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Abstract This tutorial illustrates the use of data assimilation algorithms to estimate
unobserved variables and unknown parameters of conductance-based neuronal mod-
els. Modern data assimilation (DA) techniques are widely used in climate science
and weather prediction, but have only recently begun to be applied in neuroscience.
The two main classes of DA techniques are sequential methods and variational meth-
ods. We provide computer code implementing basic versions of a method from each
class, the Unscented Kalman Filter and 4D-Var, and demonstrate how to use these
algorithms to infer several parameters of the Morris—Lecar model from a single volt-
age trace. Depending on parameters, the Morris—Lecar model exhibits qualitatively
different types of neuronal excitability due to changes in the underlying bifurcation
structure. We show that when presented with voltage traces from each of the various
excitability regimes, the DA methods can identify parameter sets that produce the
correct bifurcation structure even with initial parameter guesses that correspond to a
different excitability regime. This demonstrates the ability of DA techniques to per-
form nonlinear state and parameter estimation and introduces the geometric structure
of inferred models as a novel qualitative measure of estimation success. We conclude
by discussing extensions of these DA algorithms that have appeared in the neuro-
science literature.
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List of Abbreviations

DA data assimilation

PDE  partial differential equation

4D-Var 4D-Variational

EKF  Extended Kalman Filter

UKF  Unscented Kalman Filter

SNIC saddle-node on invariant circle

EnKF Ensemble Kalman Filter

LETK Local Ensemble Transform Kalman Filter

1 Introduction
1.1 The Parameter Estimation Problem

The goal of conductance-based modeling is to be able to reproduce, explain, and
predict the electrical behavior of a neuron or networks of neurons. Conductance-
based modeling of neuronal excitability began in the 1950s with the Hodgkin—Huxley
model of action potential generation in the squid giant axon [1]. This modeling frame-
work uses an equivalent circuit representation for the movement of ions across the cell
membrane:

C‘;—Y = lapp = D_ Tion: e
mon
where V is membrane voltage, C is cell capacitance, [j,, are ionic currents, and
Ipp is an external current applied by the experimentalist. The ionic currents arise
from channels in the membrane that are voltage- or calcium-gated and selective for
particular ions, such sodium (Na*) and potassium (K™*). For example, consider the
classical Hodgkin—Huxley currents:

INa = gnam>h(V — Eng), 2)
Ix = gxn*(V — Ex). )

The maximal conductance gjo, is a parameter that represents the density of channels
in the membrane. The term (V — Ejqy) is the driving force, where the equilibrium
potential Ejo, is the voltage at which the concentration of the ion inside and outside
of the cell is at steady state. The gating variable m is the probability that one of three
identical subunits of the sodium channel is “open”, and the gating variable % is the
probability that a fourth subunit is “inactivated”. Similarly, the gating variable »n is
the probability that one of four identical subunits of the potassium channel is open.
For current to flow through the channel, all subunits must be open and not inactivated.
The rate at which subunits open, close, inactivate, and de-inactivate depends on the
voltage. The dynamics of the gating variables are given by

dx
—r =V =0+ (V). @)

where «, (V) and B, (V) are nonlinear functions of voltage with several parameters.
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The parameters of conductance-based models are typically fit to voltage-clamp
recordings. In these experiments, individual ionic currents are isolated using pharma-
cological blockers and one measures current traces in response to voltage pulses.
However, many electrophysiological datasets consist of current-clamp rather than
voltage-clamp recordings. In current-clamp, one records a voltage trace (e.g., a se-
ries of action potentials) in response to injected current. Fitting a conductance-based
model to current-clamp data is challenging because the individual ionic currents have
not been measured directly. In terms of the Hodgkin—Huxley model, only one state
variable (V') has been observed, and the other three state variables (m, h, and n) are
unobserved. Conductance-based models of neurons often contain several ionic cur-
rents and, therefore, more unobserved gating variables and more unknown or poorly
known parameters. For example, a model of HVC neurons in the zebra finch has 9
ionic currents, 12 state variables, and 72 parameters [2]. An additional difficulty in
attempting to fit a model to a voltage trace is that if one performs a least-squares
minimization between the data and model output, then small differences in the tim-
ing of action potentials in the data and the model can result in large error [3]. Data
assimilation methods have the potential to overcome these challenges by performing
state estimation (of both observed and unobserved states) and parameter estimation
simultaneously.

1.2 Data Assimilation

Data assimilation can broadly be considered to be the optimal integration of observa-
tions from a system to improve estimates of a model output describing that system.
Data assimilation (DA) is used across the geosciences, e.g., in studying land hydrol-
ogy and ocean currents, as well as studies of climates of other planets [4-6]. An
application of DA familiar to the general public is its use in numerical weather pre-
diction [7]. In the earth sciences, the models are typically high-dimensional partial
differential equations (PDEs) that incorporate dynamics of the many relevant gov-
erning processes, and the state system is a discretization of those PDEs across the
spatial domain. These models are nonlinear and chaotic, with interactions of system
components across temporal and spatial scales. The observations are sparse in time,
contaminated by noise, and only partial with respect to the full state-space.

In neuroscience, models can also be highly nonlinear and potentially chaotic.
When dealing with network dynamics or wave propagation, the state-space can be
quite large, and there are certainly components of the system for which one would
not have time course measurements [8]. As mentioned above, if one has a biophys-
ical model of a single neuron and measurements from a current-clamp protocol, the
only quantity in the model that is actually measured is the membrane voltage. The
question then becomes: how does one obtain estimates of the full system state?

To begin, we assume we have a model to represent the system of interest and a
way to relate observations we have of that system to the components of the model.
Additionally, we allow, and naturally expect, there to be errors present in the model
and measurements. To start, let us consider first a general model with linear dynamics
and a set of discrete observations which depend linearly on the system components:

Xep1 = Fxp + o1,  xx e RE (5)
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Vi1 = Hxp1 + k1, yep1 € RM. (6)

In this state-space representation, x is interpreted as the state of the system at some
time #, and y; are our observations. For application in neuroscience, we can take
M « L as few state variables of the system are readily observed. F is our model
which maps states x; between time points #; and ;1. H is our observation operator
which describes how we connect our observations yi41 to our state-space at fj1.
The random variables w1 and 54 represent model error and measurement error,
respectively. A simplifying assumption is that our measurements are diluted by Gaus-
sian white noise, and that the error in the model can be approximated by Gaussian
white noise as well. Then w; ~ N (0, Q) and n; ~ N (0, Ry), where Oy is our model
error covariance matrix and Ry is our measurement error covariance matrix. We will
assume these distributions for the error terms for the remainder of the paper.

We now have defined a stochastic dynamical system where we have characterized
the evolution of our states and observations therein based upon assumed error statis-
tics. The goal is now to utilize these transitions to construct methods to best estimate
the state x over time. To approach this goal, it may be simpler to consider the evalu-
ation of background knowledge of the system compared to what we actually observe
from a measuring device. Consider the following cost function [9]:

1 1
Ce@) =y = Hxllg + 5 |x =", @)

where ||z ||124 =zT A=z, PP acts to give weight to certain background components x’,
and R acts in the same manner to the measurement terms. The model or background
term acts to regularize the cost function. Specifically, trying to minimize % ly—Hx ||%e
is underdetermined with respect to the observations unless we can observe the full
system, and the model term aims to inform the problem of the unobserved compo-
nents. We are minimizing over state components x. In this way, we balance the influ-
ence of what we think we know about the system, such as from a model, compared
to what we can actually observe. The cost function is minimized from

VC=(H"R'H + (P") x* — (H'R"'y + (P")"'x?) =0. ®)
This can be restructured as
x4 =x"+ K (y— Hx?), )
where
K=P'HT(HP'HT +R)™". (10)

The optimal Kalman gain matrix K acts as a weighting of the confidence of our
observations to the confidence of our background information given by the model.
If the background uncertainty is relatively high or the measurement uncertainty is
relatively low, K is larger, which more heavily weights the innovation y — Hx".
The solution of (7) can be interpreted as the solution of a single time step in our
state-space problem (5)—(6). In the DA literature, minimizing this cost function in-
dependent of time is referred to as 3D-Var. However, practically we are interested in
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problems resembling the following:

N N-1
1 2 1 2
C) =5 k§_0||yk — Hxillg, + 5 kE_O i1 = Faxill - (11)

where formally the background component x” has now been replaced with our model.
Now we are concerned with minimizing over an observation window with N + 1 time
points. Variational methods, specifically “weak 4D-Var”, seek minima of (11) either
by formulation of an adjoint problem [10], or directly from numerical optimization

techniques.
Alternatively, sequential data assimilation approaches, specifically filters, aim to
use information from previous time points g, #1, ..., #, and observations at the cur-

rent time f441, to optimally estimate the state at #; 1. The classical Kalman filter uti-
lizes the form of (10), which minimizes the trace of the posterior covariance matrix
of the system at step k + 1, P’_|, to update the state estimate and system uncertainty.

