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Abstract We present a simple rate-reduced neuron model that captures a wide range
of complex, biologically plausible, and physiologically relevant spiking behavior.
This includes spike-frequency adaptation, postinhibitory rebound, phasic spiking and
accommodation, first-spike latency, and inhibition-induced spiking. Furthermore, the
model can mimic different neuronal filter properties. It can be used to extend existing
neural field models, adding more biological realism and yielding a richer dynamical
structure. The model is based on a slight variation of the Rulkov map.

1 Introduction

Networks of coupled neurons quickly become analytically intractable and computa-
tionally infeasible due to their large state and parameter spaces. Therefore, starting
with the work of Beurle [1], a popular modeling approach has been the development
of continuum models, called neural fields, that describe the average activity of large

B<X K. Dijkstra
koen.dijkstra@utwente.nl

Y.A. Kuznetsov
kuznet@math.uu.nl

M.J.A.M. van Putten
m.j.a.m.vanputten @utwente.nl

S.A. van Gils
s.a.vangils @utwente.nl

Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
Department of Mathematics, Utrecht University, Utrecht, The Netherlands
Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands

Department of Clinical Neurophysiology, Medisch Spectrum Twente, Enschede,
The Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/s13408-017-0055-3&domain=pdf
http://orcid.org/0000-0002-4076-2662
mailto:koen.dijkstra@utwente.nl
mailto:kuznet@math.uu.nl
mailto:m.j.a.m.vanputten@utwente.nl
mailto:s.a.vangils@utwente.nl

Page 2 of 18 K. Dijkstra et al.

populations of neurons (Wilson and Cowan [2, 3], Nunez [4], Amari [5, 6]). In neu-
ral field models, the network architecture is represented by connectivity functions
and the corresponding transmission delays, while differential operators characterize
synaptic dynamics. All intrinsic properties of the underlying neuronal populations
are condensed into firing rate functions, which replace individual neuronal action po-
tentials and map the sum of all incoming synaptic currents to an outgoing firing rate.
While some neural field models incorporate spike-frequency adaptation (Pinto and
Ermentrout [7, 8], Coombes and Owen [9], Amari [10, 11]), more complex spiking
behavior such as postinhibitory rebound, phasic spiking and accommodation, first-
spike latency, and inhibition-induced spiking is mostly absent, an exception being
the recent reduction of the Izhikevich neuron (Nicola and Campbell [12], Visser and
van Gils [13]).

Here, we present a rate-reduced model that is based on a slight modification of
the Rulkov map (Rulkov [14], Rulkov et al. [15]), a phenomenological, map-based
single neuron model. Similar to Izhikevich neurons (Izhikevich [16]), the Rulkov map
can mimic a wide variety of biologically realistic spiking patterns, all of which are
preserved by our rate formulation. The rate-reduced model can therefore be used to
incorporate all the aforementioned types of spiking behavior into existing neural field
models.

This paper is organized as follows. In Sect. 2, we present the single spiking neuron
model our rate-reduced model is based upon, and illustrate different spiking patterns
and filter properties. In Sect. 3 we heuristically reduce the single neuron model to a
rate-based formulation, and show that the rate-reduced model preserves spiking and
filter properties. We give an example of a neural field that is augmented with our rate
model in Sect. 4 and end with a discussion in Sect. 5.

2 Single Spiking Neuron Model

In this section we present a phenomenological, map-based single neuron model,
which is a slight modification of the Rulkov map (Rulkov [14], Rulkov et al. [15]).
The Rulkov map was designed to mimic the spiking and spiking-bursting activity of
many real biological neurons. It has computational advantages because the map is
easier to iterate than continuous dynamical systems. Furthermore, as we will show in
this paper, it is straightforward to obtain a rate-reduced version of a slightly modified
version of the Rulkov model.

