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Abstract The Hopfield recurrent neural network is a classical auto-associative model
of memory, in which collections of symmetrically coupled McCulloch—Pitts binary
neurons interact to perform emergent computation. Although previous researchers
have explored the potential of this network to solve combinatorial optimization prob-
lems or store reoccurring activity patterns as attractors of its deterministic dynamics,
a basic open problem is to design a family of Hopfield networks with a number of
noise-tolerant memories that grows exponentially with neural population size. Here,
we discover such networks by minimizing probability flow, a recently proposed ob-
jective for estimating parameters in discrete maximum entropy models. By descend-
ing the gradient of the convex probability flow, our networks adapt synaptic weights
to achieve robust exponential storage, even when presented with vanishingly small
numbers of training patterns. In addition to providing a new set of low-density error-
correcting codes that achieve Shannon’s noisy channel bound, these networks also
efficiently solve a variant of the hidden clique problem in computer science, opening
new avenues for real-world applications of computational models originating from
biology.
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Abbreviations
OPR outer-product rule
MPF minimum probability flow

1 Introduction

Discovered first by Pastur and Figotin [1] as a simplified spin glass [2] in statis-
tical physics, the Hopfield model [3] is a recurrent network of n linear threshold
McCulloch—Pitts [4] neurons that can store n/(41nn) binary patterns [5] as dis-
tributed “memories” in the form of auto-associative fixed-point attractors. While
several aspects of these networks appeared earlier (see, e.g., [6] for dynamics and
learning), the approach nonetheless introduced ideas from physics into the theoretical
study of neural computation. The Hopfield model and its variants have been studied
intensely in theoretical neuroscience and statistical physics [7], but investigations into
its utility for memory and coding have mainly focused on storing collections of pat-
terns X using a “one-shot” outer-product rule (OPR) for learning, which essentially
assigns abstract synaptic weights between neurons to be their correlation, an early
idea in neuroscience [8, 9]. Independent of learning, at most 2n randomly generated
dense patterns can be simultaneously stored in networks with n neurons [10].

Despite this restriction, super-linear capacity in Hopfield networks is possible for
special pattern classes and connectivity structures. For instance, if patterns to memo-
rize contain many zeros, it is possible to store nearly a quadratic number [11]. Other
examples are random networks, which have ~1.22" attractors asymptotically [12],
and networks storing all permutations [13]. In both examples of exponential stor-
age, however, memories have vanishingly small basins of attraction, making them
ill-suited for noise-tolerant pattern storage. Interestingly, the situation is even worse
for networks storing permutations: any Hopfield network storing permutations will
not recover the derangements (more than a third of all permutations) from asymptot-
ically vanishing noise (see Theorem 4, proved in Sect. 5).

In this note, we design a family of sparsely connected n-node Hopfield networks
with (asymptotically, as n — 00)

VIt
WA

robustly stored fixed-point attractors by minimizing “probability flow” [14, 15]. To
our knowledge, this is the first rigorous demonstration of super-polynomial noise-
tolerant storage in recurrent networks of simple linear threshold elements. The ap-
proach also provides a normative, convex, biologically plausible learning mechanism
for discovering these networks from small amounts of data and reveals new con-
nections between binary McCulloch—Pitts neural networks, efficient error-correcting
codes, and computational graph theory.

ey

2 Background

The underlying probabilistic model of data in the Hopfield network is the non-
ferromagnetic Lenz—Ising model [16] from statistical physics, more generally called
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a Markov random field in the literature, and the model distribution in a fully observ-
able Boltzmann machine [17] from artificial intelligence. The states of this discrete
distribution are length »n binary column vectors X = (x, ..., x,) € {0, 1}" each hav-
ing probability py := %exp(—Ex), in which Ey := —1x"Wx + 0 Tx is the energy
of a state, W is an n-by-n real symmetric matrix with zero diagonal (the weight ma-
trix), the vector 6 € R”" is a threshold term, and Z :=)_, exp(— Ex) is the partition
function, the normalizing factor ensuring that px represents a probability distribu-
tion. In theoretical neuroscience, rows W, of the matrix W are interpreted as abstract
“synaptic” weights W,y connecting neuron e to other neurons f.

The pair (W, 0) determines an asynchronous deterministic (“zero-temperature”)
dynamics on states x by replacing each x, in x with the value:

= 1 if Zf¢engXf>9g, @)

0 otherwise,

in a (usually initialized randomly) fixed order through all neurons e =1, ..., n. The
quantity 1, := (W,, x) in (2) is often called the feedforward input to neuron e and may
be computed by linearly combining input signals from neurons with connections to e.
Let AE, (resp. Ax, = *£1,0) be the energy (resp. bit) change when applying (2) at
neuron e. The relationship

AE, = —Ax,(I. — 0,) 3)

guarantees that network dynamics does not increase energy. Thus, each initial state x
will converge in a finite number of steps to its attractor x* (also called in the literature
fixed-point, memory, or metastable state); e.g., see Fig. 1. The biological plausibility
and potential computational power [18] of the dynamics update (2) inspired both
early computer [19] and neural network architectures [4, 20].