The Kalman filtering algorithm takes the following form. Our analysis estimate,
x{ from the previous iteration, is mapped through the linear model operator F to

obtain our forecast estimate )2,{ K
& =R (12)
k+1 kX -

The observation operator H is applied to the forecast estimate to generate the mea-
surement estimate )7,{ INE

1= Hen . (13)

The forecast estimate covariance P,j;l is generated through calculating the covari-
ance from the model and adding it with the model error covariance Qy:

P/, = FPAFT + Ok (14)

Similarly, we can construct the measurement covariance estimate by calculating the
covariance from our observation equation and adding it to the measurement error
covariance Ry:

P\, = Hip1 P HL + Ry (15)

The Kalman gain is defined analogously to (10):
Kipi =P/ HE (Pl (16)
k1= L1 P 1\ Fgep1) -

The covariance and the mean estimate of the system are updated through a weighted
sum with the Kalman gain:

Pe = — Kip HieD) P (17)

Xt =£I{+1 + Kir1 (Vo1 — 5’1<f+1)' (18)
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These equations can be interpreted as a predictor—corrector method, where the pre-
dictions of the state estimates are )E,{ 1 With corresponding uncertainties ijii-l in the
forecast. The correction, or analysis, step linearly interpolates the forecast predictions
with observational readings.

In this paper we only consider filters, however smoothers are another form of
sequential DA that also use observational data from future times fx42, ..., fx4; to
estimate the state at #1.

2 Nonlinear Data Assimilation Methods
2.1 Nonlinear Filtering

For nonlinear models, the Kalman equations need to be adapted to permit nonlinear
mappings in the forward operator and the observation operator:

Xes1 = f ) + ort1,  op € RE, (19)
Vir1 =h(eg1) + mee1, Mes1 € RM. (20)

Our observation operator for voltage data remains linear: A(x) = Hx = [e10...0]x,
where e; is the jth elementary basis vector, is a projection onto the voltage com-
ponent of our system. Note that i(x) is an operator, not to be confused with the
inactivation gate in (2). Our nonlinear model update, f(x) in (19), is taken as the
forward integration of the dynamical equations between observation times.

Multiple platforms for adapting the Kalman equations exist. The most straightfor-
ward approach is the extended Kalman filter (EKF) which uses local linearizations of
the nonlinear operators in (19)—(20) and plugs these into the standard Kalman equa-
tions. By doing so, one preserves Gaussianity of the state-space. Underlying the data
assimilation framework is the goal of understanding the distribution, or statistics of
the distribution, of the states of the system given the observations:

p(x[y) o< p(y|x) p(x). 2L

The Gaussianity of the state-space declares the posterior conditional distribution
p(x|y) to be a normal distribution by the product of Gaussians being Gaussian, and
the statistics of this distribution lead to the Kalman update equations [10]. However,
the EKF is really only suitable when the dynamics are nearly linear between obser-
vations and can result in divergence of the estimates [11].

Rather than trying to linearize the transformation to preserve Gaussianity, where
this distributional assumption is not going to be valid for practical problems anyway,
an alternative approach is to preserve the nonlinear transformation and try to estimate
the first two moments of transformed state [11]. The Unscented Kalman Filter (UKF)
approximates the first two statistics of p(xx|yo...yr) by calculating sample means
and variances, which bypasses the need for Gaussian integral products. The UKF uses
an ensemble of deterministically selected points in the state-space whose collective
mean and covariance are that of the state estimate and its associated covariance at
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Fig. 1 Unscented transformation. (A) Initial data where blue corresponds to sampling points from a nor-
mal distribution of the V, n state-space and the red circles are the sigma points. Black corresponds to the
true uncertainty and mean of the sampled distribution. Magenta corresponds to the statistics of the sigma
points. (B) Illustrates the forward operator f(x) acting on each element of the left panel where f(x) is the
numerical integration of the Morris—Lecar equations (42)—(46) between observation times

some time. The forward operator f(x) is applied to each of these sigma points, and
the mean and covariance of the transformed points can then be computed to estimate
the nonlinearly transformed mean and covariance. Figure 1 depicts this “unscented”
transformation. The sigma points precisely estimate the true statistics both initially
(Fig. 1(A)) and after nonlinear mapping (Fig. 1(B)).

In the UKF framework, as with all DA techniques, one is attempting to estimate the
states of the system. The standard set of states in conductance-based models includes
the voltage, the gating variables, and any intracellular ion concentrations not taken to
be stationary. To incorporate parameter estimation, parameters 6 to be estimated are
promoted to states whose evolution is governed by the model error random variable:

i1 =0+l of eRP. (22)

This is referred to as an “artificial noise evolution model”, as the random disturbances
driving deviations in model parameters over time rob them of their time-invariant
definition [12, 13]. We found this choice to be appropriate for convergence and as a
tuning mechanism. An alternative is to zero out the entries of Qj corresponding to the
parameters in what is called a “persistence model” where ;| = 0y [14]. However,
changes in parameters can still occur during the analysis stage.

We declare our augmented state to be comprised of the states in the dynamical
system as well as parameters 6 of interest:

Augmented State: x=(V,q, 0)T, qe€ RE-! .0 cRP, (23)
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where g represents the additional states of the system besides the voltage. The filter
requires an initial guess of the state Xy and covariance Py,. An implementation of this
algorithm is provided as Supplementary Material with the parent function UKFML.m
and one time step of the algorithm computed in UKF_Step.m.

An ensemble of o points are formed and their position and weights are determined
by A, which can be chosen to try to match higher moments of the system distribution
[11]. Practically, this algorithmic parameter can be chosen to spread the ensemble for
A > 0, shrink the ensemble for —N < A < 0, or to have the mean point completely
removed from the ensemble by setting it to zero. The ensemble is formed on lines
80-82 of UKF_Step.m. The individual weights can be negative, but their cumulative
sum is 1.

oPoints: X; =% £ (V(N+1)Pex);. j=1.....2N, Xo =X¢,
| 2 24)

Weights: szm, j=1,...,2N, W()

We form our background estimate )?lf 1 by applying our map f(x) to each of the
ensemble members

Xj=fX (25)
and then computing the resulting mean:

2N
Forecast Estimate : %7 = Z WX;. (26)
Jj=0

We then propagate the transformed sigma points through the observation operator
Y;=h(X;) (27)
and compute our predicted observation 5’1}: 1 from the mapped ensemble:

2N
Measurement Estimate: j}f = Z W, 17 j- (28)
j=0

We compute the background covariance estimate by calculating the variance of the
mapped ensemble and adding the process noise Qy:
2N
Background Cov. Est.: P, = D owi(X; - &) (X, - )40 )
j=0
and do the same for the predicted measurement covariance with the addition of Rj:

2N
Predicted Meas. Cov.: Py, = Z W (Y —50.,) (Y — )A),fH)T + Rkt1. (30)
j=0
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The Kalman gain is computed by matrix multiplication of the cross-covariance:

Cross-Cov.: Py, = Z Wi(X; - 20 )Y — %’H)T (3D
j=0

with the predicted measurement covariance:
Kalman Gain: K = Py, Py_vl. (32)

When only observing voltage, this step is merely scalar multiplication of a vector.
The gain is used in the analysis, or update step, to linearly interpolate our background
statistics with measurement corrections. The update step for the covariance is
T
P& =Pl —KP], (33)
and the mean is updated to interpolate the background estimate with the deviations
of the estimated measurement term with the observed data yj41:

Xep1 = )2115+1 + K(yk+1 - )A’II:H)' (34)

The analysis step is performed on line 124 of UKF_Step.m. Some implementa-
tions also include a redistribution of the sigma points about the forecast estimate
using the background covariance prior to computing the cross-covariance Py or the
predicted measurement covariance Py, [15]. So, after (29), we redefine X i )7]- in
(25) as follows:

Xj=3%,+ (w/(N+)\)P”)j, j=1,...,2N,

The above is shown in lines 98117 in UKF_Step. A particularly critical part of us-
ing a filter, or any DA method, is choosing the process covariance matrix Qj and the
measurement covariance matrix Ry. The measurement noise may be intuitively based
upon knowledge of one’s measuring device, but the model error is practically impos-
sible to know a priori. Work has been done to use previous innovations to simul-
taneously estimate Q and R during the course of the estimation cycle [16], but this
becomes a challenge for systems with low observability (such as is the case when only
observing voltage). Rather than estimating the states and parameters simultaneously
as with an augmented state-space, one can try to estimate the states and parameters
separately. For example, [17] used a shooting method to estimate parameters and the
UKEF to estimate the states. This study also provided a systematic way to estimate an
optimal covariance inflation Qy. For high-dimensional systems where computational
efficiency is a concern, an implementation which efficiently propagates the square
root of the state covariance has been developed [18].

