to v for some v; = vy Where vpq € [0, V] (as shown in the bottom left of Fig. 5).
Note that for any initial condition at the origin or on the v| axis to the left of the
separatrix, OFF-BANG cannot lead to optimality, and for those cases, the extremals
will be generated by u*(¢) = U for all ¢ € [0, 71]. Also, to the right of the separatrix
OFF-BANG will be the optimal policy as it is the only viable option in the presence
of state constraints. So we can conclude that if there is indeed a switching to the left
of the separatrix, then there must exist vy € (0, V] such that for v(0) = {(v, v2) :
v1 =0, vy € (vs, Vi)}, the optimal policy will be OFF-BANG, whereas for v(0) =
{(v1,v2) 1 v1 =0, vy € [0, vs]}, the optimal control is BANG. Now we will calculate
this voltage vy, which acts as an onset for the change in optimal policy. Considering
the switching at t = 7, we have v, (f) = vy and

@ (i) = 11 (1)b) + A2(1)by =0. (59
Since the Hamiltonian vanishes identically for our problem, we get
H(E) =1 — arvghr () =0. (60)
Also, from the transversality condition with 19 = 1 we have

_ dp(ui(t1)
o 37)1 ’

Ai(T1) (61)
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which is known. Since we reach the threshold V7 from v using the BANG control,

from (26) we have
P B i )
| —7=—log 2 ). (62)
a Vr — éU

Using the fact that the adjoint variables satisfy linear homogeneous differential equa-
tions, we can write

by _4a
8 Vg — —U a
)\1(1,‘)2 w(vl(fl))< S abz ) 2. (63)
vy Vr — éU
From (59)—(63) we can solve for vy with
by _4a
ayvsby dp(ui(T)) (Vs — 5 U\ @
14 b 5 b =0. (64)
2 V] Vr o U

If such vy exists, then the construction may be much more complicated with the
possible presence of a “cut-locus” type phenomenon, and we leave a detailed analysis
of such a problem for future work. In our case, the terminal cost decreases with a rapid
rate for v € [0, v,4] and abruptly changes to a much smaller slope for v| € (vng, V]
(see Fig. 5) due to the nature of the value functions on either side of separatrix V—,
V4 in (31) and (32). This results in a field of extremals trying to converge to the point
Und, even when the monotonicity of the value function is not affected by the loss of
differentiability (see top left in Fig. 5). We calculate the set of initial conditions for
which this point can be attained, specifically v, = {(vy, v2) : v1 =0, v2 € [v,, V1],
where v, denotes the highest point on v, axis from which [Vr vnd]” can be reached
via BANG control. This voltage v, and the set v, are shown in the right panel of
Fig. 5. Now, the optimal control problem for v(0) € v, simply reduces to

min  J(u) :frl dr
0 (65)

st. u(t)yeld

with the terminal constraint v(t;) = [vna V71?7 and state constraints vi(f) < Vg,
v2(t) < Vr. This is similar to the selective spiking problem of Neuron 1, and indeed
the best control is a combination of BANG and boundary control as in (17),

(66)

. {U for t <t. where v (t.) = Vr,

Uye fort. <t <t where v1(71) = vnd.

But this implies that Neuron 2 maintains the voltage (Vr), even after the spike is
emitted, which violates our assumption that the neurons are reset instantaneously af-
ter reaching Vr, as described in (4). So the synthesis S* corresponding to (66) is
excluded from the admissible set of extremals purely out of the physical constraints
imposed on the system. This resembles the classical problem of finding surfaces of
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30

Suboptimal

01 2 3 4 5 6 7 8 9
V1

o

5 10 15 20 25

Fig. 5 A possible suboptimal synthesis is shown for the sequence X'g¢ = [2, 1]. Note that the value func-
tion for the last spike, i.e. Neuron 1, plotted in the bottom panel, is not differentiable with respect to vy .
This is added as the terminal cost for the optimum control problem for the first spike in Neuron 2. In the
right panel, the actual optimal solution and a constant control suboptimal synthesis proposed in (67) is
shown.