The Rulkov map consists of a fast variable v, resembling the neuronal membrane
potential, and a slow adaptation variable a. In our modification of the original model,
the adaptation only implicitly depends on the membrane potential through a binary
spiking variable. As we will show in the next section, this modification allows for an
easy decoupling of the membrane potential and adaptation variable, and therefore a
straightforward rate reduction of the model. The cost of the modification is the loss
of subthreshold oscillation dynamics. The modified Rulkov map is given by

Vi1 = f(Un, Un—t1, KUty — ay —0),

(SNM)
any1 =ay —&(an + (1 — Kuy — ysy),
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where the piecewise continuous function f: R?> — R is given by

BOOHI0 4 S0x; ifxy <0,
f(x1,x2,x3) = 150 + 50x3 if0<x; <504+50x3 A x<0, (1)
—50 otherwise.

The form of f is chosen to mimic the shape of neuronal action potentials. The vari-
able u in (SNM) represents external (synaptic) input to the cell, which we assume to
be given, and s is a binary indicator variable, given by

1 if the neuron spiked at iteration n,
n = . 2
0 otherwise.
A Rulkov neuron spikes at iteration » if its membrane potential is reset to v, = —50

in the next iteration. It follows from (1) that the spiking condition in (2) is satisfied if
and only if

v, >0 A (vn250+50(/cu,,—an—9) \Y, vn_le). 3)

The dependence of v,4+1 on v,—1 in (SNM) ensures that a neuron always spikes if
its membrane potential is non-negative for two consecutive iterations, independent of
the external input . To mimic spiking patterns of real biological neurons, one time
step should correspond to approximately 0.5 ms of time.

The parameter 0 < ¢ < 1 in (SNM) sets the time scale of the adaptation variable
and y determines the adaptation strength. The parameter 6 can be interpreted as a
spiking threshold: for constant external input u;, = ¢, the neuron spikes persistently
if and only if ¢ > 6. After a change of variable a, — a, + (1 — k)¢ and parameter
0 — 6 — @, constant external input vanishes. Therefore, the asymptotic response to
constant input does not depend on the parameter . However, the parameter « can
be used to tune the transient response of the neuron to changes in external input,
as it determines how input is divided between the fast and the slow subsystem of
(SNM). For parameter values « € [0, 1], ¥ can be interpreted as the fraction of the
input that is applied to the fast subsystem, and therefore determines (together with
&) how quickly the membrane potential dynamics react to changes in input. Since
the effective drive of the system is given by xu, — a,, changes in external input
are initially magnified for x > 0. Asymptotically, this is then counterbalanced by
additional adaption. Finally, for k¥ < 0, the initial response of the membrane potential
to a change in input is reversed, i.e. an increase in external input initially has an
inhibitory effect, and a decrease in external input initially has an excitatory effect.

2.1 Fast Dynamics

The Rulkov map (SNM) with 0 < ¢ < 1 is a slow-fast system, and we can explore
the fast spiking dynamics of the model by assuming the suprathreshold drive xu, —

@ Springer



Page 4 of 18 K. Dijkstra et al.
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Fig. 1 Illustration of the fast subsystem (FSS) of (SNM). (A) For ¢ = —1—10 there exist a stable (green)
and unstable (orange) fixed point. (B) For ¢ = % the system will settle into a stable periodic orbit (dashed
green line) with period P(%) =8

a, — 0 = ¢ is constant. In this case, (SNM) reduces to the fast subsystem

B0 4 50¢ if v, <0,
Unt1 =150+ 50¢ if 0 <wv, <50+ 50c¢, (FSS)
—50 otherwise.

The map (FSS) undergoes a saddle-node bifurcation at ¢ = 0 (Fig. 1). For ¢ < 0 there
exist a stable and an unstable fixed point, given by

u=25(c —2—/s2=8¢),  w=25(c—2+,/s?—8q), @

respectively (Fig. 1A), while the system will settle into a stable periodic orbit for
¢ > 0 (Fig. 1B). In the former case the unstable fixed point acts as an excitation
threshold: if the value of the membrane potential exceeds this point, it will spike
once and then decay back to the stable equilibrium. Since the unstable fixed point
vy always lies to the right of the ‘reset potential’ v = —50, a stable fixed point and
a periodic orbit can never coexist. This guarantees that we can define a firing rate
function S: R — Q for the fast subsystem (FSS), given by

