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Abstract Continuum neural field equations model the large-scale spatio-temporal
dynamics of interacting neurons on a cortical surface. They have been extensively
studied, both analytically and numerically, on bounded as well as unbounded do-
mains. Neural field models do not require the specification of boundary conditions.
Relatively little attention has been paid to the imposition of neural activity on the
boundary, or to its role in inducing patterned states. Here we redress this imbalance
by studying neural field models of Amari type (posed on one- and two-dimensional
bounded domains) with Dirichlet boundary conditions. The Amari model has a Heav-
iside nonlinearity that allows for a description of localised solutions of the neural
field with an interface dynamics. We show how to generalise this reduced but ex-
act description by deriving a normal velocity rule for an interface that encapsulates
boundary effects. The linear stability analysis of localised states in the interface dy-
namics is used to understand how spatially extended patterns may develop in the
absence and presence of boundary conditions. Theoretical results for pattern forma-
tion are shown to be in excellent agreement with simulations of the full neural field
model. Furthermore, a numerical scheme for the interface dynamics is introduced and
used to probe the way in which a Dirichlet boundary condition can limit the growth
of labyrinthine structures.
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1 Introduction

Neural field models are now widely recognised as a natural starting point for mod-
elling the dynamics of cortical tissue. Since their initial inception in the 1970s by
Wilson and Cowan [1, 2], Amari [3, 4], and Nunez [5], they have been extensively
studied in idealised one-dimensional or planar settings, which are typically either in-
finite or isomorphic to a torus. This has facilitated both the mathematical and the
numerical analyses of spatio-temporal patterns, and much has been learnt about lo-
calised states, global periodic patterns, and travelling waves. Indeed there are now a
number of reviews summarising work to date, such as [6–9], and how neural field
modelling has shed light on large-scale brain rhythms, geometric visual hallucina-
tions, mechanisms for short term memory, motion perception, binocular rivalry, and
anaesthesia, to list just a few of the more common application areas. For the most
recent perspective on the development and use of neural field modelling we recom-
mend the book by Coombes et al. [10], which also includes a tutorial review on the
relevant mathematical methodologies (primarily drawn from functional analysis, Tur-
ing instability theory, applied nonlinear dynamics, perturbation theory, and scientific
computation). This substantial body of knowledge is still expanding with further re-
finements of the original neural field models to include other important aspects of cor-
tical neurobiology, including axonal delay [11], synaptic plasticity [12], and cortical
folding [13], as well as rigorous mathematical results for existence and uniqueness of
stationary solutions on bounded subsets of Rn without regard to imposition of bound-
ary conditions [14], and new numerical algorithms for their evolution and numerical
bifurcation analysis [15, 16]. Neural field models are typically expressed in the form
of integro-differential equations, whose associated Cauchy problems do not require
the specification of boundary conditions. The value attained by the activity variable
at the boundary is determined by the initial condition and by the non-local synaptic
input. However, very little work has been done on the enforcement of boundary con-
ditions in neural fields, or on their effect on inducing patterned states. An exception to
this statement is the work of Laing and Troy [17], who proposed an equivalent partial
differential equation (PDE) formulation of the neural field equation. While boundary
conditions must be specified in the PDE setting, they are often chosen to ensure the
smooth decay of localised solutions rather than model any biophysical constraint. It
is already appreciated that the continuum neural fields can be extended to include dif-
ferent properties that can strongly influence the spatio-temporal dynamics of waves
and patterns. For example, heterogeneities may give rise to wave scattering [18] or
even extinction [19]. The topic we address in this paper is to ponder the role that
a boundary can have on spatio-temporal patterning. Given the historical success of
analysing neural fields with a Heaviside firing rate, our first step in this direction will
be taken within the so-called “Heaviside world” of Amari [20]. Amari’s seminal work
developed an approach for analysing localised solutions of neural field models posed
on the real line, and has recently been extended to the planar case by Coombes et
al. [21], albeit assuming that the synaptic connectivity can be expressed in terms of
a linear combination of zeroth order modified Bessel functions of the second kind.
This approach is not only able to describe localised stationary solutions, often called
bumps in one dimension and spots in two dimensions, but also dynamically evolve
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states such as travelling pulses and their transients as well as spreading labyrinthine
patterns. Since the Amari approach, in either one or two spatial dimensions, effec-
tively tracks the boundary between a high and low state of neural activity, where
the firing rate switches, we shall refer to it as an interface dynamics. Importantly it
gives a reduced description of solutions to a neural field model without any approx-
imation. On the down side the approach cannot be generalised to treat smooth firing
rate functions, though simulations by many authors have shown that the behaviour
of the Amari model is consistent with neural field models utilising a steep sigmoidal
function. Here we show how the interface dynamics approach can be generalised to
include the effects of Dirichlet boundary conditions for arbitrary choices of synaptic
connectivity.

In Sect. 2 we introduce a simple scalar neural field model in the form of an integro-
differential equation defined on a finite domain, and discuss natural boundary condi-
tions for neural tissue. Focussing on Dirichlet boundary conditions we develop the
key mathematical idea in this paper. Namely that the re-formulation of the original
scalar model in terms of the evolution of its gradient allows for an interface descrip-
tion that respects Dirichlet boundary conditions. To illustrate the effectiveness of this
approach we first treat the example of localised states in a one-dimensional model
in Sect. 3. This is a useful primer for the construction of an interface dynamics in a
two-dimensional model, presented in Sect. 4. The first part of Sect. 4 also shows how
to generalise the original treatment in [21], for infinite domains, to handle arbitrary
choices of the synaptic connectivity function (removing the restriction to combina-
tions of Bessel functions). Localised bump and spot solutions of the interface dynam-
ics are explicitly constructed and their stability determined. In Sect. 5 we extend this
approach to treat Dirichlet boundary conditions, and in Sect. 6 we show explicitly
how this approach can be used to handle spots and their azimuthal instabilities. We
work with standard Mexican hat synaptic connectivities, as well as piece-wise con-
stant caricatures for which calculations simplify. All our theoretical results are found
to be in excellent agreement with direct simulations of the original neural field model.
We also develop a numerical scheme to evolve the interface dynamics and use this
to highlight how a Dirichlet boundary condition can limit the growth of a spreading
pattern arising from the azimuthal instability of a spot. Finally in Sect. 7 we discuss
natural extensions of the work in this paper.