minimum revolution [34], where the Goldschmidt extremal cannot be attained be-
cause of the C' assumption on the extremals. Thus, any synthesis S for (65) will be
suboptimal to §*. For simplicity, we have picked a synthesis such that

usup = u(v(0)) forz €0, ], (67)

that is, a constant control that varies depending on the initial condition shown in
Fig. 5. For the set of initial conditions

v(0) = {1, v2) :v1 =0,0<v2 < v}

U{(vi,v2):0<v; < Vg, v2 =0}, (68)

the optimal synthesis remains the same as the solution of P/ for Neuron 2. U

4.2 Greedy Designs for Sequences with Arbitrary Length

From our analysis of the 2-spike sequences in the previous section, we can design
the time optimal control for any Xg of M spikes (M > 2) without the subsequence
[2, 1]. In addition, if we assume that ay < ap, then it can be shown using an inductive
argument that the overall synthesis can be constructed from the solutions of individual
selective spiking problems in Propositions 1 and 2.

In general, for a X'g with the subsequence [2, 1], to illustrate the complexities of
sequence control, it is instructive to consider the 4-spike sequence X's =[1, 2, 1, 1].
In this case, the target sequence contains a [2, 1] event, meaning that any solution
will be suboptimal. In this case, a dynamic programming approach that interleaves
the interpolation control (67) can yield such a solution. However, from a practical
perspective, pursuing this design approach for long sequences is difficult as it re-
quires computing the location of nondifferentiability in the value functions of all
[2, 1] events.
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Fig. 6 Simulatif)n example of ZS = OoEeone® | @ Neuron 1, [ Neuron 2
the greedy algorithm for P2 for T . . . .
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Thus, we argue that, from a design perspective, a simple greedy approach, where
we minimize the time for each spike in X'g progressively, constitutes an acceptable
and tractable approximation.

In Fig. 6, we show the solution of the greedy controller for an arbitrary spike
sequence X's.

4.2.1 Decoupling the Network for Longer Sequences

In applying the greedy approach, it is important to note that the synaptic contribution
from the spiking neuron can carry the voltage of the other neuron in the network
over the synaptic guard V. Thus, we cannot readily apply the solution of P/ for the
following spike in the sequence (pattern), as the initial condition may violate the state
constraint in (8) for P1. Here, we propose strategies to eventually utilize Propositions
1 and 2 for the greedy design.

1. First, if the initial condition after any spike in the sequence (pattern), at ¢ = 71, is
not within the relevant state space G, then we can apply u =OQuntil t = ¢/, t' > 71,
such that v(#') € G. Then, we can apply the solution of P/ to induce the target
spike.

2. Alternatively, we can modify the guard Vi of the nontarget neuron at each step
of the greedy design, depending on the number of consecutive spikes in the target
neuron in the sequence (pattern); for example, if X's =[1, 1, 2,2, 2], then we can
set the guard voltage for Neuron 2 at Vi (01) < Vr — 2pgyn for the first spike and
Vi (02) < Vr — psyn for the second spike. Thus, the relevant state space for the first
and second spikes will be modified to G(o1) = [0, Vr] x [0, Vi (01)] and G(02) =
[0, Vr] x [0, Vg (02)], respectively. This ensures that whatever the contribution
is from the presynaptic neuron (in this case, Neuron 1), we start in the relevant
state space for the next spike in the sequence (pattern). Once the target neuron
changes to 03 = 2, the guard voltage for Neuron 1 is determined by the number of
consecutive spikes in Neuron 2 (3 in this example), that is, Vg (03) < Vr — 30syn
and so on. Note that by successively reducing the guard voltage, the selective
spiking problem may become infeasible as discussed in Sect. 3.3.

3. Finally, we can combine the two approaches to develop an algorithm where we
can use (2) until the problem is infeasible. At this point, we go back to (1) and add
an off time before implementing the solution of P/.
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In our examples of sequence and pattern control, we have used the first approach in
developing the greedy design (see Figs. 6 and 7).

5 Fixed-Time Selective Spiking and Spike Patterns

We now move to the problem of controlling timed spike patterns, that is, P3. It is
intuitive that a basic necessary condition in this case is that the desired spike time
exceeds the minimum selective spiking time, that is, the solution to P1.

