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Abstract We review recent work on the theory and applications of stochastic hybrid
systems in cellular neuroscience. A stochastic hybrid system or piecewise determin-
istic Markov process involves the coupling between a piecewise deterministic differ-
ential equation and a time-homogeneous Markov chain on some discrete space. The
latter typically represents some random switching process. We begin by summariz-
ing the basic theory of stochastic hybrid systems, including various approximation
schemes in the fast switching (weak noise) limit. In subsequent sections, we consider
various applications of stochastic hybrid systems, including stochastic ion channels
and membrane voltage fluctuations, stochastic gap junctions and diffusion in ran-
domly switching environments, and intracellular transport in axons and dendrites.
Finally, we describe recent work on phase reduction methods for stochastic hybrid
limit cycle oscillators.

1 Introduction

There are a growing number of problems in cell biology that involve the coupling
between a piecewise deterministic differential equation and a time-homogeneous
Markov chain on some discrete space Γ , resulting in a stochastic hybrid system,
also known as a piecewise deterministic Markov process (PDMP) [37]. Typically, the
phase space of the dynamical system is taken to be R

d for finite d . One important
example at the single-cell level is the occurrence of membrane voltage fluctuations in
neurons due to the stochastic opening and closing of ion channels [2, 25, 30, 32, 54,
64, 80, 109, 114, 117]. Here the discrete states of the ion channels evolve according
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to a continuous-time Markov process with voltage-dependent transition rates and,
in-between discrete jumps in the ion channel states, the membrane voltage evolves
according to a deterministic equation that depends on the current state of the ion
channels. In the limit that the number of ion channels goes to infinity, we can ap-
ply the law of large numbers and recover classical Hodgkin–Huxley-type equations.
However, finite-size effects can result in the noise-induced spontaneous firing of a
neuron due to channel fluctuations. Another important example is a gene regulatory
network, where the continuous variable is the concentration of a protein product, and
the discrete variable represents the activation state of the gene [79, 83, 108, 110, 131].
Stochastic switching between active and inactive gene states can allow a gene reg-
ulatory network to switch between graded and binary responses, exhibit transla-
tional/transcriptional bursting, and support metastability (noise-induced switching
between states that are stable in the deterministic limit). If random switching per-
sists at the phenotypic level, then this can confer certain advantages to cell popula-
tions growing in a changing environment, as exemplified by bacterial persistence in
response to antibiotics. A third example occurs within the context of motor-driven
intracellular transport [23]. One often finds that motor-cargo complexes randomly
switch between different velocity states such as anterograde versus retrograde mo-
tion, which can be modeled in terms of a special type of stochastic hybrid system
known as a velocity jump process.

In many of the examples mentioned, we find that the transition rates between the
discrete states n ∈ Γ are much faster than the relaxation rates of the piecewise de-
terministic dynamics for x ∈ R

d . Thus, there is a separation of time-scales between
the discrete and continuous processes, so that if t is the characteristic time-scale of
the relaxation dynamics, then εt is the characteristic time-scale of the Markov chain
for some small positive parameter ε. Assuming that the Markov chain is ergodic, in
the limit ε → 0, we obtain a deterministic dynamical system in which one averages
the piecewise dynamics with respect to the corresponding unique stationary measure.
This then raises the important problem of characterizing how the law of the underly-
ing stochastic process approaches this deterministic limit in the case of weak noise,
0 < ε � 1.

The notion of a stochastic hybrid system can also be extended to piecewise deter-
ministic partial differential equations (PDEs), that is, infinite-dimensional dynamical
systems. One example concerns molecular diffusion in cellular and subcellular do-
mains with randomly switching exterior or interior boundaries [12, 17–19, 92]. The
latter are generated by the random opening and closing of gates (ion channels or
gap junctions) within the plasma membrane. In this case, we have a diffusion equa-
tion with boundary conditions that depend on the current discrete states of the gates;
the particle concentration thus evolves piecewise, in between the opening or closing
of a gate. One way to analyze these stochastic hybrid PDEs is to discretize space
using finite-differences (method of lines) so that we have a standard PDMP on a
finite-dimensional space. Diffusion in randomly switching environments also has ap-
plications to the branched network of tracheal tubes forming the passive respiration
system in insects [18, 92] and volume neurotransmission [90].

This tutorial review develops the theory and applications of stochastic hybrid
systems within the context of cellular neuroscience. A complementary review that
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mainly considers gene regulatory networks can be found elsewhere [14]. In Sect. 2,
we summarize the basic theory of stochastic hybrid systems, In subsequent sections,
we consider various applications of stochastic hybrid systems, including stochastic
ion channels and membrane voltage fluctuations (Sect. 3), stochastic gap junctions
and diffusion in randomly switching environments (Sect. 4), and intracellular trans-
port in axons and dendrites (Sect. 5). Finally, in Sect. 6, we present recent work on
phase reduction methods for stochastic hybrid limit cycle oscillators.