2 A Neural Field Model with a Boundary Condition

Although single neuron models are able to predict dynamical activity of real neu-
rons that have a wide variety of spiking behaviour [22, 23], they are not well suited
to describe the behaviour of tissue on the meso- or macro-cortical scale. To a first
approximation the cortex is often viewed as being built from a dense reciprocally
interconnected network of cortico-cortical axonal pathways [24]. These fibres make
connections within the roughly 3 mm outer layer of the cerebrum. Given the large
surface area of the (folded) cortex (∼800–1500 cm2) and its small depth it is sensible
to view it as a two-dimensional surface. Neural field modelling, on a line or a surface,
is a very well-known framework for capturing the dynamics of cortex at this coarse
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level of description [10]. As well as being relevant to large-scale electroencephalo-
gram (EEG) and magnetoencephalogram (MEG) neuroimaging studies [8], the un-
derstanding of epileptic seizures [25], visual hallucinations [26, 27], and neural spiral
waves [28, 29], they have also been used to investigate localised states linked to short
term working memory in the prefrontal cortex [30, 31]. In the latter regard the ide-
alised neural field model of Amari has proven especially advantageous [32]. This was
originally posed on an infinite domain, without regard to the role of boundary condi-
tions in shaping or creating patterns. However, the neural circuits of the neocortex are
adapted to many different tasks, giving rise to functionally distinct areas such as the
prefrontal cortex (for problem solving), motor association cortex (for coordination of
complex movement), the primary sensory cortices (for vision, hearing, somatic sen-
sation), Wernicke’s area (language comprehension), Broca’s Area (speech production
and articulation), etc. Thus it would seem reasonable to parcellate their functional ac-
tivity by the use of appropriate boundaries and boundary conditions. Previous work
by Daunizeau et al. [33] on dynamic causal modelling for evoked responses using
neural field equations has used Dirichlet boundary conditions. Here we extend the
standard Amari model with the inclusion of a finite domain with an imposed Dirich-
let boundary condition that clamps neural activity at the boundary to a specific value.
Of course other choices are possible, though this one is a natural way to enforce a
functional separation between cortical areas.

The scalar neural field model that we consider is given by

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

dyw
(|x − y|)H [

u(y, t) − κ
]
, (1)

where Ω is a planar domain Ω ⊆ R
2, with x ∈ Ω and t ∈ R

+. The variable u rep-
resents synaptic activity and the kernel w represents anatomical connectivity. For
simplicity we shall only consider the case that this depends on Euclidean distance.
The nonlinear function H represents the firing rate of the tissue and will be taken
to be a Heaviside so that the parameter κ is interpreted as a firing threshold. We as-
sume that a suitable initial condition is specified for (1), and we aim to impose on the
corresponding solution u(x, t) the Dirichlet boundary condition

u(x, t)|x∈∂Ω = uBC, (2)

where uBC is the prescribed boundary activity. For simplicity, we treat the case of
homogeneous boundary conditions.

It was the essential insight of Amari that the Heaviside choice allows the explicit
construction of localised states (stationary bumps and travelling pulses) on infinite
domains, as well as the construction of these on finite domains without a boundary
condition. Our key observation that allows the extension of the Amari approach to
handle the boundary condition (2) is to expose this constraint by writing the state of
the system in terms of a line integral:

u(x, t) = uBC +
∫

Γ (x)

z(y, t) · dy. (3)
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Here Γ (x) denotes an arbitrary path that connects a point on the boundary to the
point x within its interior, and z = ∇xu ∈ R

2. An evolution equation for z is easily
constructed by differentiation of (1) to give

∂z(x, t)

∂t
= −z(x, t) +

∫
Ω

dy∇xw
(|x − y|)H [

u(y, t) − κ
]
, (4)

with u given by (3).
We shall now consider Eqs. (3) and (4) as the neural field model of choice, and in

the next sections develop the extension of the Amari interface dynamics. To set the
scene we first consider a one-dimensional spatial model with a focus on stationary
bump solutions.

3 One Spatial Dimension: A Primer

Prior to describing the analysis for a two-dimensional Amari neural field model with
a Dirichlet boundary condition, we first consider the more tractable one-dimensional
case. This illustrates the main components of our mathematical approach, as well as
delivers new results about stable boundary induced bumps.

The one-dimensional version of (3) and (4) on the finite domain [−L,L] with an
imposed boundary condition takes the explicit form

zt (x, t) = −z(x, t) +
∫ L

−L

dywx

(|x − y|)H [
u(y, t) − κ

]
, (5)

with

u(x, t) = uBC +
∫ x

−L

dyz(y, t). (6)

Here x ∈ [−L,L], t ∈ R
+, and uBC denotes a constant boundary value imposed on

the left end of the interval, namely u(−L) = uBC. In passing, we note that u(L) is
determined once u(−L) is fixed, and some choices of uBC will result in an even bump
u(x), for which u(L) = u(−L) = uBC. We now focus on a bump solution for which
R(u) = {u(x) > κ} is a finite, connected open interval. The edges of the bump xi(t),
i = 1,2, are defined by a level-set condition that takes the form

u
(
xi(t), t

) = κ, i = 1,2. (7)

We shall refer to the two bump edges as the interface, as they naturally separate
regions of high and low firing activity. The differentiation of the level-set condition
(7) generates a rule for the evolution of the interface according to

ẋi (t) = − 1

z(xi(t), t)

∫ xi (t)

−L

∂tz(y, t)dy, i = 1,2. (8)

Using the second fundamental theorem of calculus we obtain an expression for the
interfacial velocities

ẋi (t) = (κ − uBC) − ψ(xi(t), t) + ψ(−L, t)

z(xi(t), t)
, i = 1,2, (9)
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where

ψ(x, t) =
∫ L

−L

dyw
(|x − y|)H [

u(y, t) − κ
] =

∫ x2(t)

x1(t)

dyw
(|x − y|). (10)

A closed form expression for z(x, t) may also be found by integrating (5) using the
method of variation of parameters to give

z(x, t) = η(t)z0(x) +
∫ t

0
dsη(t − s)

[
w

(∣∣x1(s) − x
∣∣) − w

(∣∣x2(s) − x
∣∣)], (11)

where η(t) = e−tH(t), and H is the Heaviside step function. Equations (9)–(11) de-
termine the interface dynamics for time-dependent spatially localised bump solutions
that respect the Dirichlet boundary condition.

Since it is well known that the Amari model supports a stationary bump solution
when the synaptic connectivity has a Mexican hat shape we now revisit this scenario
and choose

w(x) = 1√
cπ

[
a1√
b1

e−x2/b1 − a2√
b2

e−x2/b2

]
, (12)

where b1, b2, c > 0. Moreover, we will focus on the case that the stationary bump
is symmetric about the origin. In this case demanding that the interface velocity is
equal to zero requires that the numerator in (9) vanish. The formula for ψ given by
(10) will also become time independent, and if we denote this by P(x) then we have

κ = uBC +P(−	/2) −P(−L), (13)

where we have set x1 = −	/2 and x2 = 	/2 so that the bump width is given by 	 =
x2 −x1. The formula for P is easily calculated as P(x) = p(x;a2, b2)−p(x;a1, b1),
where

p(x;a, b) = a

2
√

c

[
erf

(
x1 − x√

b

)
− erf

(
x2 − x√

b

)]
. (14)

Hence, the bump width is determined implicitly by the single Eq. (13), and the bump
shape, q(x), is calculated from (6) as

q(x) = uBC +P(x) −P(−L). (15)

To determine the stability of the bump solution we can follow the original approach
of Amari and linearise the interface dynamics around the stationary values for xi .
Alternatively we can follow the Evans function approach, reviewed in [34], which
considers perturbations at all values of x (rather than just at the bump edges). Here
we pursue the latter approach, though it is straightforward to check that the former
approach gives the same answer.