We next formalize the notion of robust fixed-point attractor storage for families
of Hopfield networks. For p € [0, %], the p-corruption of x is the random pattern
X, obtained by replacing each x, by 1 — x, with probability p, independently. The
p-corruption of a state differs from the original by prn bit flips on average so that for
larger p it is more difficult to recover the original binary pattern; in particular, x 1

is the uniform distribution on {0, 1}" (and thus independent of x). Given a Hopfield
network, the attractor x* has (1 — &)-folerance for a p-corruption if the dynamics can
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recover x* from (x*),, with probability at least 1 — &. The a-robustness o(X, €) for a
set of states X is the most p-corruption every state (1 — ¢)-tolerates.

At last, we say that a sequence of Hopfield networks #,, robustly stores states X,
with robustness index « > 0 if the following limit exists and equals the number «:

lim lim inf{a(X,, &), a(Xsq1,6),...} =0. (4)
g—>(0tn—>0o0
If « is the robustness index of a family of networks, then the chance that dynamics
does not recover an «-corrupted memory can be made as small as desired by devoting
more neurons. (Note that by definition, we always have o < 1/2.)
To determine parameters (W, 6) in our networks from a set of training patterns
X € {0, 1}*, we minimize the following probability flow objective function [14, 15]:

] X — X/
LT T () .

xeX x'eN (x)

in which NV (x) are those neighboring states x differing from x by a single flipped bit.
It is elementary that a Hopfield network has attractors X if and only if the probability
flow (5) can be arbitrarily close to zero, motivating the application of minimizing (5)
to find such networks [15]. Importantly, the probability flow is a convex function of
the parameters, consists of a number of terms linear in n and the size of X, and avoids
the exponentially large partition function Z. We remark that the factor of % inside of
the exponential in (5) will turn out to be unimportant for our analysis; however, we
keep it to be consistent with the previous literature on interpreting (5) as a probability
density estimation objective.

Let v be a positive integer and set n = @ A state x in a Hopfield network on
n nodes represents a simple undirected graph G on v vertices by interpreting a binary
entry x, in x as indicating whether edge e is in G (x, = 1) or not (x, = 0). A k-clique
x is one of the (Z) = % graphs consisting of k fully connected nodes
and v — k other isolated nodes. Below, in Sect. 3, we will design Hopfield networks
that have all k-cliques on 2k (or 2k — 2) vertices as robustly stored memories. For
large n, the count (Zkk) approaches (1) by Stirling’s approximation. Figure 1 depicts a
network with n = 28 neurons storing 4-cliques in graphs on v = 8 vertices.

3 Results

Our first result is that numerical minimization of probability flow over a van-
ishingly small critical number of training cliques determines linear threshold net-
works with exponential attractor memory. We fit all-to-all connected networks on
n =3160, 2016, 1128 neurons (v = 80, 64, 48; k = 40, 32, 24) with increasing num-
bers of randomly generated k-cliques as training data X by minimizing (5) with the
limited-memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) algorithm [21] (im-
plemented in the programming language Python’s package SciPy). In Fig. 2, we plot
the percentage of 1000 random new k-cliques that are fixed-points in these networks
after training as a function of the ratio of training set size to total number of k-cliques.
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Fig. 2 Learning critical networks with exponential memory by minimizing probability flow on few train-
ing patterns. For numbers of vertices v = 80, 64, 48 (k = 40, 32, 24) with 50 trials each, the average percent
of 1000 randomly drawn cliques that are memories vs. the fraction of training samples to total number of
k-cliques. Inset displays enlarged version of the region demarcated by black square; filled regions indi-
cate standard deviation errors over these 50 trials. Dotted lines are average percentage of correct bits after
converging dynamics
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Fig.3 Distribution of network parameters learned by minimizing probability flow (MPF) sharpens around
three critical values. (a) Portion of network weights W after minimizing (5) given 100 (bottom), 1000
(middle), or 10,000 (top) random 40-cliques X (of about 1023 in total) on v = 80 vertices. These networks
represent the marked points in Fig. 2. (b) Histograms of weight and threshold parameters for networks
in (a) (histogram of thresholds 6 in inset). Network parameters are scaled so that thresholds have mean
1 (this does not affect the dynamics). Groups of similar network weights and thresholds are labeled with
corresponding parameter x, y, z
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Each triangle in the figure represents the average of this fraction over 50 networks,
each given the same number of randomly generated (but different) training data. The
finding is that a critical number of training samples allows for storage of all k-cliques.
Moreover, this count is significantly smaller than the total number of patterns to be
learned.