0 for ¢ <0,
SO=11 oo )

P(S) s=5
where P: R.o — N maps the drive to the period of the corresponding stable limit
cycle of (FSS). The fast subsystem (FSS) is piecewise-defined on the ‘left’ interval
(—o00, 0), the ‘middle’ interval [0, 50 + 50¢), and the ‘right’ interval [50 + 50¢, 00).
The left interval is mapped to the left and middle interval, and the middle and right
interval are mapped to right and left interval, respectively. The period of a limit cycle
of (FSS) therefore only depends on the number of iterations in the left interval. Note,
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however, that the shape of the function f given in (1) can easily be changed to support
bistability in the fast subsystem, which allows for some additional dynamics such as
‘chattering’, a response of periodic bursts of spikes to constant input (Rulkov [14]).

2.2 Spiking Patterns

Izhikevich [17] classified different features of biological spiking neurons, most of
which can be mimicked by our modified Rulkov model (SNM). In the following,
we discuss the role of the model parameters with the help of a few physiologically
relevant examples.

2.2.1 Tonic Spiking/Fast Spiking

Tonically spiking (also called ‘fast spiking’) neurons respond to a step input with
spike trains of constant frequency. Most inhibitory neurons are fast spiking (Izhike-
vich [17]). In the modified Rulkov model this can be achieved by choosing a ‘large’
(1>¢e> %) value for the time scale parameter, in which case the influence of a
single spike on the adaptation variable decays very fast. Therefore, the value of the
adaptation variable is dominated by the timing of the last spike and the influence
of older spikes is negligible (Fig. 2A). Since the time scale separation is small, the
qualitative dynamics does not depend on k.

2.2.2 Spike-Frequency Adaptation/Regular Spiking

Most cortical excitatory neurons are not ‘fast spiking’, but respond to a step input
with a spike train of slowly decreasing frequency, a phenomenon known as ‘spike-
frequency adaptation’ (also called ‘regular spiking’). This kind of spiking behavior
can be modeled by applying all input to the fast subsystem (x = 1) and choosing
& < 1. The adaptation variable then acts as a slow time scale, such that a single spike
has a long-lasting effect on the adaptation variable (Fig. 2B). The level of adaptation
can be controlled with y.

2.2.3 Rebound Spiking and Accommodation

The excitability of some neurons is temporarily enhanced after they are released
from hyperpolarizing current, which can result in the firing of one or more ‘rebound
spikes’. Rebound spiking is an important mechanism for central pattern generation
for heartbeat and other motor patterns in many neuronal systems (Chik et al. [18]). In
the modified Rulkov map, postinhibitory rebound spiking can be modeled by choos-
ing ¥ > 1. In this case, the adaptation variable will become negative while the cell
gets hyperpolarized, which can be sufficient to trigger temporary spiking once the
inhibitory input is turned off (Fig. 2C). Similarly, excitatory ‘subthreshold’ (u, < 6)
input can elicit temporary spiking if the input is ramped up sufficiently fast (Fig. 2D).
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Fig. 2 Different types of spiking patterns generated by the single neuron model (SNM). Corresponding
parameter values (0, , €, y) are given in brackets. (A) Tonic spiking (1—10, % % %). (B) Spike-frequency
adaptation (5. 1. 1dgg.5)- (C) Rebound spiking (3.2, 145. 2). (D) Accommodation (5.3, g5, 2).
(E) Spike latency (1. 0. 555 2). (F) Inhibition-induced spiking (5. —1. 5. 3)

2.2.4 Spike Latency and Inhibition-Induced Spiking
If all input is applied to the slow subsystem (x = 0), there can be a large latency
between the input onset and the first spike of the neuron, yielding a delayed response

to a pulse input (Fig. 2E). For x < 0, the initial response of the model to changes
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in input is reversed: excitation initially leads to hyperpolarization of the neuron and
inhibition can induce temporary spiking (Fig. 2F). This inhibition-induced spiking is
a feature of many thalamo-cortical neurons (Izhikevich [17]).