Specifically, suppose that we want to achieve the target pattern X'p = [(1, #1)], that
is, a spike in Neuron 1 at time #1. The cost function in P3 (14) reduces to

71 2
Ju) = (t] —/ dl‘) (69)
0

(subject to the selectivity constraint in (7)). Here, 71 denotes the achieved spike time,
and 7 is the solution of P/ for an arbitrary initial condition v(0). If 7; > #1, then
evidently that is our best option, and the solutions of (69) and P/ are the same, that
iS, T = fl .

For the other case, 7| < 1, contingent on controllability, a control must exist such
that 71 = #1. If such a condition is met, then in general there may be multiple solutions
to the pattern control problem.

Herein, we consider one simple strategy involving the introduction of an off time
f to the optimal control solution of P/ such that

i+t =n, (70)

where 7] is the solution of the time optimal control P1, for the initial condition v(f).

We noted earlier that the initial conditions for the selective spiking problem nomi-
nally lie on either the v| or v, axis, under the assumption that one of the neurons has
just produced a spike. In this case, feasibility of (70) reduces to understanding those
initial conditions that generate specific values of 7] .

5.1 Off-Time Insertion for Pattern Control

We characterize the relationship between 7{ and initial conditions via the notion of a
A-controllable set.

Definition 3 (A-Controllable set) Without loss of generality, the A-controllable set
£(A) of Neuron 1 is the set of initial conditions from which the selective spiking of
Neuron 1 in PI is achieved in time A, that is,

21(A) = {(v1,v2) : v(0) = [vy ©]", Bt < Astvi()=Vr, 0() < V). (1)

The A-controllable sets for system (11) are provided in Appendix A.4. Since we are
interested in initial conditions along the v and v, axes, we consider the functions

w1 : A — vy, such that (vi,0) € £1(A),

(72)
wy: A — vy, suchthat (0, v) € {1(A),
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that is, the intersection of the A-controllable sets with the axes.

Earlier, we noted that the value function for the selective spiking of both neurons
remains continuous on both the v and v, axes (i.e., from (36) and (44)). This fact,
together with the derivation of the A-controllable sets in the Appendix, allows us to
conclude that the functions (72) are continuous in A.

Thus, we are able to ensure the existence of the off-time pattern control from (70),
that is,

(73)

P 0 forrel0,1],
|ur forre (@ n),

where u* comes from Proposition 1 or 2. The computation of the off-time 7 is ob-
tained directly from the A-controllable sets and is provided in Appendix A.5S. Thus,
an overall pattern control strategy can be formulated as

(74)

% g =

u if 11 >1,
n* T

ubP if 1 <.

5.2 Greedy Designs for Control of Long Patterns

We now consider the synthesis and design of the general pattern control problem P3.
To begin, we consider the dynamic programming strategy studied in (51) but for P3.
It turns out that the same issues pertaining to nondifferentiability of the value function
in P2 persist in this case.

To illustrate this, consider the 2-spike target pattern X'p = [(1, #1), (1, #2)]. Starting
from the last spike o, = 1, we solve

o 2
Ju) = <(t2 —-1) —/ dt) (75)

with the terminal and state constraints and use the value function of (75) as the ter-
minal cost to the following optimal control problem:

T 2
I = (n— /0 dr) + (o). (76)

Let us denote the solution of P/ for the second spike from the initial condition
v(0) =10 n]? by 7. Then, depending on v, the terminal cost in (76) takes the fol-
lowing form:

forvy s.t. T < (tp — 1), a7
((a—11)—17)% forvast.T> (12 —1).

0
p(v2) = {
Thus, similar complications as referenced in Sect. 4.2 regarding nondifferentiability
arise here, and once again we consider implementation of a straightforward greedy
strategy for pattern control involving (74). In Fig. 7, we show an example of this
greedy algorithm for an arbitrary pattern with the same spike sequence as in Fig. 6.
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Stimulation
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Time | @© Neuron 1, ] Neuron 2

Fig. 7 Simulation example of the greedy algorithm discussed in Sect. 5.2 for P3 for a target pattern
Xp =1(1,20), (2,30), (2,70), (1,95), (1, 115), (2, 120), (1, 130)] with the nominal parameters in (39).
Similar to Fig. 6, we show the synaptic contribution Avy(#) =2 mV, to Neuron 2. We also explicitly
indicate the off-time (« = 0) after the first (inset) and fourth spike in Neuron 1, as part of the decoupling
strategy discussed in Sect. 4.2.1.