In Fig. 3(a), we display a portion of the weight matrix with minimum probabil-
ity flow representing a v = 80 network (4,994,380 weight and threshold parameters)
given 100 (=1e—21% of all 40-cliques), 1000 (1e—20%), or 10,000 (1e—19%) ran-
domly generated 40-cliques as training data; these are the three special starred points
in Fig. 2. In Fig. 3(b), we also plot histograms of learned parameters from networks
trained on data with these three sample sizes. The finding is that weights and thresh-
olds become highly peaked and symmetric about three limiting quantities as sample
size increases.

We next analytically minimize probability flow to determine explicit networks
achieving robust exponential storage. To simplify matters, we first observe by a sym-
metrizing argument (see Sect. 5) that there is a network storing all k-cliques if and
only if there is one with constant threshold 6 = (z,...,z) € R" and satisfying for
each pair e # f, ether W,y = x (whenever e and f share one vertex) or Wr =y
(when e and f are disjoint). Weight matrices approximating this symmetry can be
seen in Fig. 3(a). (Note that this symmetry structure on the weights is independent of
clique size k.) In this case, the energy of a graph G with #E (G) edges is the following
linear function of (x, y, z) € R:

Eg(x,y,2) =—x-851(G) —y - S0(G) +z- #E(G), Q)

in which S1(G) and So(G) are the number of edge pairs in the graph G with exactly
one or zero shared vertices, respectively.

Consider the minimization of (5) over a training set X consisting of all () k-
cliques on v = 2k — 2 vertices (this simplifies the mathematics), restricting networks
to our 3-parameter family (x, y, z). When y = 0, these networks are sparsely con-
nected, having a vanishing number of connections between neurons relative to total
population size. Using single variable calculus and Eq. (6), one can check that, for
any fixed positive threshold z, the minimum value of (5) is achieved uniquely at the
parameter setting (x, 0, z), where

2z
X = .
3k—5

(N
This elementary calculation gives our first main theoretical contribution.

Theorem 1 McCulloch—Pitts attractor networks minimizing probability flow can
achieve robust exponential pattern storage.

We prove Theorem 1 using the following large deviation theory argument; this
approach also allows us to design networks achieving optimal robustness index o =
1/2 (Theorem 2). Fix v = 2k (or v = 2k —2) and consider a p-corrupted clique. Using
Bernstein’s concentration inequality for sums of Bernoulli binary random variables
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[22] (“coin flips”), it can be shown that with high probability (i.e., approaching 1 as
v — 00) an edge in the clique has 2k neighboring edges at least, on average (see
Corollary 1).

This gives the fixed-point requirement from (2):

2kx + o(xVkInk) > z.

On the other hand, a non-clique edge sharing a vertex with the clique has k(1 4+ 2p)
neighbors at most, on average. Therefore, for a k-clique to be a robust fixed-point,
this forces again from (2):

k(1 +2p)x + o(xvkInk) <z,

and any other edges will disappear when this holds. (o(-) is “little-0” notation.)

It follows that the optimal setting (7) for x minimizing probability flow gives ro-
bust storage (with a single parallel dynamics update) of all k-cliques for p < 1/4.
This proves Theorem 1 (see Sect. 5 for the full mathematical details).

It is possible to do better than robustness index o = 1/4 by setting x = %[{—k +
76l _f_zp)] = 4Zk((3 1122?) , which satisfies the above fixed-point requirements with prob-
ability approaching 1 for any fixed p < 1/2 and increasing k. We have thus also
demonstrated:

Theorem 2 There is a family of Hopfield networks on n = (sz) nodes that robustly

oy 2V . : ,
store ( k ) N binary patterns with maximal robustness index a = 1/2.

In Fig. 4, we show robust storage of the (~10%7) 64-cliques in graphs on 128
vertices using three (x, y, z) parameter specializations designed here.
A natural question is whether we can store a range of cliques using the same
architecture. In fact, we show here that there is a network storing nearly all cliques.
v

Theorem 3 For large v, there is a Hopfield network on n = (2) nodes that stores all
~2V(1 — e~ V) cliques of size k as fixed-points, where k is in the range:

1
m=—v<k<v=M,
D

for constants C ~ 0.43, D ~ 13.93. Moreover, this is the largest possible range of k
for any such Hopfield network.

Our next result demonstrates that even robustness to vanishingly small amounts of
noise is nontrivial (see Sect. 5.5 for the proof).

Theorem 4 Hopfield—Platt networks storing all permutations will not robustly store
derangements (permutations without fixed-points).