To determine the linear stability of a bump we write u(x, t) = q(x) + eλt ũ(x)

where ũ � 1. In this case the corresponding change to z is given by z(x, t) =
dq(x)/dx + eλt z̃(x), where z̃(x) = ∂ũ(x)/∂x. Expanding (5) to first order gives

(λ + 1)
dũ(x)

dx
=

∫ L

−L

dywx

(|x − y|)δ(q(y) − κ
)
ũ(y). (16)
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Fig. 1 Effect of Dirichlet boundary condition uBC = 0 on the bifurcation diagram of a bump solution.
(A): bump solutions for Eq. (1) with Ω = [−10π,10π ]. (B): bumps solutions for Eqs. (3)–(4) posed on
Ω = [−10π,10π ] with Dirichlet boundary condition uBC = 0. Stable (unstable) solutions are indicated
with solid (dashed) lines. The insets show the shapes of the lower (stable) bumps at κ = 0.7 for q(x) (blue)
and z(x) (red). Parameters are a1 = 14, a2 = 13, b1 = 24, b2 = 150, c = 5

For the Dirac-delta function occurring under the integral, we can use the formal iden-
tity

δ
(
q(x) − κ

) = δ(x − x1)

|q ′(x1)| + δ(x − x2)

|q ′(x2)| , (17)

and integrate (16) from −L to x and use ũ(−L) = 0 to obtain

(λ + 1)ũ(x) = ũ(x1)

|q ′(x1)|
[
w

(|x − x1|
) − w

(|L + x1|
)]

+ ũ(x2)

|q ′(x2)|
[
w

(|x − x2|
) − w

(|L + x2|
)]

. (18)

Here q ′(x) = P ′(x) = w(|x − x1|) − w(|x − x2|).
From (18) we may generate two equations for the amplitudes (ũ(x1), ũ(x2)) by

setting x = x1 and x = x2. This gives a linear system of equations that we can write
in the form [A− (λ + 1)I ](ũ(x1), ũ(x2)) = (0,0), where

A =
[ w(0)−w(L+x1)|q ′(x1)|

w(	)−w(L+x2)|q ′(x2)|
w(	)−w(L+x1)|q ′(x1)|

w(0)−w(L+x2)|q ′(x2)|

]
. (19)

Requiring non-trivial solutions gives a formula for the spectrum as det[A − (λ +
1)I ] = 0, which yields

λ± = −1 + TrA± √
(TrA)2 − 4 detA

2
. (20)

Hence a bump solution will be stable provided Reλ± < 0.
In Fig. 1 we plot the bump width as a function of the threshold κ for a neural

field posed on a finite domain Fig. 1(A) and, for the reformulated neural field with an
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imposed Dirichlet boundary condition uBC = 0 Fig. 1(B), using solid (dashed) lines
for stable (unstable) solutions. For the former case we recover the expected Amari
result, namely that there is coexistence between two bumps, the widest of which is
stable. However, when we impose a Dirichlet boundary condition, four coexisting
bumps are found for sufficiently large κ , and two of these bumps are stable. In other
words, the Dirichlet boundary condition induces a new stable bump, whose active
region occupies a large portion of the domain.

4 Two Spatial Dimensions: Infinite Domain

Before discussing the extension of Sect. 3 to a finite two-dimensional domain with
an imposed boundary condition it is first instructive to consider the problem posed
on R

2. An interface description for this case was originally developed in [21], albeit
for a special choice of synaptic connectivity kernel. By exploiting certain properties
of the modified Bessel function of the second kind it was possible to reformulate
integrals over two-dimensional domains in terms of one-dimensional line integrals.
This allowed the interface dynamics to be expressed solely in terms of the shape
of the active region in the tissue, namely a one-dimensional closed curve. Here we
extend this approach to a far more general class of synaptic connectivity kernels,
which include combinations of radially symmetric Gaussian functions (12).

We consider the integro-differential equation given by (1) with Ω = R
2. We

decompose the domain Ω by writing Ω = Ω+ ∪ ∂Ω+ ∪ Ω− where ∂Ω+ repre-
sents the level-set which separates Ω+ (excited) and Ω−(quiescent) regions. These
domains are given explicitly by Ω+ = {x|u(x) > κ}, Ω− = {x|u(x) < κ}, and
∂Ω+ = {x|u(x) = κ}. We shall assume that ∂Ω+ is a closed contour (or a finite
set of disconnected closed contours). In Fig. 2 we show a direct numerical simulation
of the full space–time model to illustrate that a synaptic connectivity function that
is a radially symmetric difference of Gaussians can support a spreading labyrinthine
pattern. Similar patterns have previously been reported and discussed in [21, 35] for
both Heaviside and steep sigmoidal firing rate functions. A description of the nu-
merical scheme used to evolve the full space–time model is given in Appendix 1.
Differentiation of the level-set condition u(∂Ω+(t), t) = κ gives the normal velocity
rule:

cn ≡ n · d

dt
∂Ω+ = ut (x, t)

∇xu(x, t)

∣∣∣
x=∂Ω+(t)

, (21)

where we have introduced the normal vector n = −∇xu/|∇xu| along ∂Ω+(t). We
will now show that cn can be expressed solely in terms of integrals along ∂Ω+(t).
Let us first consider the denominator in (21). The temporal integration of (4), using
variation of parameters, gives

∇xu(x, t) = z(x, t) = η(t)z0(x) +
∫ t

0
dt ′η

(
t ′
)∇xψ

(
x, t − t ′

)
, (22)

where η(t) = e−tH(t), z0(x) = ∇xu(x,0) denotes gradient information at t = 0, and

ψ(x, t) =
∫

Ω+(t)

dyw
(|x − y|). (23)
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Fig. 2 Space-time simulations of the field u(x, t) showing a spreading labyrinthine structure in a 2D
Amari model (on a large domain [−L,L] × [−L,L]) with a radially symmetric difference of Gaussians
connectivity, namely w(r) = w(r), with w(r) given by (12). Parameters are κ = 0.03, a1 = 3.55, a2 = 3,
b1 = 2.4, b2 = 3.2, c = 10, and L = 12π

The term ∇xψ in (22) can be constructed as a line integral using the integral vector
identity:

∇xψ(x, t) =
∫

Ω+(t)

dy∇xw
(|x − y|) = −

∮
∂Ω+(t)

dsn(s)w
(∣∣x − y(s)

∣∣). (24)

Thus the denominator in (21) can be expressed solely in terms of a line integral
around the contour ∂Ω+(t). The representation of the numerator in (21) in terms of
a line integral rather than a double integral is more challenging. In previous work
we have shown that this can be achieved for the special case that the weight kernel
is constructed from a linear combination of zeroth order modified Bessel functions
of the second kind [21]. In Appendix 2 we show that a line-integral representation
can be constructed for a far more general class of anatomical connectivity patterns,
making use of the divergence theorem. Using this result the numerator of (21) can be
written

ut

(
∂Ω+(t), t

) = −κ + ψ
(
∂Ω+(t), t

)
, (25)

where

ψ(x, t) =
∮

∂Ω+(t)

dsϕ
(∣∣x − γ (s)

∣∣) x − γ (s)

|x − γ (s)| · n(s) +KC, (26)
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Fig. 3 A numerical simulation of the interface dynamics for the same scenario as Fig. 2. Here the thresh-
old condition where u = κ is given by the solid blue line, whilst the green arrows show the normal velocity
of the moving interface. All parameters as in Fig. 2

and s is a parametrisation for points on the contour γ ∈ ∂Ω+. Here,

ϕ(r) = 1

r

∫ r

∞
xw(x)dx, K =

∫
R2

w(x)dx and

C =

⎧⎪⎨
⎪⎩

1 if x ∈ Ω+,

1/2 if x ∈ ∂Ω+,

0 if x ∈ Ω−.