5.3 Performance of Greedy Design Under Disturbance and Noise

In this section, we analyze the robustness of the greedy design when the coupled LIF
network in (3) is subjected to noise and disturbances. Here we consider two types of
uncertainties:

1. Incoming synaptic contributions of the pulse coupled form discussed in Sect. 2.2.2,
from other neurons

2. Noise in the dynamics of the membrane voltage of the neurons in (3) (process
noise) and in measurement of these voltages (measurement noise). Note that in
implementing the greedy controller in (74), we repeatedly apply Propositions 1
and 2, which are feedback control, that is, measurement is implicit.

In Fig. 8(A), we show one realization of the voltage and control waveforms for d =
150 incoming spikes over the control horizon for the same ¥ p used in the example
of Fig. 6. To illustrate the effect of these disturbances on the control strategy, in
Fig. 8(D), we plot the average Victor—Purpura (VP) distance [36, 37] between the
achieved and target spike trains as we vary the number of incoming spikes d over 50
trials. In each trial, we randomly select the arrival times of the spikes, the contribution
and target of the synapse between the two neuron indices. The VP metric is a measure
of synchrony between two spike patterns that involves three basic operations: adding
or deleting any spike with cost 1, moving any spike with cost g per unit time, and
renaming any index of the spike with cost k. Here, a lower VP distance corresponds to
better control performance. We observe that with higher disturbance, represented by
d, the controller performs reasonably well with gradual degradation in the achieved
patterns.

Next, we consider additive Gaussian noise both during the evolution of the mem-
brane voltage and in measurement. Thus the linear model in (11) is modified to

v(t) = Av(t) + bu(t) + w(t),
y(@) =Cv(@) +2(1),

(78)
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Fig. 8 Induced voltage waveforms in the two neurons for Xp = [(1,20),(2,30),
(2,70), (1,95), (1, 115), (2, 120), (1, 130)] using the greedy design and the control under incom-
ing synapses (A) and process, measurement noise ((B) for higher variance and (C) for lower variance).
(D) Performance analysis of the controller in terms of VP distance with parameters g = 1, k = 1.5 against
number of incoming spikes d as measure of disturbance. (E) Surface plot fitted to the simulation data of
average VP distance (same g, k) vs the process and measurement noise variances, in the course of solving
the pattern control problem for X'p over different trials.

where the measurement vector y is a linear readout of the neuron voltages through
a randomly selected matrix C, which is full rank, w(¢) and z(#) follow multivari-
ate Gaussian distributions with w(z) ~ A (0, W) and v(z) ~ N (0, Z), and W and Z
are the constant covariance matrices of the forms W = n%]l and Z = 17%]1, I is the
2-dimensional identity matrix. Here, we compute the voltage estimates of the two
neurons at each time step by means of a Kalman filter [38] and employ the feedback
strategy in (74) based on these estimates. In Fig. 8 (B), (C), we plot the pattern control
solutions for the same X'p used in the example of Fig. 6 for smaller (n; = 0.1, 172 = 1)
and higher (n; = 1, 5y = 10) process and measurement variance. We observe that
controller’s ability to induce the target spike train is not compromised substantially,
although with higher levels of noise, spurious spikes are generated, as indicated in
panel (C). However, the noisy dynamics in (78) can result in a high frequency of
switching in the control ((B), (C), bottom panel), especially during the boundary arc,
that is, the nontarget neuron is to be held at guard V. Panel (E) shows the perfor-
mance of the greedy design with respect to the average VP distance between X'p and
achieved patterns over 50 different trials, as we change the level of noise during the
evolution and measurement phase.

6 Conclusions

This paper has examined the problem of controlling timed spike patterns in pairs of
Integrate and Fire neurons. Boundary-arc-type phenomena are shown to arise in this
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scenario due to state constraints imposed by both the selectivity criterion and spike
generation mechanism. Formal analysis and synthesis is carried out to establish how
the proposed solutions are geometrically disassociated in terms of their initial condi-
tions. The developed solutions, which leverage the maximum principle and dynamic
programming, are shown to be efficacious in controlling the LIF models.