2.3 Neuronal Filtering

In the previous section, we illustrated how the parameter x can tune transient spiking
responses of the modified Rulkov map to changes in external input. In reality, neu-
rons often receive strong periodic input, e.g. from a synchronous neuronal population
nearby. Information transfer between neurons may be optimized by temporal filter-
ing, which is especially important when the same signal transmits distinct messages
(Blumhagen et al. [19]). In this section, we study the response of (SNM) to harmonic
input

cos il + 9 (6)
u, = —— ,
n =P 1000

with amplitude ¢, phase shift ¢ € [0, 27), and where w € [0, 1000] corresponds to
the input frequency in Hz assuming that one iteration of (SNM) corresponds to 0.5 ms
of time. A Rulkov neuron (SNM) will never spike if

KUy, —a, <6 Vn. @)
In this case, the adaptation reduces to the simple linear equation
ant1 = (1 —&)a, —e(l —K)uy, ®)

with explicit solution
o0
ay=—e(l =) Y (1= . ©)
m=1

Inserting (6) into (9) now yields

wmn
KUp —ay =K@ cos< 1000 + 19)

+e(l —K)p Z(l —g)yn! cos(% + z?)

m=1
- F(w)gé%*” + F(w)ge*%”)i

win

1000

= |F(w)|(pcos( +z‘/‘~|—arg(F(a)))), (10)
where the overline denotes complex conjugation and the frequency response
F: [0, 1000] — C is given by

1 —
wig K) ‘ (11)
et 4+ g — 1

F(w)=«+
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The absolute value and argument of the frequency response determine the relative
magnitude and phase of the output, respectively. It follows that a Rulkov neuron
(SNM) receiving periodic input (6) does not spike if

|F(w)]p <6. (12)

The inverse statement is not true, even if w and @ in (6) are chosen such that

cos(?(;g(; +0 4+ arg(F(w))) =1 forsomen eN. (13)

Since it can take a few iterations of the map to converge to its periodic orbit, a neuron
will only spike if its drive is larger than the threshold 6 for a sufficiently long time.
The modulus of the frequency response (11) is given by

IF@)] = 822+ 2k (k —e)(1 — cos(ngo)), (14)
&=+ 2(1 — &)(1 — cos(1505))

and it follows that | F'| is strictly decreasing if and only if ¥k € (—1 + ¢, 1), and in-
creasing otherwise (Fig. 3). Clearly,

2k — &
F0)=1, F(1000) = 5

15)

The input parameter « can therefore be used to model filter properties of the neuron.
For —1 4+ ¢ <k < 1 high frequencies get attenuated and a neuron can act as a low-
pass filter in the sense that periodic input within a certain amplitude range only elicits
a spiking response if its frequency is low enough (Fig. 4A). Similarly, for « > 1 (and
k < —1 + ¢), high frequencies get amplified and there exists an amplitude range for
which the neuron acts as a high-pass filter (Fig. 4B).

A B

|F(w)]
|F(w)]

ool

.............
para™
......

arg(F(w))
arg(F(w))
1

\
coln

0 5 10 15 20 0 5 10 15 20

Fig.3 Illustration of the frequency response (11) for different values of ¢. (A) For k = % high frequencies
get attenuated. (B) For « = 2 high frequencies get amplified. Note the similarity, which is caused by the
fact that F(w) — 1 is an odd function of 1 — «
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Fig. 4 Responses of (SNM) to periodic input, illustrating neuronal filter properties. (A) For k = 11—0 the

neuron acts as a low-pass filter. Input with an amplitude of ¢ = % elicits a spiking response for w =1,
whereas the neuron is quiescent for w = 2. (B) For « = 2, the neuron acts as a high-pass filter. Input with
amplitude ¢ = % elicits a spiking response for w = 2, whereas a lower input frequency of w = 1 does not.

In both examples, (0, ¢, y) = (%, ﬁ, 2)

3 The Rate-Reduced Neuron Model

Neural field models are based on the assumption that neuronal populations convey all
relevant information in their (average) firing rates. If one wants to incorporate certain
spiking dynamics, one has to come up with a corresponding rate-reduced formulation
first. In this section we present a rate-reduced version of the Rulkov model (SNM)
that can be used to extend existing neural field models.