(27)

Hence the normal velocity rule (21) can be expressed solely in terms of one-
dimensional line integrals involving the shape of the active region Ω+ (which is
prescribed by ∂Ω+). This is a substantial reduction in description as compared to
the full space–time model, yet is exact.

As an example of the approach above let us consider a difference of Gaus-
sians with w(r) given by (12). A simple calculation for this choice shows that
K = √

π/c[a1
√

b1 − a2
√

b2] and

ϕ(r) = 1

2r
√

cπ

[
a2

√
b2e−r2/b2 − a1

√
b1e−r2/b1

]
. (28)

In Fig. 3 we show a numerical simulation prescribed by the interface method, with
initial data equivalent to that from the full space–time simulation shown in Fig. 2. The
excellent agreement between the two figures is easily observed. The full details of our
numerical scheme for implementing the interface dynamics are given in Appendix 3.
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5 Two Spatial Dimensions: Dirichlet Boundary Condition

Using the notation of Sect. 4 we now show how to extend the one-dimensional ap-
proach of Sect. 3 to develop an interface dynamics for planar Amari models on a
bounded domain with Dirichlet boundary conditions. For a single active region the
dynamics for z(x, t) is given by (4), which can be written succinctly as

∂z(x, t)

∂t
= −z(x, t) + ∇xψ(x, t), (29)

with ψ given by (23), or in terms of ∂Ω+(t), by (26). Using (3) the level-set condition
is

κ − uBC =
∫

Γ (∂Ω+(t))

z(r, t) · dr. (30)

Using the identity

d

dt

∫
Γ (∂Ω+(t))

z(r, t) · dr = z
(
∂Ω+(t), t

) · d

dt
∂Ω+(t)+

∫
Γ (∂Ω+(t))

zt (r, t) · dr, (31)

and differentiating (30) with respect to t , we obtain the normal velocity rule

cn ≡ n · d

dt
∂Ω+ = 1

|z(x, t)|
∫

Γ (x)

zt (r, t) · dr
∣∣∣
x=∂Ω+(t)

. (32)

Here the normal vector is given by n = −z/|z| along the contour ∂Ω+. Using (29)
we may write the numerator in the normal velocity rule (32) as

∫
Γ (∂Ω+(t))

zt (r, t) · dr = uBC − κ + ψ
(
∂Ω+(t), t

) − ψ
(
ζ
(
∂Ω+(t)

)
, t

)
, (33)

where ζ : ∂Ω+(t) → ∂Ω is a mapping from points on the contour ∂Ω+(t) to points
on the boundary ∂Ω .

Hence, using the formulae for z and ψ from Sect. 4, namely Eqs. (22), (24), and
(26), then all of the terms in the normal velocity rule (32) may be expressed as one-
dimensional line integrals. This yields the interface dynamics for Dirichlet boundary
conditions, and once again we see that it is a reduced yet exact alternative formulation
to the full space–time model. In contrast to the interface dynamics on an infinite
domain one needs only develop further numerical algorithms for computing the line
integral in (3). The numerical method for implementing the interface dynamics can be
based upon that, for an infinite domain, with a specific choice for the paths Γ defining
this integral. Each of the paths Γ connects a point x in the interior of the domain to a
point on the boundary, and we set ζ (∂Ω+(t)) to be the endpoint of Γ (∂Ω+(t)) (see
Appendix 3 for details on the numerical scheme).

Note that we do not have to numerically integrate along this path (to determine the
normal velocity), and that we need only to determine the values of ψ(x, t) at the two
endpoints.
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Fig. 4 A spreading pattern (C) governed by the space–time model (3) and (4) with a radially symmetric
synaptic connectivity kernel given by (12) and a Dirichlet boundary condition uBC = 0 on a domain of
size [−L,L] × [−L,L]. The corresponding interface dynamics is shown in (D). Rows (A) and (B) show
the components of the gradient z in the x and y directions, and these are used to compute the activity of
the neuronal tissue shown in row (C). Parameters are κ = 0.05, a1 = 3.55, a2 = 3, b1 = 2.4, b2 = 3.2,
c = 10, and L = 5π

Figure 4 shows a direct numerical simulation computed using the evolution of the
gradient z = ∇xu as well as the corresponding interface dynamics. We see excel-
lent agreement between the two approaches. The obvious advantage of the interface
dynamics is that one need only evolve the shape of the active region to fully recon-
struct the full space–time dynamics using (3) and (24). We see from Fig. 4 that the
main effect of the Dirichlet boundary condition is to limit the spread of a labyrinthine
structure and ultimately induce a highly structured stationary pattern, as expected.

6 Spots in a Circular Domain: Dirichlet Boundary Condition

Given the large amount of historical interest in spot solutions of neural field models
on infinite domains, and those on finite domains without incorporating the role of
boundary conditions [35–39], it is worthwhile to revisit this specific class of solutions
on a finite disc with an imposed Dirichlet boundary condition. We shall consider
radially symmetric synaptic connectivity kernels and a disc of radius D with a spot
(circularly symmetric) solution of radius R. In this case u(r, t) = q(r) with r = |r|
for all t , and q(D) = uBC, with q(R) = κ and q(r) > κ for r < R and q(r) < κ for
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R < r < D. We shall denote the corresponding stationary field for ψ by ψ(r), and
this is conveniently constructed from (26).

6.1 Construction

An implicit equation for the radius of the bump is obtained after setting the normal
velocity to zero. Using (32) and (33) this yields

κ = uBC + ψ(R) − ψ(D). (34)

For the specific choice of a difference of Gaussians given by (12) we may write
this in the form

ψ(r) = a1√
cπb1

ρ(r;b1) − a2√
cπb2

ρ(r;b2) +KC, (35)

with

ρ(r;α) = −α

2

∫ 2π

0
dθ

e−Q(θ)2/α

Q(θ)2
R(r cos θ − R), (36)

and Q(θ) = √
R2 + r2 − 2Rr cos θ . Although (36) is in closed form it is a challenge

to perform the integral analytically. Thus it is also of interest to consider synaptic
connectivity kernels for which more explicit progress can be made. A case in point is
that of piece-wise constant functions.