Clearly, our results here are of theoretical nature. Although the control-theoretic
features revealed are themselves interesting from a mathematical standpoint, they
serve the broader purpose of establishing fundamental limits on the selective con-
trol of neurons with common inputs. The qualitative nature of the derived solutions
(e.g., OFF-BANG, boundary-arc strategies) are already more complex than the fixed-
amplitude square pulse designs currently used in practice. Given the massive growth
in stimulation technology development, understanding these limits, even for a rela-
tively simple model class, may provide insight into how experimentalists should tune
their stimulation parameters for experimental objectives. For instance, our analyti-
cal conditions (e.g., y1 2 “;—é) amount to a criteria on the amount of heterogeneity
needed within a neuronal population in order to enable control. Without sufficient
heterogeneity, it is simply impossible for a common input to “split” the spiking of
neurons in a selective manner. Exploiting this heterogeneity is at the heart of the
derived control solution (e.g., OFF-BANG solutions that leverage increased leak dy-
namics). These characterizations provide a baseline from which we plan to establish
relaxations of the considered problems for larger neuronal populations in future work.
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Appendix
A.1 Derivation of Impulsive Synaptic Coupling Model

To derive (5), we start with a classical continuous-time model of synaptic dynamics
[33] wherein, assuming that Vi = 0 in (3), the membrane potential of each neuron
evolves according to
dv(t v(t
c (1) (1)

ar Z—T +,3u(t)+lsyn(t) (79)
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with

Isyn(t) = gsyn(t)(v(t) - Esyn)v gsyn(t) = gxe_(t;—'?)%(t —t5), (80)

where f; is the arrival time of a presynaptic action potential from the other neuron,
&syn 1s the synaptic conductance, H is a Heaviside step function, «; is the time con-
stant for the conductance, g is the maximum conductance for the synapse, and Esy,
denotes the reversal potential. For selective spiking, we want the postsynaptic neuron
to be protected from this incoming synapse with respect to the membrane potential.

In the typical case of an excitatory synapse, we have Egy, ~ 0, and the contribution
from the spike in the presynaptic neuron becomes

(1—ts)

t
Av(t):i/ gse % v(r)dr. (81)
CJi

Now, assuming a separation in time scale between the synaptic time constant x; and
the membrane time constant k,, that is, k; < kp,, we can approximate the integral
in (81) by keeping the voltage of the postsynaptic neuron constant at v(#;) over the
integration window. Using this, we have

oK gk
B p(ty) < B

Av(t) < l/ Tyn (1) dt = Vr. (82)
C ZS

So the effect of a synaptic event on the postsynaptic neuron can be crudely summa-
rized as an almost instantaneous rise in voltage bounded by (82). Thus, model (5)
approximates this effect with an impulsive synaptic action, where

. _
A(1) = peyn(1) < %VT = foyn. (83)

A.2 Geometrical Aspects of Selective Spiking Solution

Here, we first discuss the role of y; (15) in determining the two different selective
spiking solutions presented in Sects. 3.1 and 3.2. We also geometrically show that
pairwise feasibility is not achievable when both neurons are Case 2, as described in
Sect. 3.3.2.

We first derive the equation for the line of quasistatic equilibrium defined in (48).
This is the set of points in the phase plane for which v(u) = 0 for any constant control
u € U. Using this condition, we have

V] = —ajv; +bju=vy = —axvy + bou=0. (84)

Since u is a constant, we can eliminate u to get the equation for the quasistatic equi-
librium

U]
— =1, (85)
v2

where y1 = Z;—Zf Now the two different solutions presented in Propositions 1 and 2

are dependent on the existence of the boundary segment, that is, for a boundary con-
trol u,y for which Neuron 2 is voltage invariant (V2 (uyc) = 0), regardless of whether
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the voltage of Neuron 1 increases. To satisfy this, we must have

bl(“arc”vlzvr > 0. (86)

We can answer this question from the analysis on the quasistatic equilibrium line
as Uy 18 constant. If the line intersects vy = V7 before v, = Vg, from (85) we have
(see Fig. 9(a))