As a final application to biologically plausible learning theory, we derive a synap-

tic update rule for adapting weights and thresholds in these networks. Given a train-
ing pattern X, the minimum probability flow (MPF) learning rule moves weights and
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Fig.4 Robust exponential storage in networks of McCulloch—Pitts neurons. Error-correction performance
of Hopfield networks storing all 64-cliques in v = 128 vertex graphs using a fully connected 8128-bit net-
work minimizing probability flow (5) on 50,000 random 64-cliques (light gray line), a sparsely connected

(x,0, 1) network with large deviation setting x = % and p = 1/4 (gray), or a sparsely connected
MPF theoretical optimum (7) (black). Over 10 trials, 100 64-cliques chosen uniformly at random were
p-corrupted for different p and then dynamics were converged initialized at noisy cliques. The plot shows
the fraction of cliques completely recovered vs. pattern corruption p (standard deviation error bars). Dotted
lines are average number of bits in a pattern retrieved correctly after converging network dynamics

thresholds in the direction of steepest descent of the probability flow objective func-
tion (5) evaluated at X = {x}. Specifically, for ¢ # f the rule takes the form:

AW,f o< —x f Ax, exp(—AE,/2),
AB, & Axpexp(—AE,/2).

®

After learning, the weights between neurons e and f are symmetrized to %(Wef +
Wge), which preserves the energy function and guarantees that dynamics terminates
in fixed-point attractors. As update directions (8) descend the gradient of an infinitely
differentiable convex function, learning rules based on them have good convergence
rates [23].

Let us examine the (symmetrized) learning rule (8) more closely. Suppose first
that x, = 0 so that Ax, =0 or 1 (depending on the sign of I, — 6,). When Ax, =0,
weight W, does not change; on the other hand, when Ax, = 1, the weight decreases
if xy =1 (and stays the same, otherwise). If instead x, = 1, then W, changes only
if Ax,=—1or Axy = —1, in which case the update is positive when at least one of
Xe, X f is 1 (and zero, otherwise). In particular, either (i) weights do not change (when
the pattern is memorized or there is no neural activity) or (ii) when neurons e and f
are both active in (8), weights increase, while when they are different, they decrease,
consistent with Hebb’s postulate [9], a basic hypothesis about neural synaptic plas-
ticity. In fact, approximating the exponential function with unity in (8) gives a variant
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of classical outer-product rule (OPR) learning. Note also that adaptation (8) is local
in that updating weights between 2 neurons only requires their current state/threshold
and feedforward input from nearby active neurons.

4 Discussion

The biologically inspired networks introduced in this work constitute a new nonlin-
ear error-correcting scheme that is simple to implement, parallelizable, and achieves
the most asymptotic error tolerance possible [24] for low-density codes over a bi-
nary symmetric channel (¢ = 1/2 in definition (4)). There have been several other
approaches to optimal error-correcting codes derived from a statistical physics per-
spective; for a comprehensive account, we refer the reader to [25]. See also [26-29]
for related work on neural architectures with large memory. Additionally, for a recent
review of memory principles in computational neuroscience theory more broadly, we
refer the reader to the extensive high level summary [30].

Although we have focused on minimizing probability flow to learn parameters in
our discrete neural networks, several other strategies exist. For instance, one could
maximize the (Bayesian) likelihood of cliques given network parameters, though
any strategy involving a partition function over graphs might run into challenging
algorithmic complexity issues [31]. Contrastive divergence [17] is another popular
method to estimate parameters in discrete maximum entropy models. While this ap-
proach avoids the partition function, it requires a nontrivial sampling procedure that
precludes exact determination of optimal parameters.

Early work in the theory of neural computation put forward a framework for neu-
rally plausible computation of (combinatorial) optimization tasks [32]. Here, we add
another task to this list by interpreting error-correction by a recurrent neural network
in the language of computational graph theory. A basic challenge in this field is to
design efficient algorithms that recover structures imperfectly hidden inside of oth-
ers; in the case of finding fully connected subgraphs, this is called the “Hidden clique
problem” [33]. The essential goal of this task is to find a single clique that has been
planted in a graph by adding (or removing) edges at random.

Phrased in this language, we have discovered discrete recurrent neural networks
that learn to use their cooperative McCulloch—Pitts dynamics to solve hidden clique
problems efficiently. For example, in Fig. 5 we show the adjacency matrices of three
corrupted 64-cliques on v = 128 vertices returning to their original configuration by
one iteration of the network dynamics through all neurons. As a practical matter, it
is possible to use networks robustly storing k-cliques for detecting highly connected
subgraphs with about k neighbors in large graphs. In this case, error-correction serves
as a synchrony finder with free parameter k, similar to how “K-means” is a standard
unsupervised approach to decompose data into K clusters.