Let us first consider a top-hat connectivity defined by

w(r) =
{

w+ > 0, r ≤ σ,

w− < 0, r > σ.
(37)

In this case it is easier to construct ψ(r) directly from (23) as

ψ(r) =
∫

|r ′|<R

dr ′w
(∣∣r − r ′∣∣). (38)

For the top-hat shape (37) we may split the above integral as

ψ(r) = w+
∫

|r ′|<R

|r−r ′|≤σ

dr ′ + w−
∫

|r ′|<R

|r−r ′|>σ

dr ′. (39)

Introducing the area A+(r, σ ) as

A+(r, σ ) =
∫

|r ′|<R

|r−r ′|≤σ

dr ′, r = |r|, (40)

where A+(R,σ ) = κ , the self-consistent equation for a spot (34) takes the form

κ = uBC + (w+ − w−)
[
A+(R,σ ) − A+(D,σ )

]
. (41)
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Following the work of Herrmann et al. [40], we now show how to evaluate the integral
(40) using simple geometric ideas. For example, the area A+(R,σ ) can be calculated
in terms of the area of overlap of two circles, one of centre 0 and radius |r| = R, and
the other of centre r and radius σ subject to the constraint r = R.

Using the results from Appendix 4 we have A+(r, σ ) = A(R,φ0(r, σ )) +
A(σ,φ1(r, σ )), where A(r,φ) = r2(φ − sinφ)/2 and

φ0(r, σ ) = 2 cos−1
(

R2 − σ 2 + r2

2Rr

)
,

φ1(r, σ ) = 2 cos−1
(

σ 2 − R2 + r2

2σr

)
, (42)

with R > D − σ .
Another natural piece-wise constant choice is the piece-wise constant Mexican hat

shape given by

w(r) =

⎧⎪⎨
⎪⎩

w+ > 0, r ≤ σ1

w− < 0, σ1 < r ≤ σ2

0, r > σ2

, σ2 > σ1. (43)

Using a similar argument to that for the top-hat connectivity we find that

κ = uBC + (w+ − w−)
[
A+(R,σ1) − A+(D,σ1)

]
+ w−

[
A+(R,σ2) − A+(D,σ2)

]
, (44)

with R > D − σ1.

6.2 Stability

The stability of spots without boundary conditions has been treated by several au-
thors, and see [38] for a recent overview. Here we extend this approach to treat a
finite domain with an imposed Dirichlet boundary condition following very similar
arguments to those presented in Sect. 3.

To determine the linear stability of a spot we write u(r, t) = q(r) +
eλt cos(mθ)ũ(r) where ũ � 1 and m ∈ N. In this case the corresponding change to
z is given by z(r, t) = ∇rq(r) + eλt cos(mθ)z̃(r), where z̃(r) = ∇r ũ(r). Expanding
(4) to first order gives

(λ + 1)z̃(r) =
∫ 2π

0
dθ cos(mθ)

∫ ∞

0
r ′ dr ′∇rw

(∣∣r − r ′∣∣)δ(q(
r ′) − κ

)
ũ
(
r ′), (45)

where |r − r ′| = √
r2 + r ′2 − 2rr ′ cos θ . Using properties of the Dirac-delta distribu-

tion we find

∇r

[
(λ + 1)ũ(r) − ũ(R)

R

|q ′(R)|
∫ 2π

0
dθ cos(mθ)w

(∣∣r − r ′∣∣)|r ′=R

]
= 0. (46)
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Since the term in square brackets in (46) is radially symmetric we may integrate in
the radial direction using ũ(D) = 0 to obtain

(λ + 1)
ũ(r)

ũ(R)

= R

|q ′(R)|
∫ 2π

0
dθ cos(mθ)

[
w

(∣∣r − r ′∣∣)|r ′=R − w
(∣∣r − r ′∣∣)|r ′=R,r=D

]
. (47)

Setting r = R in (47) and demanding non-trivial solutions gives an equation for the
eigenvalues λ in the form Em(λ) = 0, m ∈N, where

Em(λ) = λ + 1 − R

|q ′(R)|
∫ 2π

0
dθ cos(mθ)

[
w

(∣∣r − r ′∣∣)|r ′=R,r=R

− w
(∣∣r − r ′∣∣)|r ′=R,r=D

]
. (48)

Thus a spot solution will be stable provided λm < 0 for all m ∈N where λm is a zero
of Em(λ). Once again the choice of a piece-wise constant connectivity function con-
siderably simplifies further calculations. For example for the top-hat function given
by (37) it is simple to show that

q ′(R) = σ(w− − w+)

R

√
4R2 − σ 2, (49)

and ∫ 2π

0
dθ cos(mθ)w

(∣∣r − r ′∣∣)|r ′=r=R = 2

(
w+ − w−

m

)
sinmθ∗, (50)

where θ∗ is the smaller of the two roots of the equation R
√

2(1 − cos θ) = σ for
θ ∈ [0,2π). Equation (50) allows for the explicit evaluation of (48) for a piece-wise
constant synaptic connectivity.

Using the above analysis we find that, for the smooth Mexican hat function, given
by (12), that for large domains a wide and narrow spot can coexist for a sufficiently
low value of the threshold κ . Moreover, the narrow spots are always unstable (to
modes with m = 0, reflecting uniform changes of size), whilst the wider spots can de-
velop instabilities to modes with m ≥ 2. We note that the mode with m = 1 is always
expected to exist due to rotational invariance (and would give rise to a zero eigenvalue
for all parameter values). This is entirely consistent with previous results for Mexi-
can hat connectivities on domains where no boundary condition is used, as reviewed
in [38]. However, on a finite size disc and with an imposed Dirichlet boundary con-
dition further spots can be induced, with sizes commensurate to that of the radius of
the disc. Both of these scenarios are summarised with the use of Fig. 5. Qualitatively
similar behaviour is found for the piece-wise constant Mexican hat function given
by (43) (not shown). Interestingly for the simple top-hat connectivity, given by (37),
we find similar results for existence, though without azimuthal instabilities to modes
m ≥ 2.
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Fig. 5 Spot radius R as a function of κ for a smooth Mexican hat connectivity given by (12), with param-
eters as in Fig. 4. (A): Infinite domain. (B): Finite domain that is a disc of radius D = 5π , with Dirichlet
boundary condition q(D) = uBC = 0. Linear stability analysis shows that solid (dashed) lines are stable
(unstable). Azimuthal instabilities with various modes are indicated by the mode shapes

7 Discussion

In this paper we have revisited the seminal work of Amari on neural fields and shown
how to incorporate Dirichlet boundary conditions. We have built on the previous work
of Coombes et al. [21] to develop an interface dynamics approach for the evolution
of closed curves defining pattern boundaries. Compared to the full space–time model
with imposed Dirichlet boundary conditions the interface dynamics is reduced, yet
requires no approximations. The interface framework has been illustrated in a num-
ber of settings in both one- and two-dimensions, with a focus on localised states
and their instabilities. In all cases we have highlighted the excellent correspondence
between results obtained from numerical simulations of the full space–time model
and the interface approach. Moreover, we have also emphasised that for piece-wise
constant synaptic connectivities the interface approach becomes quasi-analytical, in
that many of the terms required for the computation of the normal velocity of the
interface can be calculated by hand rather than have to be found numerically. For
spreading patterns that may arise from the azimuthal instability of a localised spot,
the main effect of a Dirichlet boundary condition has been to limit the growth of the
pattern. This was entirely expected, although the precise shape of the resulting sta-
tionary pattern is of course hard to predict without simulation. However, the induction
of other branches of localised states in a neural field model on a disc was more sur-
prising, even though all near the boundary proved to be stable. It should be noted
that the imposition of different boundary conditions may effect the spatio-temporal
evolution of a pattern and the conditions for its dynamics instability. For the sake of
computational simplicity, the value attained by the activity variable at the boundary
was chosen to be a constant (uBC = 0) throughout this paper. However, a full analy-
sis which also treats space- and time-dependent boundary conditions can be readily
developed for the direct numerical simulations, as well as for the equivalent interface
description. There are a number of natural extensions of the approach that we have
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presented here to treat other, more biophysically rich, neural field models which we
outline below.