The adaptation variable a in the spiking neuron model (SNM) only implicitly de-
pends on the membrane potential v via the binary spiking variable s. We can therefore
decouple the adaption variable from the membrane potential by replacing the binary
spiking variable defined in (2) by the instantaneous firing rate (5) of the fast subsys-
tem (FSS), yielding

an+1=an—S(an—}—(l—K)un—yS(Kun—an—B)). (16)
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By interpreting (16) as the forward discretization of an ordinary differential equation,
we arrive at the continuous time rate-reduced model
1da
—Ez—a—(l—/c)u+yS(/cu—a—9). (RNM)
£

The rate-reduced neuron model (RNM) preserves the dynamical features of the full
model (SNM) and reproduces all previous example spiking patterns (Fig. 5).

3.1 Frequency Response of the Reduced Model

Analogously to Sect. 2.3, we now study the response of the rate-reduced model
(RNM) to sinusoidal input

- wit 9 17
u(t)_gocos<1000+ > (17)

Under the assumption that
ku(t) —a() <6 Vt, (18)
the explicit solution of (RNM) is given by
t
a() = —e(l —K)/ e 0=y (7)dr, (19)
—00

cf. (9). Inserting the input (17) into (19) yields

t t
ku(t) —a(t) =ke cos(% + z?) +e(l—x)g /;oo e‘“"”cos(cloo—jgg + L?) dr

=:G(w)§eq%%+ﬁﬁ—%ZﬁZﬁ%eft%%+ﬂﬁ

= |G ()¢ cos ont + 9 +arg(G(®)) |,
1000
(20
where the frequency response G : R>o — C is given by
e(l—k)
€+ 000

It follows that for the rate-reduced model (RNM) receiving harmonic input (17) we
have
S(ku(t) —a(t)—0)=0 Vr ifandonlyif |G(w)|p<6. (22)

Because we neglected the transient corresponding to the convergence from fixed point
to limit cycle in the rate-reduced model (RNM), the inequality in (22) defines a clear
‘spiking condition’. The modulus of the frequency response (21) is given by

82 + K2(17(T)8)0)2

G)|= |—5——F20"
’ (w)| €2+(%)2

(23)
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Fig. 5 Different types of spiking behavior generated by the rate-reduced model (RNM). Top traces show
the firing rate with r(t) = ku(t) — a(t) — 6. Corresponding parameter values (6, k, &, y) are given in
brackets. For small values of ¢ (i.e. a large time scale separation), there is excellent agreement with
the corresponding examples of the full model (Fig. 2), which is quantified by comparing the inte-
gral of the spiking rate in the reduced model to the number of spikes in the full model. (A) Tonic
spiking ({h. 5. 5. 3): 27.18(23). (B) Spike-frequency adaptation (. 1, 75+ 5): 29-13(29). (C) Re-
bound spiking (4. 2. 15+ 3); 7.84(8). (D) Accommodation (55,3, 2, 2): 3.09(3). (E) Spike latency

(5.0, 555. 2): 16.12(16). (F) Inhibition-induced spiking (5. —1, 5. 2): 15.75(16)
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and |G| therefore is strictly decreasing if and only if |«| < 1, and increasing other-
wise. Revisiting the examples from Sect. 2.3 (Fig. 4), we have

|G(1D)|p=0.16%...>6 >0.1255...=|G(2)|¢, (24)
for (i, &, 0, ¢) = (15, 555 5 %), and
|G(D)]p =0.1359... <6 < 0.1684...= |G(2)|¢, (25)

for (k,¢,0, ) = (2, 2(3—0, %, %). Indeed, the rate-reduced model (RNM) reproduces
the examples of the full model both qualitatively and quantitatively (Fig. 6). When
the rate-reduced model (RNM) is incorporated into existing neural field models, the
frequency response of the reduced model can be used to tune the individual temporal
filter properties of the different neuronal populations.