2 Stochastic Hybrid Systems

In this section, we review the basic theory of stochastic hybrid systems. We start with
the notion of a piecewise deterministic differential equation, which can be used to
generate sample paths of the stochastic process. We then describe how the probability
distribution of sample paths can be determined by solving a differential Chapman–
Kolmogorov (CK) equation (Sect. 2.1). In many applications, including the stochas-
tic ion channel models of Sect. 3, there is a separation of time-scales between a fast
O(1/ε) switching process and a slow O(1) continuous dynamics. In the fast switch-
ing limit ε → 0, we obtain a deterministic dynamical system. In Sect. 2.2, we use
an asymptotic expansion in ε to show how the CK equation can be approximated by
the Fokker–Planck (FP) equation with an O(ε) diffusion term (Sect. 2.2). Finally, in
Sect. 2.3, we consider methods for analyzing escape problems in stochastic hybrid
systems. We assume that the deterministic system is bistable so that, in the absence
of noise, the long-time stable state of the system depends on the initial conditions.
On the other hand, for finite switching rates, the resulting fluctuations can induce
transitions between the metastable states. In the case of weak noise (fast switching
0 < ε � 1), transitions are rare events involving large fluctuations that are in the tails
of the underlying probability density function. This means that estimates of mean
first passage times (MFPTs) and other statistical quantities can develop exponentially
large errors under the diffusion approximation. We describe a more accurate method
for calculating MFPTs based on a WKB analysis.

We begin with the definition of a stochastic hybrid system and, in particular, a
piecewise deterministic Markov process (PDMP) [37, 53, 84]. For illustration, con-
sider a system whose states are described by a pair (x,n) ∈ Σ × {0, . . . ,N0 − 1},
where x is a continuous variable in a connected bounded domain Σ ⊂ R

d with regu-
lar boundary ∂Ω , and n is a discrete stochastic variable taking values in the finite set
Γ ≡ {0, . . . ,N0 − 1}. (It is possible to have a set of discrete variables, although we
can always relabel the internal states so that they are effectively indexed by a single
integer. We can also consider generalizations of the continuous process, in which the
ODE (2.1) is replaced by a stochastic differential equation (SDE) or even a partial
differential equation (PDE). To allow for such possibilities, we will refer to all of
these processes as examples of a stochastic hybrid system.) When the internal state
is n, the system evolves according to the ordinary differential equation (ODE)

ẋ = Fn(x), (2.1)
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Fig. 1 Schematic illustration of
a piecewise deterministic
Markov process

where the vector field Fn : R → R is a continuous function, locally Lipschitz. That
is, given a compact subset K of Σ , there exists a positive constant Kn such that

∣
∣Fn(x) − Fn(y)

∣
∣≤ Kn|x − y|, ∀x, y ∈ Σ. (2.2)

We assume that the dynamics of x is confined to the domain Σ so that existence
and uniqueness of a trajectory holds for each n. For fixed x, the discrete stochastic
variable evolves according to a homogeneous continuous-time Markov chain with
transition matrix W(x) and corresponding generator A(x), which are related accord-
ing to

Anm(x) = Wnm(x) − δn,m

∑

k

Wkn(x). (2.3)

The matrix A(x) is also taken to be Lipschitz. We make the further assumption that
the chain is irreducible for all x ∈ Σ , that is, for fixed x, there is a nonzero probability
of transitioning, possibly in more than one step, from any state to any other state of the
Markov chain. This implies the existence of a unique invariant probability distribution
on Γ for fixed x ∈ Σ , denoted by ρ(x), such that

∑

m∈Γ

Anm(x)ρm(x) = 0, ∀n ∈ Γ. (2.4)

Let us decompose the transition matrix of the Markov chain as

Wnm(x) = Pnm(x)λm(x)

with
∑

n	=m Pnm(x) = 1 for all x. Hence λm(x) determines the jump times from the
state m, whereas Pnm(x) determines the probability distribution that when it jumps,
the new state is n for n 	= m. The hybrid evolution of the system with respect to x(t)

and n(t) can then be described as follows; see Fig. 1. Suppose the system starts at
time zero in the state (x0, n0). Call x0(t) the solution of (2.1) with n = n0 such that
x0(0) = x0. Let t1 be the random variable (stopping time) such that

P(t1 < t) = 1 − exp

(

−
∫ t

0
λn0

(

x0
(

t ′
))

dt ′
)

.
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Then in the random time interval s ∈ [0, t1) the state of the system is (x0(s), n0). Now
draw a value of t1 from P(t1 < t), choose an internal state n1 ∈ Γ with probability
Pn1n0(x0(t1)), and call x1(t) the solution of the following Cauchy problem on [t1,∞):

{

ẋ1(t) = Fn1(x1(t)), t ≥ t1,

x1(t1) = x0(t1).