1%

T
> —. 87
71 Ve (87)
Using this, we can calculate the direction of vector field at vi = Vr in (86):
. a Ve
V1 (Mare) loy=vy = —a1 V1 + bistare = —a1 Vr + by 5
biaa  Vr Vr

=a1Vg| — — — | =a1V, —— ] >0. 88
1 G<bza1 Vo 1Ve| v Vo (88)

We show this in Fig. 9(a), where the quasistatic equilibrium intersects v, = Vg be-
yond vy = V7. This ensures that the vector field is positive under the boundary control
such that the target neuron reaches threshold while keeping the other neuron at V.
Now if we assume that y; < % (see Fig. 9(b), (c), (d)), then we can similarly show
as in (88) that

V1 (uarc)|v1:VT <0 (89)

for this case, and we need to adopt the solution presented in Proposition 2 to fire
Neuron 1 selectively. So we see that the nature of selective spiking solution, that is,
(BANG/BANG-BOUNDARY) or (BANG/OFF-BANG), is contingent upon the ra-
tio y1.

Figure 9 presents an intuitive representation of the geometric aspects of the
solution space discussed in Sects. 3.1-3.3 with respect to y;, y». Here, we ana-

lyze the pairwise feasibility for all possible parameter combinations. If y; > “f—g

(= n< x—g) and Lemma 1 for Neuron 2 holds, then the neurons are pairwise fea-
sible, that is, from any point in the phase plane we can fire either neuron selectively.
Similarly, if we have y; < “ﬁ—? (= vy > “;—(T;), that is, Neuron 2 is Case 1, Neu-
ron 1 is Case 2, and Lemma 1 holds for Neuron 1, then we can once again achieve
pairwise feasibility. These two scenarios are depicted in Fig. 9(a), (d), respectively.
When “;—‘T; <y12 < % (i.e., both neurons are Case 2), for pairwise feasibility, we
must have Lemma 1 satisfy for each neuron individually. This creates a situation
shown in Fig. 9(b), (c), where the separatrices for Neuron 1 and Neuron 2 intersect,
which implies that, at the point of intersection, we have two different vector fields
under the same control (u = U'), which is a contradiction. Hence, if both neurons are
Case 2, then we cannot have pairwise feasibility.

A.3 Sketch of Regular Synthesis-Type Sufficient Conditions for Optimality

We outline regular synthesis-type sufficient conditions for optimality and how they
apply to the optimal control problems considered in this paper. Any sufficiency theory
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Fig. 9 Representation of the solution space with respect to the quasistatic equilibrium line. (a) When
Neuron 1 satisfies Case 1 i.e. y; > V7 /V, which implies y» < V7 /Vg, i.e. Neuron 2 satisfies Case 2.
(b), (c) The parameters of the neurons are such that 1 < y; < Vr/Vg and V5 /Vr < y1 <1 respectively
which implies both neurons are Case 2. Note that for these two scenarios, the selective spiking is not
possible for both the neurons. (d) The parameters satisfy y, > V7 /V, i.e. Neuron 2 is Case 1 which
implies Neuron 1 is Case 2, y| < V7 /V. For (a) and (d), selective spiking is possible for both neurons.

in optimal control problems is based on the fact that the cost-to-go function V of the
optimal control problem evaluated along extremal controls u* in a synthesis (to be
verified as the optimal one), that is, the value of the objective is evaluated along the
controls u, as a function of variable initial time g and initial condition vy, is, in a
suitable way, a solution to the Hamilton—Jacobi—Bellman equation (38),

E(r,v)—l—w(t,v)f(t,v,u )+ L(t,v,u*)=0. (90)

If the cost-to-go function is continuously differentiable everywhere—and this is Bell-
man’s classical argument—then this is easy: given any other control # with corre-
sponding trajectory v defined over an interval [fg, T'], it follows that

d . v, I -
av(z, V(1)) = 5(:, V(1) + E(t, V() f (2, ¥(1)), (1))
> —L(V(1), u(1)), 1)
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and thus
T

V(T,%(T)) — V1o, Vo) > —/ L(¥(s), ii(s)) ds. (92)

fo

Hence

T
V(10, Vo) 5/ L(¥(s),ii(s))ds + V(T,¥(T))

fo
T
< / L(V(s),u(s))ds + (T, ¥(T)) = J (i), 93)
fo

and thus the cost J (&) along & is not better than the cost along the control u* given
by V(ty, Vo). This proves the optimality of the controls in the synthesis.