In the direction of applications to basic neuroscience, we comment that it has been
proposed that co-activation of groups of neurons—that is, synchronizing them—is a
design principle in the brain (see, e.g., [34-36]). If this were true, then perhaps the
networks designed here can help discover this phenomenon from spike data. More-
over, our networks also then provide an abstract model for how such coordination
might be implemented, sustained, and error-corrected in nervous tissue.
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<«—— Error-correcting network dynamics

Clique 1 Clique 2 Clique 3

Fig. 5 Learning to solve ~1037 “Hidden clique” problems. (Bottom) Adjacency matrices of three
64-cliques on v = 128 vertices. (Top) Adjacency matrices of noisy versions of the cliques having, on
average, 1219 bits corrupted out of n = 8128 from the original. Converging dynamics of a symmetric
3-parameter network (x,y, z) = (0.0107,0, 1) with minimum probability flow initialized at these noisy
cliques uncovers the originals

As a final technical remark about our networks, note that our synapses are actually
discrete since the probability flow is minimized at a synaptic ratio equaling a rational
number. Thus, our work adds to the literature on the capacity of neural networks with
discrete synapses (see, e.g., [26, 37-40]), all of which build upon early classical work
with associative memory systems (see, e.g., [20, 41]).

5 Mathematical Details

We provide the remaining details for the proofs of mathematical statements appearing
earlier in the text.

5.1 Symmetric 3-Parameter (x, y, z) Networks
The first step of our construction is to exploit symmetry in the following set of linear
inequalities:

E.— Ey <0, ©

where ¢ runs over k-cliques and ¢’ over vectors differing from ¢ by a single bit flip.
The space of solutions to (9) is the convex polyhedral cone of networks having each
clique as a strict local minimum of the energy function, and thus a fixed-point of the
dynamics.
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The permutations P € Py of the vertices V act on a network by permuting the
rows/columns of the weight matrix (W — PWPT) and thresholds (6 — P@), and
this action on a network satisfying property (9) preserves that property. Consider

the average (W, 8) of a network over the group Py: W := i Zpep PWPT 6 :=
o Z Pepy P0, and note that if (W, 6) satisfies (9) then so does the highly symmetric
object (W, 0). To characterize (W, 9), observe that PWPT =W and P& =6 for all
P e Py.

These strong symmetries imply there are x, y, z such that 0= (z,...,z) e R" and
for each pair e # f of all possible edges:

x iflen f]=1,

W, —
TNy iflen fl=0.

where |e N f| is the number of vertices that e and f share.
Our next demonstration is an exact setting for weights in these Hopfield networks.

5.2 Exponential Storage

For an integer r > 0, we say that state x* is r-stable if it is an attractor for all states
with Hamming distance at most » from x*. Thus, if a state x* is r-stably stored, the
network is guaranteed to converge to x* when exposed to any corrupted version not
more than r bit flips away.

For positive integers k and r, is there a Hopfield network on n = (221‘) nodes stor-
ing all k-cliques r-stably? We necessarily have r < |k/2], since 2(|k/2] + 1) is
greater than or equal to the Hamming distance between two k-cliques that share a
(k — 1)-subclique. In fact, for any k > 3, this upper bound is achievable by a sparsely
connected three-parameter network.

Lemma 1 There exists a family of three-parameter Hopfield networks with z = 1,
y = 0 storing all k-cliques as | k/2]-stable states.

The proof relies on the following lemma, which gives the precise condition for the
three-parameter Hopfield network to store k-cliques as r-stable states for fixed 7.

Lemma 2 Fix k > 3 and 0 <r < k. The Hopfield network (W(x, y), 6(z)) stores all
k-cliques as r-stable states if and only if the parameters x, y, z € R satisfy

-2

X -2
M~|:y:|< 2 Z,

2

where

42—k +2r  Q2-k(k-3)
42—k  Q-kk-3)—
2k—1D+2r (k=1 —2)
2k—1) (k—1)(k—-2)—

M =
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Furthermore, a pattern within Hamming distance r of a k-clique converges after one
iteration of the dynamics.

Proof For fixed r and k-clique x, there are 2" possible patterns within Hamming
distance r of x. Each of these patterns defines a pair of linear inequalities on the
parameters x, y, z. However, only the inequalities from the following two extreme
cases are active constraints. All the other inequalities are convex combinations of
these.

1. r edges in the clique with a common node i are removed.
2. r edges are added to a node i not in the clique.