Although we have focussed exclusively on the Amari model with a Heaviside
firing rate, direct numerical simulations (not shown) readily confirm that boundary
induced patterns can also be seen in models with a smooth sigmoidal firing rate.
Thus it would also be of interest to extend the elegant functional analytic treatment
of localised states in bounded domains by Faugeras et al. [14] to incorporate im-
posed boundary conditions. Some form of spike frequency adaptation (SFA) is often
included in neural field models to mimic a negative feedback process to diminish
sustained firing. This can cause a travelling front to transition to a travelling pulse
[41], or subserve the generation of planar spiral waves [28]. If this current is lin-
ear, as is often the case [42], or itself described by dynamics involving a Heaviside
switch, as in [43], then the interface approach presented here can be generalised.
Given previous work on equivalent PDE models on bounded domains with SFA that
analyses spiral wave behaviour, the treatment of spiral waves from an interface per-
spective would be an advance as it is not limited to synaptic connectivities with a
rational Fourier structure [44]. Another natural extension of the work in this paper
is to neural fields on feature spaces. For example, in the primary visual cortex (V1),
cells respond preferentially to lines and edges of a particular orientation. A standard
neural field model that links points at r and r ′ (in the plane) with a weight w(r|r ′),
should be replaced by a more general form such as w(r|r ′) = w(r, θ |r ′, θ ′), where
θ (θ ′) would represent an orientation preference at r (r ′). This model has recently
been studied using a neural field dynamics with a Heaviside firing rate [45], and is
thus ripe for a further analysis using an interface approach. Finally it is worth point-
ing out the rather pertinent difference between the flat models we have discussed
here and the well-known folded characteristic of real cortex, with its sulci and gyri.
Fortunately there is no substantial difficulty in formulating neural field models on
curved surfaces, though to date there has been surprisingly little analysis of spatio-
temporal pattern formation in this context. The exception to this rule is the simu-
lation studies of Bojak et al. [46], and the recent work of Sato et al. for growing
brains [13].

One obvious caveat to all of the above is that the interface approach is re-
stricted to Amari style models with a Heaviside firing rate. Nonetheless the qual-
itative similarities between Amari models and those with a steep sigmoidal fir-
ing rate are well known. In summary the treatment of neural fields with bound-
ary conditions is a relatively unexplored area of mathematical neuroscience whose
further study should pay dividends for the understanding of neuroimaging data,
and in particular waves of activity in functionally identified and folded cor-
tices.

Appendix 1: Numerical Scheme for the Full Space-Time Model

The numerical simulation of the full space–time model (1) without boundary condi-
tions was performed by discretising the domain on an N -by-N tensor grid, and using
a Nyström scheme for the spatial discretisation [47]. It is known that the major costs
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of this scheme is in the evaluation of the Hammerstein operator occurring on the right-
hand side of (1), which on the grid outlined above requires N4 operations. Owing to
the convolutional structure of the operator, it is possible to decrease considerably
the computational cost of each function evaluation by performing a pseudo-spectral
evaluation of the convolution, using a Fast Fourier Transform (FFT), followed by
an inverse Fast Fourier Transform (IFFT). This reduces the number of operations to
O(N2 logN2) and allows one to simulate neural fields and compute equilibria effi-
ciently. We refer the reader to [16, 21] for further details. In these calculations we set
N = 29 and used Matlab’s in-built ode45 routine, with standard tolerance settings.

In simulations where the state variable is not periodic, such as the ones where we
enforced boundary conditions (Sect. 5) we used a standard matrix-vector multipli-
cation to evaluate the integral operator. A full matrix was precomputed and stored
during the initialisation phase of the time stepping and the grid-size was limited to
N = 27 points, owing to memory constraints. In this setting, the interface dynamic
approach becomes a viable alternative to the full spatial simulation.

Appendix 2: Expressing ψ in Terms of Contour Integrals

In this appendix, we derive the identities (26) and (27). This allows us to represent
the double integral for the non-local input ψ(x, t) given by (23) as an equivalent line
integral. We recall divergence theorem for a generic vector field F on a domain B
with boundary ∂B, ∫

B
(∇ · F )dx =

∮
∂B

F · nds, (51)

where n is the unit normal vector on ∂B. We consider a rotationally symmetric two-
dimensional synaptic weight kernel w(x) = w(r) which satisfies

∫
R2 dxw(x) = K,

for some finite constant K, and we introduce a function g(x) : R2 →R such that

w(x) = (∇ · F )(x) + g(x). (52)

Now considering a function ϕ(r) : R
+ → R which satisfies the condition

limr→∞ rϕ(r) = 0, the vector field can be written using polar coordinates, that is,
F = ϕ(r)(cos θ, sin θ) = ϕ(r)x/|x| with x = r(cos θ, sin θ). Transforming the ex-
pressions K and g into polar coordinates, integrating Eq. (52), and using the diver-
gence theorem, yields

K =
∫ ∞

0

∫ 2π

0
rw(r, θ)dθ dr =

∫ ∞

0

∫ 2π

0
r[∇ · F + g](r, θ)dθ dr (53)

=
∮

F · nds +
∫ ∞

0

∫ 2π

0
rg(r, θ)dθ dr, (54)

where the line integral is described over a circle of radius R → ∞. Therefore, the
weight kernel can be written in the form

K = 2π lim
R→∞Rϕ(R) +

∫ ∞

0

∫ 2π

0
rg(r, θ)dθ dr. (55)
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Since the line integral vanishes, we may set g(x) = Kδ(x). We can now deduce the
equation for ϕ(r) by writing

w(r) = ∂

∂r

[
ϕ(r) cos θ

] ∂r

∂x
+ ∂

∂θ

[
ϕ(r) cos θ

]∂θ

∂x

+ ∂

∂r

[
ϕ(r) sin θ

] ∂r

∂y
+ ∂

∂θ

[
ϕ(r) sin θ

]∂θ

∂y

= ∂ϕ

∂r
(r) + 1

r
ϕ(r), r > 0. (56)

The integration of (56) yields

ϕ(r) = 1

r

∫ r

∞
xw(x)dx. (57)

Using the above results means that (23) can be evaluated as

ψ(x, t) =
∫

Ω+(t)

dyw
(|x − y|)

=
∮

∂Ω+(t)

dsF
(∣∣x − γ (s)

∣∣) · n(s) +K
∫

Ω+(t)

dyδ(x − y)

=
∮

∂Ω+(t)

dsϕ
(∣∣x − γ (s)

∣∣) x − γ (s)

|x − γ (s)| · n(s) +KC. (58)

Here γ ∈ ∂Ω+, and the integration over the Dirac-delta function gives C = 1 if x is
within Ω+, C = 0 if x is outside Ω+, and C = 1/2 if x is on the boundary of Ω+.