Figure 2 depicts how the algorithm operates. Between observation times, the pre-
vious analysis (or best estimate) point is propagated through the model to come up
with the predicted model estimate. The Kalman update step interpolates this point
with observations weighted by the Kalman gain.
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Fig.2 Example of iterative estimation in UKF. The red circles are the result of forward integration through
the model using the previous best estimates. The green are the estimates after combining these with obser-
vational data. The blue stars depict the true system output (without any noise), and the magenta stars are
the noisy observational data with noise generated by (48) and ¢ = 0.1

2.2 Variational Methods

In continuous time, variational methods aim to find minimizers of functionals which
represent approximations to the probability distribution of a system conditioned on
some observations. As our data is available only in discrete measurements, it is prac-
tical to work with a discrete form similar to (7) for nonlinear systems:

1 N 1N—l
Ce =7 ;)Hyk —hG) |}, + 5 ;0 ekt = £ G0 - (35)

We assume that the states follow the state-space description in (19)—(20) with
wi ~ N (0, Q) and n ~ N (0, R), where Q is our model error covariance matrix and
R is our measurement error covariance matrix. As an approximation, we impose Q, R
to be diagonal matrices, indicating that there is assumed to be no correlation between
errors in other states. Namely, Q, contains only the assumed model error variance
for each state-space component, and R is just the measurement error variance of the
voltage observations. These assumptions simplify the cost function to the following:

1 N 1 L N-—1
C@ =52 R0k = Vi’ + 523" 0 (v — fiw)™s (36)
k=0 =1 k=0

where Vj = xj k. For the current-clamp data problem in neuroscience, one seeks to
minimize equation (36) in what is called the “weak 4D-Var” approach. An example
implementation of weak 4D-Var is provided in w4DvarML.m in the Supplementary
Material. An example of the cost function with which to minimize over is given in
the child function w4dvarobjfun.m. Each of the x; is mapped by f(x) on line 108.
Alternatively, “strong 4D-Var” forces the resulting estimates to be consistent with the
model f(x). This can be considered the result of taking Q — 0, which yields the
nonlinearly constrained problem

1
C(x>=5k§0R Yo — Vio)? (37)
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such that
Xkr1=f(), k=0,...,N. (38)

The rest of this paper will be focused on the weak case (36), where we can define
the argument of the optimization as follows:

X=[x1,1,X1,2, .-, XI,N, X2,1, ---» XL,N, 01,62, ...,6p] (39)

resulting in an (N + 1)L 4+ D-dimensional estimation problem. An important aspect
of the scalability of this problem is that the Hessian matrix

e
- axiax]'

ij (40)
is sparse. Namely, each state at each discrete time has dependencies based upon the
model equations and the chosen numerical integration scheme. At the heart of many
gradient-based optimization techniques lies a linear system, involving the Hessian
and the gradient VC(x,) of the objective function, that is used to solve for the next
candidate point. Specifically, Newton’s method for optimization is

Xpp1 =X, — HTIVC(x,). (41)

Therefore, if (N 4+ 1)L 4+ D is large, then providing the sparsity pattern is advan-
tageous when numerical derivative approximations, or functional representations of
them, are being used to perform minimization with a derivative-based method. One
can calculate these derivatives by hand, symbolic differentiation, or automatic differ-
entiation.

A feature of the most common derivative-based methods is assured convergence
to local minima. However, our problem is non-convex due to the model term, which
leads to the development of multiple local minima in the optimization surface as de-
picted in Fig. 3. For the results in this tutorial, we will only utilize local optimization
tools, but see Sect. 5 for a brief discussion of some global optimization methods with
stochastic search strategies.

3 Application to Spiking Regimes of the Morris—Lecar Model
3.1 Twin Experiments

Data assimilation is a framework for the incorporation of system observations into an
estimation problem in a systematic fashion. Unfortunately, the methods themselves
do not provide a great deal of insight into the tractability of unobserved system com-
ponents of specific models. There may be a certain level of redundancy in the model
equations and degeneracy in the parameter space leading to multiple potential solu-
tions [19]. Also, it may be the case that certain parameters are non-identifiable if,
for instance, a parameter can be completely scaled out [20]. Some further work on
identifiability is ongoing [21, 22].
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Fig. 3 Example cost function for 4D-Var. (A) Surface generated by taking the logarithm of C(«, B8),
where C(a, B) = C(xo(1 —a)(1 — B) + axXmin,d + BXmin,s) S0 thatat @ = B = 0, x = x( (magenta circle),
and at @ = 1 and B =0, X = Xppin g for the deeper minima (gray square), and similarly for the shallower
minima (gray diamond). (B) Contour plot of the surface shown in (A)

Before applying a method to data from a real biological experiment, it is important
to test it against simulated data where the ground truth is known. In these experiments,
one creates simulated data from a model and then tries to recover the true states and
parameters of that model from the simulated data alone.

3.2 Recovery of Bifurcation Structure

In conductance-based models, as well as in real neurons, slight changes in a parame-
ter value can lead to drastically different model output or neuronal behavior. Sudden
changes in the topological structure of a dynamical system upon smooth variation of
a parameter are called bifurcations. Different types of bifurcations lead to different
neuronal properties, such as the presence of bistability and subthreshold oscillations
[23]. Thus, it is important for a neuronal model to accurately capture the bifurca-
tion dynamics of the cell being modeled [24]. In this paper, we ask whether or not
the models estimated through data assimilation match the bifurcation structure of
the model that generated the data. This provides a qualitative measure of success or
failure for the estimation algorithm. Since bifurcations are an inherently nonlinear
phenomenon, our use of topological structure as an assay emphasizes how nonlinear
estimation is a fundamentally distinct problem from estimation in linear systems.

3.3 Morris-Lecar Model

The Morris—Lecar model, first used to describe action potential generation in barna-
cle muscle fibers, has become a canonical model for studying neuronal excitability
[25]. The model includes an inward voltage-dependent calcium current, an outward
voltage-dependent potassium current, and a passive leak current. The activation gat-
ing variable for the potassium current has dynamics, whereas the calcium current acti-
vation gate is assumed to respond instantaneously to changes in voltage. The calcium
current is also non-inactivating, resulting in a two-dimensional model. The model
exhibits multiple mechanisms of excitability: for different choices of model parame-
ters, different bifurcations from quiescence to repetitive spiking occur as the applied
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Fig.4 Three different excitability regimes of the Morris—Lecar model. The bifurcation diagrams in the top
row depict stable fixed points (red), unstable fixed points (black), stable limit cycles (blue), and unstable
limit cycles (green). Gray dots indicate bifurcation points, and the dashed gray lines indicate the value of
Iapp corresponding to the traces shown for V' (middle row) and n (bottom row). (A) As Iapp is increased
from O or decreased from 250 nA, the branches of stable fixed points lose stability through subcritical Hopf
bifurcation, and unstable limit cycles are born. The branch of stable limit cycles that exists at Iapp = 100
nA eventually collides with these unstable limit cycles and is destroyed in a saddle-node of periodic orbits
(SNPO) bifurcation as Iapp is increased or decreased from this value. (B) As Ipp is increased from 0,
a branch of stable fixed points is destroyed through saddle-node bifurcation with the branch of unstable
fixed points. As Iapp is decreased from 150 nA, a branch of stable fixed points loses stability through
subcritical Hopf bifurcation, and unstable limit cycles are born. The branch of stable limit cycles that exists
at Iapp = 100 nA is destroyed through a SNPO bifurcation as Iapp is increased and a SNIC bifurcation
as Iapp is decreased. (C) Same as (B), except that the stable limit cycles that exist at Japp = 36 nA are
destroyed through a homoclinic orbit bifurcation as I,pp is decreased