In the first case, there are two types of edges at risk of being mislabeled. The first
are those of the form ij for all nodes j in the clique. Such an edge has 2(k —2) — r
neighbors and (kf) non-neighbors. Thus, each such edge will correctly be labeled 1
after one network update if and only if x, y, and z satisfy

20k —r —d)x + (k —2)(k —3)y > 2z. (10)

The other type are those of the form i j for all nodes i # i in the clique, and j not
in the clique. Assuming r < k — 1, such an edge has at most k — 1 neighbors and
(kgl) — r non-neighbors. Thus, each such edge will be correctly labeled 0 if and only
if

2(k — Dx + ((k — D(k —2) —2r)y <2z. (11

Rearranging Eqgs. (10) and (11) yield the first two rows of the matrix in the lemma.
A similar argument applies for the second case, giving the last two inequalities.
From the derivation, it follows that if a pattern is within Hamming distance r of a
k-clique, then all spurious edges are immediately deleted by case 1, all missing edges
are immediately added by case 2, and thus the clique is recovered in precisely one
iteration of the network dynamics. g

Proof of Lemma 1 The matrix inequalities in Lemma 2 define a cone in R3, and
the cases z = 1 or z = 0 correspond to two separate components of this cone. For
the proof of Theorem 1 in the main article, we use the cone with z = 1. We further
assume y = 0 to achieve a sparsely connected matrix W. In this case, the second and
fourth constraints are dominated by the first and third. Thus, we need x that solves

1 1
—_— <A< /.
2k —1) —r k—1+r

There exists such a solution if and only if
2k—1)—r>k—14+r <& k>2r+1. (12)

The above equation is feasible if and only if » < |k/2]. U
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5.3 Proofs of Theorems 1, 2

Fix y =0 and z = 1. We now tune x such that asymptotically the c-robustness of our
set of Hopfield networks storing k-cliques tends to 1/2 as n — oo. By symmetry, it
is sufficient to prove robustness for one fixed k-clique x; for instance, the one with
vertices {1,...,k}. For 0 < p < %, let x,, be the p-corruption of x. For each node
ie{l,..., 2k}, leti, ioy denote the number of edges from i to other clique and non-
clique nodes, respectively. With an abuse of notation, we write i € X to mean a vertex
i in the clique; thatis, i € {1, ..., k}. We need the following inequality originally due
to Bernstein from 1924.

Proposition 1 (Bernstein’s inequality [22]) Let S; be independent Bernoulli random
variables taking values +1 and —1, each with probability 1/2. For any ¢ > 0, the

following holds:
1 o ne?
P —E Si < - .
(n — ’>8)—6Xp( 2+2e/3>

The following fact is a fairly direct consequence of Proposition 1.

. . . . i.i.d.
Lemma 3 Let Y be an n X n symmetric matrix with zero diagonal, Y;; ~
Bernoulli(p). For each i = 1,...,n, let Y; = Zj Yij be the ith row sum. Let
M, = maxi<j<, Y;, and m, = minj<;<, Y;. Then, for any constant ¢ > 0, as n — oo,
we have

]P’(|m,, —np| > cﬁlnn) -0
and

P(|M, —np| > c+/nInn) — 0.
In particular, \m, — np|, |M,, — np| = o(y/nInn).

Proof Fix ¢ > 0. As a direct corollary of Bernstein’s inequality, for each i and for
any ¢ > 0, we have

(n—1)e?

It follows that
l’l82
P(Yl —np > nS) <exp —m y

clnn

ﬁ >

and thus from a union bound with & = we have
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Since this last bound converges to 0 with n — oo, we have proved the claim for M,,.
Since Y; is symmetric about np, a similar inequality holds for m,,. O

Corollary 1 Let Mi, = maX;ex iin, Min = MiNjex iin, Mout = MaX;¢x iout, Mout =
minigéx iouts and Mpetween = max;e¢x iin. Then Miy, — k(1 — p), miyn — k(1 — p),
Mowt — kp, mout — kp, and Myerween — kp are all of order 0(«/Elnk) as k — oo
almost surely.

Proofs of Theorems 1, 2 (robustness) Let N (e) be the number of neighbors of edge e.
For each e in the clique:

N(e) > 2mip + 2moy ~ 2k + o(ﬁln k), w.h.p. (with high probability).

To guarantee that all edges e in the clique are labeled 1 after one dynamics update,

we need x > ﬁ; that is,
1

T o(VkInk)

If f is an edge with exactly one clique vertex, then we have

13)

N(f) < Miy + Moy + 2Mbetween

~k(142p) +o(kInk), w.h.p.