A
~ o[ 1 =~ o | 7
S S
w0 9]
0 | | | | | | | 0 | | | | | | |
T T T T T T T T T T T T T T
= 0.2 ;\—/_\—/ o 02 ]
\B/_ | i \S/_ W
0.2 | | | | | | | 02 | ! | | | | |
T T T T T T T T T T T T T T
o 02} . o 02} *
T /\/\ N /\/\/\/\
0.2 I ! ! I I I I 0.2 I I ! ! I I I
500 1500 2500 3500 500 1500 2500 3500
B
11 . 11 .
~ 28 ~
1| N o |
é/ 56 \&/ 56
@ “

a(t)
a(t)

0.1 F ~

. /\/\
-0.1

0.1 _

NAVAVAVAN
-0.1

| |
3500 500 1500 2500 3500
t

u(t)
u(t)

| |
500 1500 2500
Fig. 6 Responses of the rate-reduced model (RNM) to periodic input. Top traces show the firing rate with
r(t) =«ku(t) —a() — 6. (A) For k = % the model acts as a low-pass filter. Input with an amplitude of
9= % yields a response in the firing rate for @ = 1, whereas the firing rate remains zero for v = 2. In
the former case, the integral of the spiking rate during one period is approximately 4.55, while there are 5
spikes per period in the full model (Fig. 4A). (B) For k = 2, the reduced model acts as a high-pass filter.
Input with amplitude ¢ = % elicits a firing rate response for w = 2, whereas a lower input frequency of
o = 1 does not. In the former case, the integral of the spiking rate during one period is approximately 3.14,
while there are 3 spikes per period in the full model (Fig. 4B). In both examples, (6, ¢, y) = (%, ﬁ, 2)
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3.2 The Firing Rate Function

Since our neuron model (SNM) is a map, the period P of its limit cycle lies in N for all
positive suprathreshold drives ¢. Therefore, the spiking rate function (5) is staircase-
like, with points of discontinuity whenever P — P + 1. Let {¢1, 2, ...} denote the
set of all points of discontinuity of the firing rate function in decreasing order. For
¢ > ¢1 = 1 the ‘reset potential’ v = —50 in (FSS) is immediately mapped to a non-
negative number, and the neuron is therefore spiking at its maximal frequency of once
in three iterations. Similarly, the voltage stays in the left interval for two iterations
and the neuron is spiking once in four iterations for ¢ > ¢ > ¢ = %(5 —V17). In
general, at ¢, there is a jump discontinuity of size

1 1
lim ()~ lim S(g)=——— . withS(c)= ——. (26)
g T S T e )+ 3) =2

The firing rate of the fast subsystem (FSS) can therefore be written as

e¢]

_ H(s —gi)
S(S‘)—;m, 27

where H is the Heaviside step function and
lim ¢ =0. (28)
k— 00

In large neuronal networks, it is often assumed that the spiking thresholds of the
individual neurons are randomly distributed. This ensures heterogeneity and models
intrinsic interneuronal differences or random input from outside the network. If we
add Gaussian noise to the threshold parameter 6 in (SNM), it is natural to define an
expected firing rate (S): R+ R, given by

w2

(S(9))= 27 S( + w) dw, (29)

Gt [

where o2 is the variance of the noise. Using (27), we can rewrite (29) as

o erf(S55%)

(S(§)>=8+I;m, (30)

—_—

where erf denotes the error function. While S(¢) can readily be computed for any
¢ € R and we derived a concise expression for the expected firing rate, the infinite
sum (30) cannot easily be evaluated. For this reason, we approximate (S(s)) by a

finite sum of the form
1 1 c— v
a4 f , 31
6+6Nl._le < Xi ) GD
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Fig. 7 Expected firing rate for a

noise level of o2 = % Shown 1
are a numerical integration of 3| e ———
(29) (blue) and its j e
approximation (31) for N =2 I~ ’/ N
and (v, v2, x1, x2) = (0.0335, ) /
0.7099, 0.6890, 0.8213) 9 /'" 1
(orange) > /
~— B ' n
n /
~ /
- /’,'6’” ]
('
0 ——— ]
| | | |
-2 -1 0 1 2 3
S

for some fixed N € N and constants v;, x; € R, which are chosen by (numerically)
minimizing

S—Vi

e%’;S( —i—w)dw—l—LZN:erf (32)
s 6 6N — Xi

1 [e'9)
V27102 /;oo 2

For large noise levels o2, the average firing rate (29) has a sigmoidal shape and can
be very well approximated with a small value of N (Fig. 7).