Table 1 Morris—Lecar

parameter values. For all Hopf SNIC Homoclinic
simulations, C = 20,
Ecy =120, Ex = —84, and
E1, = —60. For the Hopf and ¢ 0.04 0.067 0.23
SNIC regime, Tapp = 100; for 8Ca 4 4 4
the homoclinic regime, V3 2 12 12
Lapp =36 Vi 30 17.4 17.4
8K 8 8 8
8L 2 2 2
Vi —-1.2 —-1.2 -1.2
Vs 18 18 18

current is increased [23]. Three different bifurcation regimes—Hopf, saddle-node on
an invariant circle (SNIC), and homoclinic—are depicted in Fig. 4 and correspond
to the parameter sets in Table 1. For a given applied current in the region where a
stable limit cycle (corresponding to repetitive spiking) exists, each regime displays a
distinct firing frequency and action potential shape.
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The equations for the Morris—Lecar model are as follows:

Cmcil—‘: = lapp — 8L(V — EL) — gxn(V — Ex)
— 8caMoo(V)(V — Eca)
= fy(V,n;0), (42)
fi—’z = (neo(V) = 1)/t (V) = £ (V. n:0), (43)
with

Moo = %[1 + tanh((V — V1)/ V)], (44)

T =1/ cosh((V — V3)/2V4), (45)

Noo = %[1 + tanh((V — V3)/ V4)]. (46)

The eight parameters that we will attempt to estimate from data are g1, gk, gca,
¢, V1, Va, V3, and V4. We are interested in whether the estimated parameters yield
a model with the desired mechanism of excitability. Specifically, we will conduct
twin experiments where the observed data is produced by a model with parameters
in a certain bifurcation regime, but the data assimilation algorithm is initialized with
parameter guesses corresponding to a different bifurcation regime. We then assess
whether or not a model with the set of estimated parameters undergoes the same
bifurcations as the model that produced the observed data. This approach provides an
additional qualitative measure of estimation accuracy, beyond simply comparing the
values of the true and estimated parameters.

3.4 Results with UKF

The UKF was tested on the Morris—Lecar model in an effort to simultaneously esti-
mate V and n along with the eight parameters in Table 1. Data was generated via a
modified Euler scheme at observation points every 0.1 ms, where we take the step-
size At as 0.1 as well:

X1 = Xk + ALf* (1, Xp),
At * * ~
Xk4+1 = Xk + 7(]” (tk, x0) + f* (1, Xxt1)) (47)

= f(xk).

The UKF is a particularly powerful tool when a lot of data is available; the compu-
tational complexity in time is effectively the same as the numerical scheme of choice,
whereas the additional operations at each time point are O ((L + D)%) [26]. f(x) in
(19) is taken to be the Morris—Lecar equations (42)—(43), acting as f*(#, xx), inte-
grated forward via modified Euler (47), and is given on line 126 of UKFML.m. The
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function fXaug.m, provided in the Supplementary Material, represents our augmented
vector field. Our observational operator H is displayed on line 136 of UKFML.m. To
reiterate, the states to be estimated in the Morris—Lecar model are the voltage and the
potassium gating variable. The eight additional parameters are promoted to the mem-
bers of state-space with trivial dynamics resulting in a ten-dimensional estimation
problem.

These examples were run using 20 seconds of data which is 200,001 time points.
During this time window, the Hopf, SNIC, and homoclinic models fire 220, 477, and
491 spikes, respectively. Such a computation for a ten-dimensional model takes only
a few minutes on a laptop computer. R can be set to 0 when one believes the observed
signal to be completely noiseless, but even then it is commonly left as a small num-
ber to try to mitigate the development of singularities in the predicted measurement
covariance. We set our observed voltage to be the simulated output using modified
Euler with additive white noise at each time point:

Vobs (1) = Virue (1) +1(2), (48)

where n ~ N (0, (801rue)?) is a normal random variable whose variance is equal to the
square of the standard deviation of the signal scaled by a factor ¢, which is kept fixed
at 0.01 for these simulations. R is taken as the variance of n. The initial covariance
of the system is ay I, where [ is the identity matrix and oy is 0.001. The initial guess
for n is taken to be 0. Q is fixed in time as a diagonal matrix with diagonal 10~
[max(Vops) — min(Vops), 1, [@p|], where 6y represents our initial parameter guesses.
We set L = 5; however, this parameter was not especially influential for the results of
these runs, as discussed further below. These initializations are displayed in the body
of the parent function UKFML.m.

Figure 5 shows the state estimation results when the observed voltage is from the
SNIC regime, but the UKF is initialized with parameter guess corresponding to the
Hopf regime. Initially, the state estimate for n and its true, unobserved dynamics have
great disparity. As the observations are assimilated over the estimation window, the
states and model parameters adjust to produce estimates which better replicate the
observed, and unobserved, system components. In this way, information from the
observations is transferred to the model. The evolution of the parameter estimates for
this case is shown in the first column of Fig. 6, with ¢, V3, and V4 all converging
to close to their true values after 10 seconds of observations. The only difference
in parameter values between the SNIC and homoclinic regimes is the value of the
parameter ¢. The second column of Fig. 6 shows that when the observed data is from
the homoclinic regime but the initial parameter guesses are from the SNIC regime,
the estimates of V3 and V4 remain mostly constant near their original (and correct)
values, whereas the estimate of ¢ quickly converges to its new true value. Finally, the
third column of Fig. 6 shows that all three parameter estimates evolve to near their
true values when the UKF is presented with data from the Hopf regime but initial
parameter estimates from the homoclinic regime.

Table 2 shows the parameter estimates at the end of the estimation window for all
of the nine possible twin experiments. Promisingly, a common feature of the results is
the near recovery of the true value of each of the parameters. However, the estimated
parameter values alone do not necessarily tell us about the dynamics of the inferred
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Fig. 5 State estimates for UKF. This example corresponds to initializing with parameters from the HOPF
regime and attempting to correctly estimate those of the SNIC regime. The noisy observed voltage V and
true unobserved gating variable n are shown in blue, and their UKF estimates are shown in red

Table 2 UKF parameter estimates at end of estimation window, with observed data from bifurcation
regime ‘t” and initial parameter guesses corresponding to bifurcation regime ‘g’

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF gSNIC g:HOMO gHOPF g:SNIC g:HOMO

¢ 0.040 0.40 0.040 0.067 0.040 0.067 0.237 0.224 0.224
gca  4.017 4.019 4.025 4.001 4.000 4.001 4.112 3.874 3.877
V3 1.612 1.762 1.660 11.931 11.937 11.912 11.751 11.784 11.772
V4 29.646 29832 29.771 17.343  17.337 17.342 17.739  16.806 16.815
gK 7.895 7.926 7.892 7.970 7.971 7.958 7.929 7.854 7.850
gL 2.032 2.027 2.033 2.003 2.004 2.003 2.025 1.967 1.968
Vi —-1.199 —-1.195 -1.189 —-1.193 —1.193 —1.190 —1.064 —1.346 —1.341
Vo 18.045  18.053 18.067 17.991 17.991  17.991 18.179  17.734  17.740

model. To assess the inferred models, we generate bifurcation diagrams using the es-
timated parameters and compare them to the bifurcation diagrams for the parameters
that produced the observed data. Figure 7 shows that the SNIC and homoclinic bifur-
cation diagrams were recovered quite exactly. The Hopf structure was consistently
recovered, but with shifted regions of spiking and quiescence and minor differences
in spike amplitude.

To check the consistency of our estimation, we set 100 initial guesses for n across
its dynamical range as samples from 2/ (0, 1). Figure 8 shows that the state estimates
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Fig. 6 Parameter estimates for UKF. This example corresponds to initializing with parameters from the
HOPF, SNIC, and HOMO regimes and attempting to correctly estimate those of the SNIC, HOMO, and
HOPF regimes (left to right column, respectively). The blue curves are the estimates from the UKF, with
42 standard deviations from the mean (based on the filter estimated covariance) shown in red. The gray
lines indicate the true parameter values
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Fig. 7 Bifurcation diagrams for UKF twin experiments. The gray lines correspond to the true diagrams,
and the blue dotted lines correspond to the diagrams produced from the estimated parameters in Table 2

for n across these initializations quickly approached very similar trajectories. We
confirmed that after the estimation cycle was over, the parameter estimates for all
100 initializations were essentially identical to the values shown in Table 2. In this
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Fig. 8 UKEF state estimates of n
for the Morris-Lecar model with
100 different initial guesses of
the state sampled from 24 (0, 1),
with all other parameters held
fixed 1+