To guarantee that x y = 0 for all such edges f after one iteration of the dynamics, we

1. :
need x < IOk that is,

1
a k(14 2p) +o(vklInk)

(14)

In particular, if p = p(k) ~ % — k%=1/2 for some small § € (0, 1/2), then taking x =
x(k) = %[ﬁ + M] would guarantee that for large k the two inequalities (13) and
(14) are simultaneous satisfied. In this case, limy_, o p(k) = 1/2, and thus the family

of two-parameter Hopfield networks with x(k), y = 0, z = 1 has robustness index
a=1/2. O

5.4 Clique Range Storage

In this section, we give precise conditions for the existence of a Hopfield network on
(;) nodes that stores all k-cliques for & in an interval [m, M], m < M < v. We do not
address the issue of robustness as the qualitative trade-off is clear: the more memories
the network is required to store, the less robust it is. This trade-off can be analyzed
by large deviation principles as in Theorem 2.

Lemma 4 Fix m such that 3 <m < v. For M > m, there exists a Hopfield network

on (g) nodes that stores all k-cliques in the range [m, M) if and only if M solves the
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implicit equation xp — X, < 0, where

—(4m — V12m2 —32m + 57— "17)
Xm =

2(m2 —m —2) ’
_ —(AM + V12M? —52M + 57— 1)
M= QM2 — M —2)

Proof Fix z=1/2 and r =0 in Lemma 1. (We do not impose the constraint y = 0.)
Then the cone defined by the inequalities in Lemma 1 is in bijection with the polyhe-
dron Z; € R? cut out by inequalities:

4 —2)x + (k—2)(k—3)y — 1> 0,
20k — Dx+ (k— Dk —2)y — 1 <0.

Let Ry be the line 4(k —2)x + (k—2)(k—3)y — 1 =0, and By, be the line 2(k — 1)x +
(k —1)(k —2)y — 1 =0. By symmetry, there exists a Hopfield network that stores
all k-cliques in the range [m, M] if and only if ﬂ,iw: Lk # . For a point P € R?,
write x (P) for its x-coordinate. Note that, for k > 3, the points By N By lie on the
following curve Q implicitly parametrized by k:

1 —1
o={(c=ramva=s) =3}

When the polytope ﬂ,i”zm Ty is nonempty, its vertices are the following points:
Ry N Ry, Ry N By, By N Byy1 form <k <M — 1, and the points By N R,,. This
defines a nonempty convex polytope if and only if

Xy =x(QNRy) <xpm:=x(QNRy).

Direct computation gives the formulas for x,,, x)s in the lemma statement. See Fig. 6
for a visualization of the constraints of the feasible region. d

Fixing the number of nodes and optimizing the range M — m in Lemma 4, we
obtain Theorem 3 from Sect. 3.

Proof of Theorem 3 From Lemma 4, for large m, M, and v, we have the approxima-

tions x,, ~ %, Xy R #. Hence xp; — x;, <0 when M < %m = Dm.
Asymptotically for large v, the most cliques are stored when M = Dm and [m, M]
contains v/2. Consider m = v so that v> M = DBv > v/2, and thus 1/D > >
1/(2D). Next,setu =v/2 —m=v(1/2—B)andw=M —v/2 =v(DB — 1/2) so
that storing the most cliques becomes the problem of maximizing over admissible 8
the quantity:

max{u, w} = max{v(l/Z —B),v(Dp — 1/2)}.
One can now check that 8 = 1/D gives the best value, producing the range in the

statement of the theorem.
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m=5M=15 M = 5500
\

0.04 0.06 0.08 0.10
I | I I

0.02
|

T T
a- -0.25 -0.20 -0.15 -0.10 -0.05 0.00 b- —1e-03 -8e-04 —6e-04

Fig. 6 Feasible exponential storage. (a) The shaded region is the feasible polytope for network parameters
giving clique storage for 5 < k < 15. Black points are its vertices, the red Ry and blue By lines are linear
constraints. (b) Lines Ry (red) and By (blue) for 1000 < k < 5500. Note the appearance of the smooth
curve Q enveloping the family By in the figure

Next, note that (2)2’“ is the fraction of k-cliques in all cliques on v vertices,
which is also the probability of a Binom(v, 1/2) variable equaling k. For large v,
approximating this variable with a normal distribution and then using Mill’s ratio to
bound its tail c.d.f. @, we see that the proportion of cliques storable tends to

D—1
1- @(Tﬁ> ~ 1 —exp(—Cv),

2
for some constant C ~ % ~ 0.43. O

5.5 Hopfield—Platt Networks

We prove the claim in the main text that Hopfield—Platt networks [13] storing all
permutations on {1, ..., k} will not robustly store derangements (permutations with-
out fixed-points). For large &, the fraction of permutations that are derangements is
known to be e~ 2 0.36.