Appendix 3: Numerical Scheme for the Interface Dynamics

Time stepping for interface dynamics requires a novel integration scheme. We present
here the implementation used in our numerical experiments, which were found to
be in agreement with the full spatio-temporal simulation, and we defer a numerical
analytical study of its properties to a later date.

The method is formed of four constitutive parts: a scheme for approximating a
closed curve (the interface ∂Ω+(t)), a scheme to approximate the instantaneous nor-
mal velocity of the interface, a scheme to propagate the contour according to the
normal velocity, and a strategy to remesh or postprocess the contour, if needed.

Closed contours: We chose a periodic parametrisation

∂Ω+(t) = {
x ∈R

2 : x1(t) = ξ1(s, t), x2(t) = ξ2(s, t), s ∈ [0,2π)
}
,

where ξ1, ξ2 are smooth and 2π -periodic in s for all t , and we approximated ξ1(s, ·),
ξ2(s, ·) spectrally, using evenly spaced points in s. Using FFTs, we could approximate
quickly and accurately the normal and tangent vectors to ∂Ω+ at each point s, and
each time t . We also parametrise the domain boundary ∂Ω as follows:

∂Ω = {
x ∈R

2 : x1 = η1(s), x2 = η2(s), s ∈ [0,2π)
}
,
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where ηi are continuous and 2π -periodic. We choose the paths Γ to be straight lines
connecting x to its closest point on the boundary,

Γ (x) =
{
x′ ∈R

2 : x′ = x + s′η∗, s′ ∈ [0,1],η∗ = arg min
s

∣∣x − η(s)
∣∣},

and we define ζ using the endpoints of Γ ,

ζ : x �→ x + η∗, η∗ = arg min
s

∣∣x − η(s)
∣∣.

Normal velocity: To simplify the discussion, let us consider the case where bound-
ary conditions are not imposed. We compute the normal velocity by approximating
the numerator and denominator of (21). The denominator is updated at each time
step using (22) and (24): this requires the normal to ∂Ω+ at time t , as well as the full
history of ∂Ω+(t) in the interval [0, t], in view of the integral (22). However, since
η(t) = e−tH(t), we found that retaining in memory and using only the last 20–50
time steps was not detrimental for the accuracy of the solution; we use the trapezium
rule for both the integration along the contour in (24) (which is therefore spectrally
accurate) and for the integral over t ′ in (22). The numerator of (21) is computed us-
ing (26), for which a further integration along ∂Ω+ is performed. The integrand is
singular, and can be treated as in [48]. A similar strategy is used for (32) and (33),
in the case of a bounded domain with Dirichlet boundary conditions. In all cases this
step is by far the most time consuming of the algorithm, due to the large number of
integrals which need to be evaluated at each step.

Position update: The contour is propagated in the normal direction, using the ve-
locity computed at each point of the contour, cn(s, t). To this end we use a simple
Euler update ∂Ω+(t + 	t) = ∂Ω+(t) + cn	t to find the new contour, given that cn

is also computed with O(	t) accuracy in time. Other choices are obviously possi-
ble, but require more function evaluations and more expensive quadrature rules. A
stepsize of 0.05 or less has been used in our simulations.

Remeshing and postprocessing: The updated contour ∂Ω+(t +	t) leads to a new
parametrisation, that is, to an update of the functions ξ1(s, ·), ξ2(s, ·). Since we need a
uniform distribution of the nodes with respect to the variable s, we redistribute points
using standard interpolation [49]. As the pattern grows or shrinks, points are added
or removed so as to keep the arclength between consecutive points approximately
constant.

Appendix 4: Geometric Formulae for a Piece-Wise Constant Kernel

Consider a portion of a disk whose upper boundary is a (circular) arc and whose lower
boundary is a chord making a central angle φ0 < π , illustrated as the shaded region
in Fig. 6(A).

The area A = A(r0, φ0) of the (shaded) segment is then simply given by the area
of the circular sector (the entire wedge-shaped portion) minus the area of an isosceles
triangle, namely

A(r0, φ0) = φ0

2π
πr2

0 − 1

2
r0 sin(φ0/2)r0 cos(φ0/2) = 1

2
r2

0 (φ0 − sinφ0). (59)



Journal of Mathematical Neuroscience  (2017) 7:12 Page 21 of 23

Fig. 6 The area of the total shaded segment is r2
0 (φ0 − sinφ0)/2 (A). Overlap of two circles shows the

area of active region (B)

The area of the overlap of two circles, as illustrated in Fig. 6(B), can be constructed
as the total area of A(r0, φ0)+A(r1, φ1). To determine the angles φ0,1 in terms of the
centres, (x0, y0) and (x1, y1), and radii, r0 and r1, of the two circles we use the cosine
formula, which relates the lengths of the three sides of a triangle formed by joining
the centres of the circles to a point of intersection. Denoting the distance between the
two centres by d where d2 = (x0 − x1)

2 + (y0 − y1)
2,

r2
1 = r2

0 + d2 − 2r0d cos(φ0/2), r2
0 = r2

1 + d2 − 2r1d cos(φ1/2). (60)

Hence

φ0(d, r1) = 2 cos−1
(

r2
0 + d2 − r2

1

2r0d

)
,

φ1(d, r1) = 2 cos−1
(

r2
1 + d2 − r2

0

2r1d

)
.

(61)

Acknowledgements AG acknowledges the support from The University of Nottingham and Ministry
of National Education in Turkey. We thank the anonymous referees for their helpful comments on our
manuscript.

Funding SC was supported by the European Commission through the FP7 Marie Curie Initial Training
Network 289146, NETT: Neural Engineering Transformative Technologies.

Availability of data and materials Please contact author for data requests.

Competing interests The authors declare that they have no competing interests.

Authors’ contributions AG, DA and SC contributed equally. All authors read and approved the final
manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.



Page 22 of 23 A Gökçe et al.

References

1. Wilson HR, Cowan JD: Excitatory and inhibitory interactions in localized populations of model neu-
rons. Biophys J. 1972;12:1–24.

2. Wilson HR, Cowan JD: A mathematical theory of the functional dynamics of cortical and thalamic
nervous tissue. Kybernetik. 1973;13:55–80.

3. Amari S: Homogeneous nets of neuron-like elements. Biol Cybern. 1975;17:211–20.
4. Amari S: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern.

1977;27:77–87.
5. Nunez PL: The brain wave equation: a model for the EEG. Math Biosci. 1974;21:279–97.
6. Ermentrout GB: Neural nets as spatio-temporal pattern forming systems. Rep Prog Phys.

1998;61:353–430.
7. Coombes S: Waves, bumps, and patterns in neural field theories. Biol Cybern. 2005;93:91–108.
8. Coombes S: Large-scale neural dynamics: Simple and complex. NeuroImage. 2010;52:731–9.
9. Bressloff PC: Spatiotemporal dynamics of continuum neural fields. J Phys A. 2012;45:033001.