0.8¢

0.6
0.4

0.2+ L
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paper, we always initialized the UKF with initial parameter values corresponding to
the various bifurcation regimes and did not explore the performance for randomly
selected initial parameter guesses. For initial parameter guesses that are too far from
the true values, it is possible that the filter would converge to incorrect parameter val-
ues or fail outright before reaching the end of the estimation window. Additionally,
we investigated the choices of certain algorithmic parameters for the UKF, namely A
and o;. Figure 9(A) shows suitable ranges of these parameters, with the color indi-
cating the root mean squared error of the parameters at the end of the cycle compared
to their true values. We found this behavior to be preserved across our nine twin ex-
periment scenarios. Notably, this shows that our results in Table 2 were generated
using an initial covariance oy = 0.001 that was smaller than necessary. By increasing
the initial variability, the estimated system can converge to the true dynamics more
quickly, as shown for oy = 0.1 in Fig. 9(B). The value of A does not have a large im-
pact on these results, except for when o; = 1. Here the filter fails before completing
the estimation cycle, except for a few cases where A is small enough to effectively
shrink the ensemble spread and compensate for the large initial covariance. For ex-
ample, with A = —9, we have N — 9 = 1 and, therefore, the ensemble spread in (24)
is simply X; = & £ /Py For even larger initial covariances (a; > 1), the filter
fails regardless of the value of L. We noticed that in many of the cases that failed,
the parameter estimate for ¢ was becoming negative (which is unrealistic for a rate)
or quite large (¢ > 1), and that the state estimate for n was going outside of its bio-
physical range of 0 to 1. When the gating variable extends outside of its dynamical
range it can skew the estimated statistics and the filter may be unable to recover. The
standard UKF framework does not provide a natural way of incorporating bounds on
parameter estimates, and we do not apply any for the results presented here. However,
we did find that we can modify our numerical integration scheme to prevent the filter
from failing in many of these cases, as shown in Fig. 9(C). Specifically, if n becomes
negative or exceeds 1 after the update step, then artificially setting n to O or 1 in the
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Fig. 9 (A) UKEF results from runs of the t:SNIC/g:HOPF twin experiment for various parameter combi-
nations of A and «. The color scale represents the root mean squared error of the final parameter values
at 7 = 200,001 from the parameters of the SNIC bifurcation regime. Gray indicates the filter failed out-
right before reaching the end of the estimation window. (B) Parameter estimates over time for the run
with A =5, oy = 0.1. The parameters (especially ¢ and V3) approach their true values more quickly than
corresponding runs with smaller initial covariances; see column 1 of Fig. 6 for parameter estimates with
A =5,a7 =0.001. C: Same as (A), but with a modification to the numerical integration scheme that
restricts the gating variable n to remain within its biophysical range of 0 to 1
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modified Euler method (47) before proceeding can enable the filter to reach the end
of the estimation window and yield reasonable parameter estimates.

3.5 Results with 4D-Var

The following results illustrate the use of weak 4D-Var. One can minimize the cost
function (36) using a favorite choice of optimization routine. For the following ex-
amples, we will consider a local optimizer by using interior point optimization with
MATLAB?’s built-in solver finincon. At the heart of the solver is a Newton-step which
uses information about the Hessian, or a conjugate gradient step using gradient in-
formation [27-29]. The input we are optimizing over conceptually takes the form
of

x=[Vo, V1,...,VNn,no,n1,...,0N,01,02,...,0p] (49)

resulting in an (N 4 1)L 4+ D-dimensional estimation problem where L = 2. There
are computational limitations with memory storage and the time required to suffi-
ciently solve the optimization problem to a suitable tolerance for reasonable parame-
ter estimates. Therefore, we cannot be cavalier with using as much data with 4D-Var
as we did with the UKF, as that would result in a (200,001)2 + 8 = 400,010 dimen-
sional problem. Using Newton’s method (41) on this problem would involve inverting
a Hessian matrix of size (400,010)2, which according to a rough calculation would
require over 1 TB of RAM. Initialization of the optimization is shown on line 71 of
w4DVarML.m.

The estimated parameters are given in Table 3. These results were run using
N = 2001 time points. To simplify the search space, the parameter estimates were
constrained between the bounds listed in Table 4. These ranges were chosen to en-
sure that the maximal conductances, the rate ¢, and the activation curve slope V; all
remain positive. We found that running 4D-Var with even looser bounds (Table A1)
yielded less accurate parameter estimates (Tables A2 and A3). The white noise per-
turbations for the 4D-Var trials were the same as those from the UKF examples.
Initial guesses for the states at each time point are required. For these trials, V is ini-
tialized as Vps, and n is initialized as the result of integration of its dynamics forced
with Vs using the initial guesses for the parameters, i.e., n = f Jn(Vobs, 15 6p). The
initial guesses are generated beginning on line 38 of w4DvarML.m. We impose that
Q_1 in (36) is a diagonal matrix with entries ag[1, 1002] to balance the dynamical
variance of V and n. The scaling factor « represents the relative weight of the model
term compared to the measurement term. Based on preliminary tuning experiments,
we set ag = 100 for the results presented.

Figure 10 depicts the states produced by integrating the model with the estimated
parameters across different iterations within the interior-point optimization. Over it-
eration cycles, the geometry of spikes as well as the spike time alignments eventually
coincide with the noiseless data V.. Figure 11 shows the evolution of the parameters
across the entire estimation cycle. For the UKF, the “plateauing” effect of the param-
eter estimates seen in Fig. 6 indicates confidence that they are conforming to being
constant in time. With 4D-Var, and in a limiting sense of the UKF, the plateauing
effect indicates the parameters are settling into a local minimum of the cost function.
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Fig. 10 Example of 4D-Var assimilation initializing with parameters from the Hopf regime but observa-
tional data from the SNIC regime. The blue traces are noiseless versions of the observed voltage data (left
column) or the unobserved variable n (right column) from the model that produced the data. The red traces
are the result of integrating the model with the estimated parameter sets at various points during the course
of the optimization. (A) Initial parameter guesses. (B) Parameter values after 100 iterations. C: Parameter
values after 1000 iterations. D: Parameter values after 30,000 iterations (corresponds to t:SNIC/g:HOPF
column of Table 3)

In Fig. 12 we show the bifurcation diagrams of the estimated models from our
4D-Var trials. Notice, and shown explicitly in Table 3, when initializing with the true
parameters, the correct model parameters are recovered as our optimization routine
is confidently within the basin of attraction of the global minimum. In the UKF, com-
paratively, there is no sense of stopping at a local minimum. Parameter estimates
may still fluctuate even when starting from their true values, unless the variances of
the state components fall to very low values and the covariance Qy can be tuned to
have a baseline variability in the system. The parameter sets for the SNIC and homo-
clinic bifurcation regimes only deviate in the ¢ parameter, and so our optimization
had great success estimating one from the other. The kinetic parameters (V3 and Vi)
for the Hopf regime deviate quite a bit from the SNIC or homoclinic. Still, the recov-
ered bifurcation structures from estimated parameters associated with trials involving
HOPF remained consistent with the true structure.
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Table 3 4D-Var parameter estimates at the end of the optimization for each bifurcation regime. The pa-
rameter bounds in Table 4 were used for these trials. Hessian information was not provided to the optimizer

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO gHOPF g:SNIC g:HOMO

¢ 0.040 0.037 0.039 0.069 0.067 0.066 0.414 0.218 0.230
gca  4.000 3.890 3.976 4.024 4.000 4.045 9.037 3.813 3.999
V3 2.000 3.404 3.241 12.695  12.000 12.076 7.458  13.022  12.004
V4 30.000 29.085 30.122 18.759  17.400 16.990 28.365 17.165  17.403
gK 8.000 8.386 8.287 8.284 8.000 8.009 9.817 8.472 8.002
gL 2.000 2.016 2.021 1.930 2.000 2.071 3.140 1.941 2.000
Vi —=1200 —-1.335 -1.250 -1.078 —1.200 -—1.179 2872 —1.419 -1.202
Vo 18.000 17.619 17911 18.091 18.000  18.162 24769  17.712  18.000

Table 4 Bounds used during
4D-Var estimation for the results Lower bound Upper bound
shown in Tables 3 and A4

¢ 0 1
8Ca 0 10
V3 -20 20
V4 0.1 35
oK 0 10
8L 0 5
Vi —-10 20
vy 0.1 35

A drawback of the results shown in Table 3 is that for the default tolerances in
Jfmincon, some runs took more than two days to complete on a dedicated core. Fig-
ure 11 shows that the optimal solution had essentially been found after 22,000 itera-
tions; however, the optimizer kept running for several thousand more iterations before
the convergence tolerances were met. Rather than attempting to speed up these com-
putations by adjusting the algorithmic parameters associated with this solver for this
specific problem, we decided to try to exploit the dynamic structure of the model
equations using automatic differentiation (AD). AD deconstructs derivatives of the
objective function into elementary functions and operations through the chain rule.
We used the MATLAB AD tool ADiGator, which performs source transformation
via operator overloading and has scripts available for simple integration with various
optimization tools, including finincon [30]. For the same problem scenario and al-
gorithmic parameters, we additionally passed in the generated gradient and Hessian
functions to the solver. For this problem, the Hessian structure is shown in Fig. 13.
Note that we are using a very simple scheme in the modified Euler method (47) to
perform numerical integration between observation points, and the states at k + 1
only have dependencies upon those at k and on the parameters. Higher order meth-
ods, including implicit methods, can be employed naturally since the system is being
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Fig. 11 Example parameter estimation with 4D-Var initializing with Hopf parameter regime and estimat-
ing parameters of SNIC regime
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Fig. 12 Bifurcation diagrams for 4D-Var twin experiments. The gray lines correspond to the true dia-
grams, and the blue dotted lines correspond to the diagrams produced from the estimated parameters in
Table 3

estimated simultaneously. A tutorial specific to collocation methods for optimization
has been developed [31].