Proof of Theorem 4 Fix a derangement o on {1, ..., k}, represented as a binary vec-
tor x in {0, 1}" for n = k(k — 1). For each ordered pair (i, j), i # j, j #o(i), we
construct a pattern y;; that differs from x by exactly two bit flips:

1. Add the edge ij.
2. Remove the edge io (i).

There are k(k — 2) such pairs (i, j), and thus k(k — 2) different patterns y;;. For each
such pattern, we flip two more bits to obtain a new permutation x'/ as follows:

1. Remove the edge o~ (j) ;.
2. Add the edge o~ (j)o ().
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It is easy to see that X'/ is a permutation on k letters with exactly two cycles deter-
mined by (i, j). Call the set of edges modified the critical edges of the pair (i, j).
Note that x/ are all distinct and have disjoint critical edges.

Each y;; is exactly two bit flips away from x and x'/| both permutations on k
letters. Starting from y;;, there is no binary Hopfield network storing all permutations
that always correctly recovers the original state. In other words, for a binary Hopfield
network, y;; is an indistinguishable realization of a corrupted version of x and i

We now prove that, for each derangement x, with probability at least 1 — (1 —
4p*)"/2 its p-corruption X p 1s indistinguishable from the p-corruption of some other
permutation. This implies the statement in the theorem.

For each pair (i, j) as above, recall that x,, and ?fjvj are two random variables in
{0, 1}"* obtained by flipping each edge of x (resp. x"/) independently with probabil-
ity p. We construct a coupling between them as follows. Define the random variable
X/ via:

P

/
p

and x/ with independent Bernoulli(p).

e For each non-critical edge, flip this edge on X/, and x/ with the same Bernoulli(p).

/

e For each critical edge, flip them on x »

d . i . e
Then x’p =X, have the same distribution, and x;, and x;)’ only differ in distribution
on the four critical edges. Their marginal distributions on these four edges are two
discrete variables on 2% states, with total variation distance 1 — 4(1 — p)2 pz. Thus,

) . d _, d
there exists a random variable xg such that x/[; = x/p =X, and

P(x) =x;) =4(1 — p)*p*.

In other words, given a realization of X, with probability 4(1 — p)?p?, this is
equal to a realization from the distribution of x,, and therefore no binary Hopfield
network storing both x”/ and x can correctly recover the original state from such an
input. An indistinguishable realization occurs when two of the four critical edges
are flipped in a certain combination. For fixed x, there are k(k — 2) such x”/ where
the critical edges are disjoint. Thus, the probability of x,, being an indistinguishable
realization from a realization of one of the x'/ is at least

1= (1—=41 = p)?p?) 2 > 1= (1—4p?)"?,
completing the proof of Theorem 4. O
5.6 Examples of Clique Storage

To illustrate the effect of two different noise levels on hidden clique finding per-
formance of the networks from Fig. 4, we present examples in Fig. 7 of multiple
networks acting with their dynamics on the same two noisy inputs. Notice that non-
clique fixed-points appear, and it is natural to ask whether a complete characteriza-
tion of the fixed-point landscape is possible. Intuitively, our network performs a local,
weighted degree count at each edge of the underlying graph and attempts to remove
edges with too few neighbors, while adding in edges that connect nodes with high
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noisy 64-clique (15%)

MPF Theory (converge)

noisy 64-clique (20%) MPF Theory (1 update)

MPF Train (converge) LD Bound (converge) MPF Theory (converge)

Fig. 7 Examples of robustness for networks in Fig. 4 of main text with v = 128, k = 64, n = 8128. Ad-
jacency matrices of noisy cliques (in red) have 1219 (top) or 1625 (bottom) bits corrupted out of 8128
(p =0.15/0.2) from the original 64-clique (in green). Images show the result of dynamics applied to these
noisy patterns using networks with all-to-all MPF parameters after L-BFGS training on 50,000 64-cliques
(R2e—31% of all 64-cliques), Large deviation parameters (x, y, z) = (0.0091, 0, 1), or MPF Theory pa-
rameters (x, y, z) = (0.0107, 0, 1) from Eq. (7) in the main text

degrees. Thus, resulting fixed-points (of the dynamics) end up being graphs such as
cliques and stars. Beyond this intuition, however, we do not have a way to character-
ize all fixed-points of our network in general.

In fact, this is a very difficult problem in discrete geometry, and except for toy net-
works, we believe that this has never been done. Geometrically, the set of all states of
a binary Hopfield network with n neurons is the n-hypercube {0, 1}". Being a fixed-
point can be characterized by the energy function becoming larger when one bit is
flipped. As the energy function is quadratic, for each of the n bits flipped, this creates
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a quadratic inequality. Thus, the set of all fixed-point attractors in a binary Hopfield
network is the n-hypercube intersected with n quadratic inequalities in n variables.
In theory, one could enumerate such sets for small n; however, characterizing them
all is challenging, even for the highly symmetric family of weight matrices that we
propose here.
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