4 Augmenting Neural Fields

When large populations of neurons are modeled by networks of individual, intercon-
nected cells, the high dimensionality of state and parameter spaces makes mathemat-
ical analysis intractable and numerical simulations costly. Moreover, large network
simulations provide little insight into global dynamical properties. A popular mod-
eling approach to circumventing the aforementioned problems is the use of neural
field equations. These models aim to describe the dynamics of large neuronal popu-
lations, where spikes of individual neurons are replaced by (averaged) spiking rates
and space is continuous. Another advantage of neural fields is that they are often
well suited to model experimental data. In brain slice preparations, spiking rates can
be measured with an extracellular electrode, while intracellular recordings are much
more involved. Furthermore, the most common clinical measurement techniques of
the brain, electroencephalography (EEG) and functional magnetic resonance imaging
(fMRI), both represent the average activity of large groups of neurons and may there-
fore be better modeled by population equations. The first neural field model can be
attributed to Beurle [1], however, the theory really took off with the work of Wilson
and Cowan [2, 3], Amari [5, 6], and Nunez [4].

In ‘classical’ neural field models the firing rate of a neuronal population is as-
sumed to be given by its instantaneous input, which is only valid for tonically spiking
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neurons. With the help of our rate-reduced model (RNM), it is straightforward to
augment existing neural field models with more complex spiking behavior. As an ex-
ample, we will look at the following two-population model on the one-dimensional
spatial domain £2 = (—1, 1):

19 !
(1 + Ta_)m(f x)—/ In(x,x)Si(ri (2, x'))

1
+ Ji2(x, x/)Sz(rz(t, x’)) dx’,

< ) 1, x) = =1 —kDui(t,x) + y1 S (ri1 (7, x)),
(ANF)
< ) 2t %) = le(x,x/)Sl (1 (t.%)
+ Jzz(x X )Sz(rz(t X )) dx’,
( )az(l x)=—(1 —kuz(t, x) + y282(r2(t, x)),
where, as before,
ri(x,t) =w;u;(t,x) —a;(t,x) —6;, (33)

for i € {1, 2}. The differential operators in the left-hand side of the integral equations
in (ANF) model exponentially decaying synaptic currents with decay rate «;. The
connectivity J;; (x, x") measures the connection strength from neurons of population
J and position x” to neurons of population i and position x. The connectivity kernels
Jij: 82 x 2 > R are assumed to be isotropic and given by

Tij(x, %) = pjmije k=1, (34)

where p; is the density of neurons of type j, n;; is the maximal connection strength,
and u;; is the spatial decay rate of the connectivity. Both firing rate functions
S;: R+ R are chosen to approximate the expected firing rate of Rulkov neurons
(SNM) with a noise level of -2 =1 7 (Fig. 7),

11 ¢ —0.0335\ 1 ¢ —0.7099
= =4 —ef[Z——" )+ —erf )
Sie) =Ry =gt per < 0.6890 ) PR ( 0.8213 ) (35)

We conclude this section with a simulation of (ANF) for a particular parameter set
(Table 1), which illustrates that our augmented neural field can generate interest-
ing spatiotemporal behavior that closely resembles spiking patterns of a network of
Rulkov neurons (SNM) with corresponding parameter values (Fig. 8). In the Rulkov
network, synaptic input to neuron i is given by

5,1_2_1 =(- at)u(l) +o; thjsn ) (36)
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Fig. 8 Spatio-temporal spiking patterns. (A) Simulation of the augmented neural field (ANF) with param-
eter values given in Table 1. Shown is the firing rate S (kjuq (¢, x) —aj (¢, x) — 607) of the first population.
(B) Simulation of a corresponding network of 300 excitatory and 300 inhibitory Rulkov neurons, all-to-all
coupled via simple exponential synapses. Both populations are equidistantly placed on the interval [—1, 1].