The results are shown in Table A4. Each twin experiment scenario took, at most,
a few minutes on a dedicated core. These trials converged to the optimal solution in
much fewer iterations than the trials without using the Hessian. Since convergence
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Fig. 13 (A) Sparsity pattern for the Hessian of the cost function for the Morris—Lecar equations for
N + 1 =2001 time points. The final eight rows (and symmetrically the last eight columns) depict how the
states at each time depend upon the parameters. (B) The top left corner of the Hessian shown in (A)
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Fig. 14 (A) Logarithm of the value of the cost function for a twin experiment initialized with parameters
from the Hopf regime but observational data from the SNIC regime. The iterates were generated from
fmincon with provided Hessian and gradient functions. (B) Bifurcation diagrams produced from parameter
estimates for selected iterations. The blue is the initial bifurcation structure, the gray is the true bifurcation
structure for the parameters that generated the observed data, the red is the bifurcation structure of the
iterates, and the green is the bifurcation structure of the optimal point determined by fimincon

was achieved within a few dozen iterations, we decided to inspect how the bifurca-
tion structure of the estimated model evolved throughout the process for the case of
HOPF to SNIC. Figure 14 shows that by Iteration 10, the objective function value
has decreased greatly, and parameters that produce a qualitatively correct bifurca-
tion structure have been found. The optimization continues for another 37 iterations
and explores other parts of parameter space that do not yield the correct bifurcation
structure before converging very close to the true parameter values.
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Again, these results, at best, can reflect only locally optimal solutions of the op-
timization manifold. The 4D-Var framework has been applied to neuroscience using
a more systematic approach to finding the global optimum. In [32], a population of
initial states x is optimized in parallel with an outer loop that incorporates an anneal-
ing algorithm. The annealing parameter relates the weights of the two summations
in (36), and the iteration proceeds by increasing the weight given to the model error
compared to the measurement error.

We also wished to understand more about the sensitivity of this problem to initial
conditions. We initialized the system with the voltage states as those of the obser-
vation, the parameters as those of the initializing guess bifurcation regime, and the
gating variable [ng, n1, ...ny] to be i.i.d. from U/(0, 1). The results confirm our sus-
picions that multiple local minima exist. For 100 different initializations of n, for the
problem of going from SNIC to HOPF, 63 were found to fall into a deeper minima,
yielding better estimates and a smaller objective function value, while 16 fell into a
shallower minima, and the rest into three different even shallower minima. While one
cannot truly visualize high-dimensional manifolds, one can try to visualize a subset
of the surface. Figure 3 shows the surface that arises from evaluating the objective
function on a linear combination of the two deepest minima and an initial condition
X, which eventually landed in the shallower of the two minima as points in 4010-
dimensional space.

4 Application to Bursting Regimes of the Morris—Lecar Model

Many types of neurons display burst firing, consisting of groups of spikes separated
by periods of quiescence. Bursting arises from the interplay of fast currents that gen-
erate spiking and slow currents that modulate the spiking activity. The Morris—Lecar
model can be modified to exhibit bursting by including a calcium-gated potassium
(Kca) current that depends on slow intracellular calcium dynamics [33]:

dVv
sz = Lypp — gL(V — EL) — ggn(V — Ek)

— gamoo(V)(V — Ecy) — grcaz(V — Ex), (50)

d
d—': = ¢ (noo(V) — ) /Ta(V), (51)

dC
d—ta =¢e(—pmlca— Ca), (52)

Ca

°= Ca+1 (53)

Bursting can be analyzed mathematically by decomposing models into fast and
slow subsystems and applying geometric singular perturbation theory. Several differ-
ent types of bursters have been classified based on the bifurcation structure of the
fast subsystem. In square-wave bursting, the active phase of the burst is initiated at a
saddle-node bifurcation and terminates at a homoclinic bifurcation. In elliptic burst-
ing, spiking begins at a Hopf bifurcation and terminates at a saddle-node of periodic
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Table 5 Parameters for

bursting in the modified Square-wave Elliptic
Morris—Lecar model. For
ot e e e 0
Iapp = 120. All other parameters ~ 8Ca 4 4.4
are the same as in Table 1 V3 12 2
Vy 17.4 30
8K 8 8
sL 2 2
Vi —-1.2 —-1.2
1%} 18 18
8KCa 0.25 0.75
€ 0.005 0.005
I 0.02 0.02

orbits bifurcation. The voltage traces produced by these two types of bursting are
quite distinct, as shown in Fig. 15.

4.1 Results with UKF

We conducted a set of twin experiments for the bursting model to address the same
question as we did for the spiking model: from a voltage trace alone, can DA meth-
ods estimate parameters that yield the appropriate qualitative dynamical behavior?
Specifically, we simulated data from the square-wave (elliptic) bursting regime, and
then initialized the UKF with parameter guesses corresponding to elliptic (square-
wave) bursting (these parameter values are shown in Table 5). As a control experi-
ment, we also ran the UKF with initial parameter guesses corresponding to the same
bursting regime as the observed data. The observed voltage trace included additive
white noise generated following the same protocol as in previous trials. We used
200,001 time points with observations at every 1 ms. Between observations, the sys-
tem was integrated forward using substeps of 0.025 ms. For the square-wave burster,
this included 215 bursts with 4 spikes per burst, and 225 bursts with 2 spikes for the
elliptic burster.

The small parameters ¢ and u in the calcium dynamics equation were assumed
to be known and were not estimated by the UKF. Thus, for the bursting model, we
are estimating one additional state variable (Ca) and one additional parameter (gkca)
compared to the case for the spiking model. Table 6 shows the UKF parameter esti-
mates after initialization with either the true parameters or the parameters producing
the other type of bursting. The results for either case are quite consistent and fairly
close to their true values for both types of bursting. Since small changes in parameter
values can affect bursting dynamics, we also computed bifurcation diagrams for these
estimated parameters and compared them to their true counterparts. Figure 16 shows
that in all four cases, the estimated models have the same qualitative bifurcation struc-
ture as the models that produced the data. The recovered parameter estimates were
insensitive to the initial conditions for n and Ca, with 100 different initializations
for these state variables sampled from ¢/ (0, 1) and U4 (0, 5), respectively. Note, most
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Fig. 15 Bursting model bifurcation diagrams and trajectories. The bifurcation diagrams (top row) depict
stable fixed points (red), unstable fixed points (black), stable limit cycles (blue), and unstable limit cycles
(green) of the fast subsystem (V,n) with bifurcation parameter z. The gray curves are the projection
of the 3-D burst trajectory (V, second row; n, third row; Ca, fourth row) onto the (V, z) plane, where
z is a function of Ca. (A) During the quiescent phase of the burst, Ca and therefore z are decreasing
and the trajectory slowly moves leftward along the lower stable branch of fixed points until reaching the
saddle-node bifurcation or “knee”, at which point spiking begins. During spiking, Ca and z are slowly
increasing and the trajectory oscillates while traveling rightward until the stable limit cycle is destroyed at
a homoclinic bifurcation and spiking ceases. (B) During the quiescent phase of the burst, z is decreasing
and the trajectory moves leftward along the branch of stable fixed points with small-amplitude decaying
oscillations until reaching the Hopf bifurcation, at which point the oscillations grow in amplitude to full
spikes. During spiking, z is slowly increasing and the trajectory oscillates while traveling rightward until
the stable limit cycle is destroyed at a saddle-node of periodic orbits bifurcation and spiking ceases
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Table 6 UKEF parameter
estimates for each bursting
regime

t:Square-wave t:Elliptic

g:Square-wave  g:Elliptic  g:Square-wave  g:Elliptic

¢ 0.214 0.215 0.040 0.040
8Ca 3.758 3.767 4.396 4.398
V3 12.045 12.023 1.603 1.685
Vy 16.272 16.316 29.582 29.639
8K 7.955 7.952 7.866 7.889
gL 1.974 1.972 2.015 2.017
Vi —1.514 —1.511 —1.120 —1.199
V) 17.640 17.624 18.010 18.015
8KCa 0.251 0.251 0.767 0.763
t:Square-wave t:Elliptic