The main issue with this argument is that problems for which the cost-to-go func-
tion is differentiable everywhere are generally rare. It is a much more common sce-
nario that the value function loses differentiability on thin subsets, typically given
by locally finite unions of embedded submanifolds of positive codimension. For the
problems considered in this paper, such examples are given by the separatrix in Ex-
ample 2 or a cut-locus that arises for the spike sequence [2, 1]. In fact, such structures
are omnipresent in solutions of time-optimal control problems.

This argument breaks down if there exist lower-dimensional submanifolds along
which V is not differentiable since, in principle, the set of times when the controlled
comparison trajectory v lies in such a submanifold can be an arbitrary closed subset
of the interval [y, T'], and it is simply no longer possible to differentiate the function
V along such a trajectory. Alleviating this issue is a highly nontrivial technical matter,
which has led to regular synthesis-type arguments for optimality [39].

The key technical step is to perturb the given comparison trajectory v in such a
way that the perturbed trajectory has a cost that is close to J (i), whereas it meets the
manifolds where V is not differentiable only in a finite set of times. It is clear that
then the previous argument can be carried out piecewise, and the result follows in
the limit as the approximations approach v. We briefly sketch the main steps of this
reasoning, but refer the reader to Chap. 6.3 in [34], where the technical details of this
argument are carried out in full.

In the first step, the comparison control & (a priori only a Lebesgue-measurable
control) is approximated by a sequence i,, of piecewise constant controls for which
both the corresponding trajectories V,, converge to Vv uniformly over the interval
[to, T] and the integrals converge as well,

T T
/ L(ff,, (s), up (s)) ds — / L(f'(s), IZ(S)) ds. 94)
to fo

Note that the approximating controls are piecewise constant, that is, have only a
finite number of switchings, and are not just simple measurable controls with a finite
number of values as in the definition of Lebesgue measurability.

In the second step, the initial time #y and initial condition vq are perturbed so
that the resulting trajectories v, only meet the submanifolds where the cost-to-go
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function V is not differentiable in at most a finite number of points. Essentially, this
is just a transversality argument: since the perturbed controls are piecewise constant,
trajectories are integral curves of smooth vector fields. If the flow of a vector field at
a point p is transversal to an embedded submanifold M with positive codimension,
then there exists € > 0 such that the flow does not lie in M for 0 < |¢| < &, and thus
the corresponding time is an isolated point of the set of times when the flow meets
M . We just need to make sure that there exist enough initial conditions for which this
holds, and this can be guaranteed using Sard’s theorem [40].

As a consequence of all these perturbations, we need to take the limit as n — oo
and the trajectories generally no longer satisfy the terminal constraint. But all this
works out in the limit if the cost-to-go function V is lower semicontinuous (and this
is a necessary condition for it to be the value function of an optimal control problem in
which the objective is minimized) and in addition satisfies the following two technical
requirements:

(1) For every constant admissible control u, the function V has the no-downward-
Jjumps property along the vector field x — f(x, u), that is, if y is an integral
curve of such a vector field defined on a compact interval [a, b], y : [a, b] — G,
t — y(t), then, for all s € (a, b], we have that

%i\r‘r(l)inf V(y (s — h)) < V(y(s)). 95)

(2) For every point g in the terminal manifold and every & > 0, there exists a
nonempty open set 2 C G N B.(g) such that, for all z € §2, we have that

V(z) <p(q) +e. (96)

These two conditions are satisfied automatically wherever V is continuous.