Uncorrelated (in space and time) Gaussian noise with variance o= % is added to the threshold parameter

of each neuron. Shown is the spiking activity of the excitatory population. Each spike is denoted by a black
dot

Table 1 Parameter overview for the neural field (ANF)

Parameter o 0; Ki & Vi Pi nil ni2 Hil Hi2
. 1 1 1 2 1

Population 1 21—0 Z 21 I(IJW 5 150 ?1 - ?] 4:7 11 1

Population 2 10 3 10 100 2 150 3 30 T 10

where N denotes the total number of neurons in the network, and ¢;; is the connection
strength from neuron j to neuron i. To match the parameters in Table 1, we split the
total population in two subpopulations of 300 neurons each, which are both equidis-
tantly placed on the interval [—1, 1]. Neurons within the same subpopulation share
the same intrinsic parameters, and uncorrelated (in space and time) Gaussian noise

is added to the threshold parameters. Finally, the connection strengths in the Rulkov
network are given by

o —Wp;p; 1Xi—x;l
Cij =MNpipje ’

(37)

where p; and x; are the subpopulation and position of neuron i, respectively.
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5 Discussion

This paper presents a simple rate-reduced neuron model that is based on a variation
of the Rulkov map (Rulkov [14], Rulkov et al. [15]), and can be used to incorporate
a variety of non-trivial spiking behavior into existing neural field models.

The modified Rulkov map (SNM) is a phenomenological, two-dimensional single
neuron model. The isolated dynamics of its fast time scale either generates a stable
limit cycle, mimicking spiking activity, or a stable fixed point, corresponding to a
neuron at rest (Fig. 1). The slow time scale of the Rulkov map acts as a dynamic
spiking threshold and emulates the combined effect of slow recovery processes. The
modified Rulkov map can mimic a wide variety of spiking patterns, such as spike-
frequency adaptation, postinhibitory rebound, phasic spiking, spike accommodation,
spike latency and inhibition-induced spiking (Fig. 2). Furthermore, the model can be
used to model neuronal filter properties. Depending on how external input is applied
to the model, it can act as either a high-pass or low-pass filter (Figs. 3 and 4).

The rate-reduced model (RNM) is derived heuristically and given by a simple one-
dimensional differential equation. On the single cell level, the rate-reduced model
closely mimics the spiking dynamics (Fig. 5) and filter properties (Fig. 6) of the full
spiking neuron model. While a close approximation of the (expected) firing rate of
Rulkov neurons (Fig. 7) is needed to mimic their behavior quantitatively, the types of
qualitative dynamics of the rate-reduced model do not depend on the exact choice of
firing rate function.

Due to its simplicity, it is straightforward to add the rate-reduced model to existing
neural field models. In the resulting augmented equations, parameters can be chosen
according to the spiking behavior of a single isolated cell. In our particular example
(ANF), the emerging spatiotemporal pattern closely resembles the dynamics of the
corresponding spiking neural network (Fig. 8). We believe that this is an elegant way
to add more biological realism to existing neural field models, while simultaneously
enriching their dynamical structure.

5.1 Conclusions

We used a variation of a simple toy model of a spiking neuron (Rulkov [14], Rulkov
et al. [15]) to derive a corresponding rate-reduced model. While being purely phe-
nomenological, the model could mimic a wide variety of biologically observed spik-
ing behaviors, yielding a simple way to incorporate complex spiking behavior into
existing neural field models. Since all parameters in the resulting augmented neural
field equations have a representative in the spiking neuron network (and vice versa),
this greatly simplifies the otherwise often problematic translation from results ob-
tained by neural field models back to biophysical properties of spiking networks. An
example demonstrated that the augmented neural field equations can produce spa-
tiotemporal patterns that cannot be generated with corresponding ‘classical’ neural
fields.
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