<
-
g:Square-wave =
N
20
g:Elliptic = °
= -20
-40* »
02 03 04 05 06 07 08 045 05 055 0.6 065 07

z z

Fig. 16 Bifurcation diagrams for UKF twin experiments for the bursting Morris—Lecar model. The gray
lines correspond to the true diagrams, and the blue dotted lines correspond to the diagrams produced from
the estimated parameters in Table 6

predominantly in the top right panel, the location of the bifurcations is relatively
sensitive to small deviations in certain parameters, such as ggca,. Estimating gxca
is challenging due to the algebraic degeneracy of estimating both terms involved in
the conductance Gkca = gkcaCa/(Ca + 1), and the inherent time-scale disparity of
the Ca dynamics compared to V and n. If one had observations of calcium, or full
knowledge of its dynamical equations, this degeneracy would be immediately alle-
viated. To address difficulties in the estimation of bursting models, an approach that
separates the estimation problem into two stages based on timescales—first estimat-
ing the slow dynamics with the fast dynamics blocked and then estimating the fast
dynamics with the slow parameters held fixed—has been developed [34].
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Table 7 4D-Var parameter
estimates for each bursting
regime

t:Square-wave t:Elliptic

g:Square-wave  g:Elliptic  g:Square-wave  g:Elliptic

¢ 0.230 0.260 0.037 0.040
8Ca 4.009 4.509 4.244 4.412
V3 12.009 11.920 6.667 1.971
Vy 17.437 19.581 32.605 30.026
8K 8.006 8.244 9.485 8.002
gL 2.003 2.068 1.979 2.009
Vi —1.187 —0.627 —1.307 —1.172
%] 18.029 18.754 17.469 18.049
8KCa 0.250 0.237 0.554 0.741

4.2 Results with 4D-Var

We also investigated the utility of variational techniques to recover the mechanisms
of bursting. For these runs, we took our observations to be coarsely sampled at 0.1
ms, and our forward mapping is taken to be one step of modified Euler between ob-
servation times, as was the case for our previous 4D-Var Morris—Lecar results. We
used 10,000 time points, which is one burst for the square wave burster, and one full
burst plus another spike for the elliptic burster. We used the L-BFGS-B method [35],
as we found it to perform faster for this problem than fmincon. This method approxi-
mates the Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton algorithm us-
ing a limited memory (L) inverse Hessian approximation, with an extension to handle
bound constraints (B). It is available for Windows through the OPTI toolbox [36] or
through a nonspecific operating system MATLAB MEX wrapper [37]. We supplied
the gradient of the objective function, but allowed the solver to define the limited-
memory Hessian approximation for our 30,012-dimensional problem. The results are
captured in Table 7. We performed the same tests with providing the Hessian; how-
ever, there was no significant gain in accuracy or speed. The value for gkc, for ini-
tializing with the square wave parameters and estimating the elliptical parameters is
quite off, which reflects our earlier assessment for the value in observing calcium dy-
namics. Figure 17 shows that we are still successful in recovering the true bifurcation
structure.

5 Discussion and Conclusions

Data assimilation is a framework by which one can optimally combine measurements
and a model of a system. In neuroscience, depending on the neural system of interest,
the data we have may unveil only a small subset of the overall activity of the system.
For the results presented here, we used simulated data from the Morris—Lecar model
with distinct activity based upon different choices for model parameters. We assumed
access only to the voltage and the input current, which corresponds to the expected
data from a current-clamp recording.
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Fig. 17 Bifurcation diagrams for 4D-Var twin experiments for the bursting Morris—Lecar model. The gray
lines correspond to the true diagrams, and the blue dotted lines correspond to the diagrams produced from
the estimated parameters in Table 7

We showed the effectiveness of standard implementations of the Unscented
Kalman Filter and weak 4D-Var to recover spiking behavior and, in many circum-
stances, near-exact parameters of interest. We showed that the estimated models un-
dergo the same bifurcations as the model that produced the observed data, even when
the initial parameter guesses do not. Additionally, we are also provided with esti-
mates of the states and uncertainties associated with each state and parameter, but
for sake of brevity these values were not always displayed. The methods, while not
insensitive to noise, have intrinsic weightings of measurement deviations to account
for the noise of the observed signal. Results were shown for mild additive noise. We
also extended the Morris—Lecar model to exhibit bursting activity and demonstrated
the ability to recover these model parameters using the UKF.

The UKF and 4D-Var approaches implemented here both attempt to optimally
link a dynamic model of a system to observed data from that system, with error
statistics assumed to be Gaussian. Furthermore, both approaches try to approximate
the mean (and for the UKF also the variance) of the underlying, unassumed sys-
tem distributions. The UKF is especially adept at estimating states over long time
courses, and if the algorithmic parameters such as the model error can be tuned, then
the parameters can be estimated simultaneously. Therefore, if one has access to a
long series of data, then the UKF (or an Unscented Kalman Smoother, which uses
more history of the data for each update step) is a great tool to have at one’s dis-
posal. However, sometimes one only has a small amount of time series data, or the
tuning of initial covariance, the spread parameter A, and the process noise Qj asso-
ciated with the augmented state and parameter system becomes too daunting. The
4D-Var approach sets the states at each time point and the parameters as optimization
variables, transitioning the estimation process from the one which iterates in time to
the one which iterates up to a tolerance in a chosen optimization routine. The only
tuning parameters are those associated with the chosen optimization routine, and the
weights Q;ll ,L e[1...L], for the model uncertainty of the state components at each
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Table 8 Comparison of the sequential (UKF) and variational (4D-Var) approaches to data assimilation

UKF 4D-Var

Implementation choices initial covariance (Pyy) model uncertainty (Q~ 1 )
sigma points (1) type of optimizer/optimizer settings
process covariance matrix (Q) state and parameter bounds

Data requirements Pro: can handle a large amount of Pro: may find a good solution with a
data small amount of data
Con: may not find a good solution Con: cannot handle a large amount
with a small amount of data of data

Run time Minutes Days, hours, or minutes depending

on choice of optimizer and settings

Scalability to larger models Harder to choose Q Search dimension is (N + 1)L + D

EnKF may use a smaller number of ~ Sparse Hessian can be exploited
ensemble members during optimization

time. There are natural ways to provide parameter bounds in the 4D-Var framework,
whereas this is not the case for the UKF. However, depending upon the implemen-
tation choices and the dimension of the problem (which is extremely large for long
time series data), the optimization may take a computing time scale of days to yield
reasonable estimates. Fortunately, derivative information can be provided to the op-
timizer to speed up the 4D-Var procedure. Both the UKF and 4D-Var can provide
estimates of the system uncertainty in addition to estimates of the system mean. The
UKF provides mean and variance estimates at each iteration during the analysis step.
In 4D-Var, one seeks mean estimates by minimization of a cost function. It has been
shown that for cost functions of the form (36), the system variance can be interpreted
as the inverse of the Hessian evaluated at minima of (36), and scales roughly as Q
for large Q! [32]. The pros and cons of implementing these two DA approaches are
summarized in Table 8.

The UKF and 4D-Var methodologies welcome the addition of any observables of
the system, but current-clamp data may be all that is available. With this experimental
data in mind, for a more complex system, the number of variables increases, while
the total number of observables will remain at unity. Therefore, it may be useful to
assess a priori which parameters are structurally identifiable and the sensitivity of
the model to parameters of interest in order to reduce the estimation state-space [38].
Additionally, one should consider what manner of applied current to use to aid in state
and parameter estimation. In the results presented above, we used a constant applied
current, but work has been done which suggests the use of complex time-varying
currents that stimulate as many of the model’s degrees of freedom as possible [39].