Iterating this procedure, we can construct a sequence of increasing jumping times
(tk)k≥0 (setting t0 = 0) and a corresponding sequence of internal states (nk)k≥0. The
evolution (x(t), n(t)) is then defined as

(

x(t), n(t)
)= (xk(t), nk

)

if tk ≤ t < tk+1. (2.5)

Note that the path x(t) is continuous and piecewise C1. To have a well-defined dy-
namics on [0, T ], it is necessary that almost surely the system makes a finite number
of jumps in the time interval [0, T ]. This is guaranteed in our case. This formulation
is the basis of a simulation algorithm for PDMPs [2, 150].

2.1 Chapman–Kolmogorov Equation

Let X(t) and N(t) denote the stochastic continuous and discrete variables, respec-
tively, at time t , t > 0, given the initial conditions X(0) = x0, N(0) = n0. Introduce
the probability density pn(x, t |x0, n0,0) with

P
{

X(t) ∈ (x, x + dx),N(t) = n|x0, n0
}= pn(x, t |x0, n0,0) dx.

It follows that p evolves according to the forward differential Chapman–Kolmogorov
(CK) equation [10, 61]

∂pn

∂t
= −∇ · [Fn(x)pn(x, t)

]+ 1

ε

∑

m∈Γ

Anmpm(x, t). (2.6)

For notational convenience, we have dropped the explicit dependence on initial condi-
tions. The first term on the right-hand side represents the probability flow associated
with the piecewise deterministic dynamics for a given n, whereas the second term
represents jumps in the discrete state n. Note that we have rescaled the matrix A by
introducing the dimensionless parameter ε > 0. This is motivated by the observation
that one often finds a separation of time-scales between the relaxation time for the
dynamics of the continuous variable x and the rate of switching between the different
discrete states n. The fast switching limit then corresponds to the case ε → 0. Let us
now define the averaged vector field F :Rd →R

d by

F(x) =
∑

n∈Γ

ρn(x)Fn(x). (2.7)
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Intuitively speaking, we would expect the stochastic hybrid system (2.1) to reduce to
the deterministic dynamical system

{

ẋ(t) = F(x(t)),

x(0) = x0,
(2.8)

in the fast switching limit ε → 0. That is, for sufficiently small ε, the Markov chain
undergoes many jumps over a small time interval Δt during which Δx ≈ 0, and
thus the relative frequency of each discrete state n is approximately p∗

n(x). This can
be made precise in terms of a law of large numbers for stochastic hybrid systems
[51, 84].

It remains to specify boundary conditions for the CK equation. For illustration,
suppose that d = 1 (one-dimensional continuous dynamics) with Σ = [0,L] and
assume that there exists an integer m, 1 ≤ m ≤ N0 − 1, such that Fn(0) = 0 for
0 ≤ n ≤ m − 1 and Fn(L) = 0 for m ≤ n ≤ N0 − 1. No-flux boundary conditions at
the ends x = 0,L take the form J (0, t) = J (L, t) = 0 with

J (x, t) =
N0−1
∑

n=0

Fn(x)pn(x, t). (2.9)

It follows that pn(0, t) = 0 for m ≤ n ≤ N0 − 1 and pn(L, t) = 0 for 0 ≤ n ≤ m − 1.
In the analysis of metastability (Sect. 2.3), it will be necessary to impose an absorbing
boundary condition at some interior point x∗ of the domain Σ , that is,

pn(x∗, t) = 0, 0 ≤ n ≤ m − 1.

In contrast to the no-flux conditions, there are nonzero fluxes through x∗.
In general, it is difficult to obtain an analytical steady-state solution of (2.6), as-

suming that it exists, unless d = 1 and N0 = 2 [46, 79]. The one-dimensional CK
equation takes the form

∂pn

∂t
= − ∂

∂x

[

Fn(x)pn(x, t)
]+ 1

ε

∑

m∈Γ

Anm(x)pm(x, t). (2.10)

In the two-state case (N0 = 2),

A(x) =
(−α(x) β(x)

α(x) −β(x)

)

for a pair of transition rates α(x), β(x), so that the steady-state version of (2.10)
reduces to the pair of equations

0 = −ε
∂

∂x

(

F0(x)p0(x)
)+ β(x)p1(x) − α(x)p0(x), (2.11)