10. Coombes S, beim Graben P, Potthast R, Wright JJ (eds.): Neural fields: theory and applications.
Berlin: Springer; 2014.

11. Visser S, Nicks R, Faugeras O, Coombes S: Standing and travelling waves in a spherical brain model:
the nunez model revisited. Physica D. 2017;349:27–45.

12. Wilson MT, Fung PK, Robinson PA, Shemmell J, Reynolds JNJ: Calcium dependent plasticity ap-
plied to repetitive transcranial magnetic stimulation with a neural field model. J Comput Neurosci.
2016;41(1):107–25.

13. Sato Y, Shimaoka D, Fujimoto K, Taga G: Neural field dynamics for growing brains. Nonlinear The-
ory Appl, IEICE. 2016;7:226–33.

14. Faugeras O, Veltz R, Grimbert F: Persistent neural states: stationary localized activity patterns in
nonlinear continuous n-population, q-dimensional neural networks. Neural Comput. 2009;21:147–
87.

15. Lima PM, Buckwar E: Numerical solution of the neural field equation in the two-dimensional case.
SIAM J Sci Comput. 2015;37:962–79.

16. Rankin J, Avitabile D, Baladron J, Faye G, Lloyd DJB: Continuation of localized coherent structures
in nonlocal neural field equations. SIAM J Sci Comput. 2014;36:70–93.

17. Laing CR, Troy WC: PDE methods for nonlocal models. SIAM J Appl Dyn Syst. 2003;2:487–516.
18. Goulet J, Ermentrout GB: The mechanisms for compression and reflection of cortical waves. Biol

Cybern. 2011;105:253–68.
19. Bressloff PC: From invasion to extinction in heterogeneous neural fields. J Math Neurosci.

2012;2(1):6.
20. Amari S: Heaviside world: excitation and self-organization of neural fields. In: Coombes S, beim

Graben P, Potthast R, Wright JJ, editors. Neural fields: theory and applications. Berlin: Springer;
2014

21. Coombes S, Schmidt H, Bojak I: Interface dynamics in planar neural field models. J Math Neurosci.
2012;2(1):9.

22. Gerstner W, Kistler W: Spiking neuron models. single neurons, populations, plasticity. Cambridge:
Cambridge University Press; 2002.

23. Izhikevich EM: Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14:1569–72.
24. Mountcastle VB: The columnar organization of the neocortex. Brain. 1997;120:701–22.
25. Zhao X, Robinson PA: Generalized seizures in a neural field model with bursting dynamics. J Comput

Neurosci. 2015;39:197–216.
26. Ermentrout GB, Cowan JD: A mathematical theory of visual hallucination patterns. Biol Cybern.

1979;34:137–50.
27. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC: Geometric visual hallucinations,

Euclidean symmetry and the functional architecture of striate cortex. Philos Trans R Soc Lond B,
Biol Sci. 2001;356:299–330.

28. Laing CR: Spiral waves in nonlocal equations. SIAM J Appl Dyn Syst. 2005;4:588–606.
29. Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu J-Y: Spiral wave dynamics in neocortex. Neuron.

2010;68:978–90.
30. Goldman-Rakic P: Cellular basis of working memory. Neuron. 1995;14:477–85.
31. Wang X-J: Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci.

2001;24:455–63.



Journal of Mathematical Neuroscience  (2017) 7:12 Page 23 of 23

32. Amari S: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern.
1977;27:77–87.

33. Daunizeau J, Kiebel SJ, Friston KJ: Dynamic causal modelling of distributed electromagnetic re-
sponses. NeuroImage. 2009;47:590–601.

34. Coombes S, Owen MR: Evans functions for integral neural field equations with Heaviside firing rate
function. SIAM J Appl Dyn Syst. 2004;34:574–600.

35. Owen MR, Laing CR, Coombes S: Bumps and rings in a two-dimensional neural field: splitting and
rotational instabilities. New J Phys. 2007;9(10):378.

36. Taylor JG: Neural ‘bubble’ dynamics in two dimensions: Foundations. Biol Cybern. 1999;80:393–
409.

37. Folias SE, Bressloff PC: Breathers in two-dimensional neural media. Phys Rev Lett. 2005;95:208107.
38. Bressloff PC, Coombes S: Neural ‘bubble’ dynamics revisited. Cogn Comput. 2013;5:281–94.
39. Coombes S, Schmidt H, Avitabile D: Spots: breathing, drifting and scattering in a neural field model.

In: Coombes S, beim Graben P, Potthast R, Wright JJ, editors. Neural field theory. Berlin: Springer;
2014.

40. Herrmann JM, Schrobsdorff H, Geisel T: Localized activations in a simple neural field model. Neuro-
computing. 2005;65-66:679–84.

41. Pinto DJ, Ermentrout GB: Spatially structured activity in synaptically coupled neuronal networks: I.
Travelling fronts and pulses. SIAM J Appl Math. 2001;62:206–25.

42. Ermentrout GB, Folias SE, Kilpatrick ZP: Spatiotemporal pattern formation in neural fields with linear
adaptation. In: Coombes S, beim Graben P, Potthast R, Wright JJ, editors. Neural fields: theory and
applications. Berlin: Springer; 2014.

43. Coombes S, Owen MR: Exotic dynamics in a firing rate model of neural tissue with threshold accom-
modation. Contemp Math. 2007;440:123–44.

44. Laing CR: PDE methods for two-dimensional neural fields. In: Coombes S, beim Graben P, Potthast
R, Wright JJ, editors. Neural fields: theory and applications. Berlin: Springer; 2014.

45. Carroll S, Bressloff PC: Phase equation for patterns of orientation selectivity in a neural field model
of visual cortex. SIAM J Appl Dyn Syst. 2016;15:60–83.

46. Bojak I, Oostendorp TF, Reid AT, Kötter R: Connecting mean field models of neural activity to EEG
and fMRI data. Brain Topogr. 2010;23:139–49.

47. Atkinson KE: A survey of numerical methods for solving nonlinear integral equations. J Integral Equ
Appl. 1992;4(1):15–46.

48. Goldstein RE, Muraki DJ, Petrich DM: Interface proliferation and the growth of labyrinths in a
reaction-diffusion system. Phys Rev E. 1996;53:3933.

49. D’Errico J: Interparc, MATLAB Central File Exchange. [Retrieved from Feb 01, 2012].
http://www.mathworks.com/matlabcentral/fileexchange/34874

http://www.mathworks.com/matlabcentral/fileexchange/34874

	The Dynamics of Neural Fields on Bounded Domains: An Interface Approach for Dirichlet Boundary Conditions
	Abstract
	Introduction
	A Neural Field Model with a Boundary Condition
	One Spatial Dimension: A Primer
	Two Spatial Dimensions: Inﬁnite Domain
	Two Spatial Dimensions: Dirichlet Boundary Condition
	Spots in a Circular Domain: Dirichlet Boundary Condition
	Construction
	Stability

	Discussion
	Appendix 1: Numerical Scheme for the Full Space-Time Model
	Appendix 2: Expressing psi in Terms of Contour Integrals
	Appendix 3: Numerical Scheme for the Interface Dynamics
	Appendix 4: Geometric Formulae for a Piece-Wise Constant Kernel
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