The results we presented are based on MATLAB implementations of the derived
equations for the UKF and weak 4D-Var. Sample code is provided in the Supple-
mentary Material. Additional data assimilation examples in MATLAB can be found
in [40]. The UKF has been applied to other spiking neuron models such as the
FitzHugh—-Nagumo model [41]. A sample of this code can be found in [42], as well as
further exploration of the UKF in estimating neural systems. The UKF has been used
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on real data from pyramidal neurons to track the states and externally applied current
[43], the connectivity of cultured neuronal networks sampled by a microelectrode ar-
ray [44], to assimilate seizure data from hippocampal OLM interneurons [15], and to
reconstruct mammalian sleep dynamics [17]. A comparative study of the efficacy of
the EKF and UKF on conductance-based models has been conducted [45].

The UKF is a particularly good framework for the state dimensions of a single
compartment conductance based model as the size of the ensemble is chosen to be
2(L + D) + 1. When considering larger state dimensions, as is the case for PDE
models, a more general Ensemble Kalman Filter (EnKF) may be appropriate. An in-
troduction to the EnKF can be found in [46, 47]. An adaptive methodology using past
innovations to iteratively estimate the model and measurement covariances Q and R
has been developed for use with ensemble filters [16]. The Local Ensemble Tranform
Kalman Filter (LETKF) [48] has been used to estimate the states associated with car-
diac electrical wave dynamics [8]. Rather than estimating the mean and covariance
through an ensemble, particle filters aim to fully construct the posterior density of
the states conditioned on the observations. A particle filter approach has been applied
to infer parameters of a stochastic Morris—Lecar model [49], to assimilate spike train
data from rat layer V cortical neurons into a biophysical model [50], and to assimilate
noisy, model-generated data for other states to motivate the use of imaging techniques
when available [51].

An approach to the variational problem which tries to uncover the global minima
more systematically has been developed [32]. In this framework, comparing to (36),
they define for diagonal entries of Q! that

0~'=0;'d’

for « > 1 and B > 0. The model term is initialized as relatively small, and over the
course of an annealing procedure, § is incremented resulting in a steady increase of
the model term’s influence on the cost function. This annealing schedule is conducted
in parallel for different initial guesses for the state-space. The development of this
variational approach can be found in [52], and it has been used to assimilate neuronal
data from HVC neurons [34] as well as to calibrate a neuromorphic very large scale
integrated (VLSI) circuit [53]. An alternative to the variational approach is to frame
the assimilation problem from a probabilistic sampling perspective and use Markov
chain Monte-Carlo methods [54].

A closely associated variational technique, known as “nudging”, augments the
vector field with a control term. If we only have observations of the voltage, this
manifests as follows:

dd_‘t/ = f\;(vv q;0) +u(Vops — V).
The vector field with the observational coupling term is now passed into the strong
4D-Var constraints. The control parameter # may remain fixed, or be estimated along
with the states [55, 56]. More details on nudging can be found [57]. A similar control
framework has been applied to data from neurons of the stomatogastric ganglion [58].

Many other approaches outside the framework of data assimilation have been de-
veloped for parameter estimation of neuronal models, see [59] for a review. A prob-
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lem often encountered when fitting models to a voltage trace is that phase shifts, or
small differences in spike timing, between model output and the data can result in
large root mean square error. This is less of an issue for data assimilation methods,
especially sequential algorithms like UKF. Other approaches to avoid harshly penal-
izing spike timing errors in the cost function are to consider spikes in the data and
model-generated spikes that occur within a narrow time window of each other as co-
incident [60], or to minimize error with respect to the dV /dt versus V phase—plane
trajectory rather than V (¢) itself [59]. Another way to avoid spike mismatch errors is
to force the model with the voltage data and perform linear regression to estimate the
linear parameters (maximal conductances), and then perhaps couple the problem with
another optimization strategy to access the nonlinearly-dependent gating parameters
[3, 61, 62].

A common optimization strategy is to construct an objective function that en-
capsulates important features derived from the voltage trace, and then use a genetic
algorithm to stochastically search for optimal solutions. These algorithms proceed by
forming a population of possible solutions and applying biologically inspired evolu-
tion strategies to gradually increase the fitness (defined with respect to the objective
function) of the population across generations. Multi-objective optimization schemes
will generate a “Pareto front” of optimal solutions that are considered equally good.
A multi-objective non-dominated sorting genetic algorithm (NSGA-II) has recently
been used to estimate parameters of the pacemaker PD neurons of the crab pyloric
network [63, 64].

In this paper, we compared the bifurcation structure of models estimated by DA
algorithms to the bifurcation structure of the model that generated the data. We found
that the estimated models exhibited the correct bifurcations even when the algorithms
were initiated in a region of parameter space corresponding to a different bifurcation
regime. This type of twin experiment is a useful addition to the field that specifically
emphasizes the difficulty of nonlinear estimation and provides a qualitative measure
of estimation success or failure. Prior literature on parameter estimation that has made
use of geometric structure includes work on bursting respiratory neurons [65] and
“inverse bifurcation analysis” of gene regulatory networks [66, 67].

Looking forward, data assimilation can complement the growth of new recording
technologies for collecting observational data from the brain. The joint collabora-
tion of these automated algorithms with the painstaking work of experimentalists
and model developers may help answer many remaining questions about neuronal
dynamics.
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Appendix

Table A1 Bounds used during
4D-Var estimation for the results

Lower Bound Upper Bound
shown in Tables A2 and A3
¢ 0 o)
8Ca 0 o0
V3 —00 00
Vy 0.1 o0
8K 0 00
8L 0 o0
Vi —00 00
\%) 0.1 o0

Table A2 4D-Var parameter estimates at the end of the optimization for each bifurcation regime. The
loose parameter bounds in Table A1 were used for these trials. Hessian information was not provided to
the optimizer

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF gSNIC gHOMO gHOPF g:SNIC g:HOMO

¢ 0.040 0.041 0.040 0.066 0.067 0.066 0.406 0.225 0.229
gca 4.011 3.959 3.989 4.016 4.035 4.040 8.623 3.992 3.983
V3 2210  13.479 6.284 12.497  12.176  12.102 7.453 14333 12.197
Va 29917  37.854 32.748 17.589  17.342  16.998 27.569  18.593 17.464

8K 8.046  10.857 8.989 8.192 8.057 8.021 9.543 9.213 8.092
gL 2.026 1.806 1.959 2.009 2.038 2.067 3.029 1.960 1.990
Vi —1222 —1.188 —1.208 —-1.171 —1.165 —1.188 2.604 —1.198 -—1.212

Vo 18.030  17.921 17.979 18.087  18.126  18.148 24260  18.089  17.985
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Table A3 4D-Var parameter estimates at the end of the optimization for each bifurcation regime. The
loose parameter bounds in Table A1 were used for these trials. Hessian information was provided to the
optimizer

t:HOPF t:SNIC t:HOMO

¢:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO gHOPF g:SNIC g:HOMO

¢ 0.039 0.039  0.039 0.066 0.066  0.066 0.571 0.560 0.549
gca  3.889 3.880  3.889 4.002 4.002  4.002 831.907 911.887  913.350
V3 1.971 1.971 1.971 11.825  11.825 11.825 826.608 896.717  822.366
V4 29.533  29.533 29.533 17.071  17.071 17.071 1695.018 1816.501 1813.829
8K 8.050 8.050  8.050 7.923 7.923  7.923 847.999  932.249  885.392

gL 1.928 1.928 1.928 2.027 2.027  2.027 0.024 0.026 0.118
Vi —-1301 -1.301 -1.301 —-1.232 —-1.232 —-1.232 53.706 54.172 53.913
V,  17.600  17.600 17.600 18.004  18.004 18.004 75.855 76.135 76.111

Table A4 4D-Var parameter estimates at the end of the optimization for each bifurcation regime. The
parameter bounds in Table 4 were used for these trials. Hessian information was provided to the optimizer

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF gSNIC gHOMO gHOPF g SNIC g:HOMO

¢ 0.039 0.039 0.039 0.066 0.067 0.066 0.230 0.230 0.230
gca  3.889 3.889 3.889 4.002 4.035 4.002 4.014 4.019 4.014
V3 1.971 1.971 1.971 11.825  12.176  11.825 12.321 12.320 12.320
Vg 29.533 29533  29.533 17.071 17.342  17.071 17.615 17.633  17.616

8K 8.050 8.050 8.050 7.923 8.057 7.923 8.157 8.158 8.157
gL 1.928 1.928 1.928 2.027 2.038 2.027 1.996 1.997 1.996
Vi -1301 —-1301 -1.301 —-1.232  —1.165 —1.232 —-1.154 —1.148 —1.153

Vo 17.600  17.600 17.600 18.004  18.126  18.004 18.050  18.057 18.050
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