For the problems considered in this paper, in Case 2 the cost-to-go function V
need not be continuous, but it is not difficult to argue that condition (1) is satisfied.
The value cannot decrease along constant controls as the separatrix would be crossed.
This simply holds since trajectories can only cross from the region where the cost is
smaller into the region where the cost is higher as the separatrix is defined by the
maximum value of the control. Similarly, condition (2) is a weak continuity require-
ment that allows discontinuities in the value function at the terminal manifold. It only
requires that, for any potential target point g, there exist sufficiently rich sets that
are close such that the cost-to-go function V still has some upper continuity prop-
erty along sequences converging to ¢ in those sets. For our problems, this is satisfied
by simply choosing 2 to lie in the regions where the optimal control is at its max-
imum value. Thus these conditions, albeit technical, are quite natural and generally
are easily verified as is the case for our problems.

We close with some remarks about the synthesis in Case 1 when the trajectories
contain the boundary arc. In this case, following the guard is in fact the only feasi-
ble control that the system can take, and thus, once the system hits the guard, the
only control possible is the boundary control. This allows us to eliminate the state
space constraint by extending the terminal set to include the guard vy = V5. We only
need to define a penalty term ¢, on the guard that represents the time it takes for the
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boundary control to reach the terminal state v; = Vr. This transforms the time opti-
mal control problem with state space constraint v, < V into an unconstrained opti-
mal control problem whose terminal set consists of the union of two manifolds: the
regular terminal manifold v; = V7 with penalty ¢; = 0 and the guard vy = Vg with
penalty function ¢;. The two manifolds intersect at the point [v] wll =[vr V617,
and ¢, = 0 at this point. In this case, the cost-to-go function is not differentiable
along the trajectory that ends in this point, but the conditions mentioned before are
satisfied, and this is the optimal synthesis.

We emphasize that this argument is merely a convenient trick, which becomes
available for this particular situation in Case 1. In general, however, that is, for Case
2 and the subsequent time optimal control problems of spike sequences, the methods
and techniques sketched before are essential. Standard sufficiency arguments based
on viscosity solutions to the Hamilton—Jacobi—-Bellman equation fail once the cost-
to-go function becomes discontinuous. This feature, related to questions of small-
time local controllability (e.g., see [34, Sect. 7.2]), is no obstacle for synthesis type
sufficiency arguments.

A.4 Computation of A Controllable Sets

We now show the calculation for Neuron 1. There are two possible situations, namely,
A < T and A > T, which result in two different switching structures where T de-
notes the time to reach [V Vg1 along the separatrix I" from the initial condition

v(0) = {(vi,v2) : Ve T, v, =0}. (97)

If A <Tj, then we can find the neuron voltages (v, v2) from which Neuron 1
reaches V7, in time A,

b
vl :ealA(vT - a—iU(l —e—“lA)). (98)

Note that vy does not come in (98) since for all v € I}, Neuron 1 reaches threshold
without Neuron 2 hitting the guard.

For A > Ty, we assume that it takes 7 for Neuron 2 to hit the guard Vi under bang
control,

99)

The voltage of Neuron 1 at this time is calculated using (33). This means for
(v1, v2) to be on the A-controllable set, Neuron 1 must reach the threshold V7 in
(A — 1) along the boundary arc, that is,

- b .
Vr=e Ay () + LU (1 —em (4D, (100)
aj
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Simplifying (100), we get

b b 1 b
v =e“1A(VT — e — e“lAg(vz)<—1U(1 - ) - —1u>> (101)
aj ai g(v2) ai

b
vz—éU

Ve — Z_Z U
selective spiking of Neuron 1.
Similarly, for Neuron 2, we can find the set £(A).

ﬂ
where g(vp) = ( )"2. From this we can find the A controllable set for the

A.5 Calculation of off-Time for Fixed-Time Selective Spiking

In this section, we show how the off-time in (70) can be calculated to induce a spike in
a specified time. Without loss of generality, we once again assume the target pattern
Xp=[(1,1)], v(0) = [v; 0]7, and #; < Ty. For the other cases, the computation is
similar and follows from the optimal control structure discussed in Sects. 3.1 and 3.2.
Let us denote the voltage at the end of the off segment v(f) = [01 0]7. Now, using
(42) in (70), we have

1 1
—10g<2) — —log(E(0)) =1,
aq V1 aq

b (102)
au

1= (Vr = 2U) exp(ai (1 — log(v1))

aj

v =

Substituting 9y into f = al—l log (z—i), we get the desired off-time. Note that, for #; >
T;, we will need to use the boundary segment in (102).
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