0 = −ε
∂

∂x

(

F1(x)p1(x)
)− β(x)p1(x) + α(x)p0(x). (2.12)
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Adding the pair of equations yields

∂

∂x

(

F0(x)p0(x)
)+ ∂

∂x

(

F1(x)p1(x)
)= 0, (2.13)

that is,

F0(x)p0(x) + F1(x)p1(x) = c

for some constant c. The reflecting boundary conditions imply that c = 0. Since Fn(x)

is nonzero for all x ∈ Σ , we can express p1(x) in terms of p0(x):

p1(x) = −F0(x)p0(x)

F1(x)
. (2.14)

Substituting into equation (2.11) gives

0 = ε
∂

∂x

(

F0(x)p0(x)
)+
(

β(x)

F1(x)
+ α(x)

F0(x)

)

F0(x)p0(x). (2.15)

This yields the solutions

pn(x) = 1

Z|Fn(x)| exp

(

−1

ε

∫ x

x∗

(
β(y)

F1(y)
+ α(y)

F0(y)

)

dy

)

, (2.16)

where x∗ ∈ Σ is arbitrary and assuming that the normalization factor Z exists.

2.2 Quasi-Steady-State (QSS) Diffusion Approximation

For small but nonzero ε, we can use perturbation theory to derive lowest order correc-
tions to the deterministic mean field equation, which leads to the Langevin equation
with noise amplitude O(

√
ε). More specifically, perturbations of the mean-field equa-

tion (2.8) can be analyzed using a quasi-steady-state (QSS) diffusion or adiabatic ap-
proximation, in which the CK equation (2.6) is approximated by the Fokker–Planck
(FP) equation for the total density C(x, t) =∑n pn(x, t). The QSS approximation
was first developed from a probabilistic perspective by Papanicolaou [119]. It has
subsequently been applied to a wide range of problems in biology, including models
of intracellular transport in axons [57, 123] and dendrites [111–113] and bacterial
chemotaxis [73, 74, 116]. There have also been more recent probabilistic treatments
of the adiabatic limit, which have been applied to various stochastic neuron models
[118]. Finally, note that it is also possible to obtain a diffusion limit by taking the
number of discrete states N0 to be large [30, 117].

The basic steps of the QSS reduction are as follows:
(a) Decompose the probability density as

pn(x, t) = C(x, t)ρn(x) + εwn(x, t),
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where
∑

n pn(x, t) = C(x, t) is the marginal probability density for the continuous
variables x, and

∑

n wn(x, t) = 0. Substituting into equation (2.6) yields

ρn(x)
∂C

∂t
+ ε

∂wn

∂t
= −∇ · (Fn(x)

[

ρn(x)C + εwn

])

+ 1

ε

∑

m∈Γ

Anm(x)
[

ρm(x)C + εwm

]

.

Summing both sides with respect to n then gives

∂C

∂t
= −∇ · [F(x)C

]− ε
∑

n∈Γ

∇ · [Fn(x)wn

]

, (2.17)

where F(x) is the mean vector field of equation (2.7).
(b) Using the equation for C and the fact that A(x)ρ(x) = 0, we have

ε
∂wn

∂t
=
∑

m∈Γ

Anm(x)wm − ∇ · [Fn(x)ρn(x)C
]+ ρn(x)∇ · [F(x)C

]

− ε

[

∇ · (Fn(x)ωn

)− ρn(x)
∑

m∈Γ

∇ · [Fm(x)wm

]
]

.

(c) Introduce the asymptotic expansion

wn ∼ w(0)
n + εw(1)

n + ε2w(2)
n + · · ·

and collect O(1) terms:

∑

m∈Γ

Anm(x)w(0)
m = ∇ · [ρn(x)Fn(x)C(x, t)

]− ρn(x)∇ · [F(x)C
]

. (2.18)

The Fredholm alternative theorem (see the end of Sect. 2.3) shows that this has a
solution, which is unique on imposing the condition

∑

n w
(0)
n (x, t) = 0:

w(0)
m (x) =

∑

n∈Γ

A†
mn(x)

(∇ · [ρn(x)Fn(x)C(x, t)
]− ρn(x)∇ · [F(x)C

])

, (2.19)

where A† is the pseudoinverse of the generator A. We typically have to determine the
pseudoinverse of A numerically.

(d) Combining equations (2.19) and (2.17) shows that C evolves according to the
Itô Fokker–Planck (FP) equation

∂C

∂t
= −∇ · [F(x)C

]− ε∇ · [V (x)C
]+ ε

d
∑

i,j=1

∂2Dij (x)C

∂xi ∂xj

, (2.20)
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where the O(ε) correction to the drift, V (x), and the diffusion matrix D(x) are given
by

V =
∑

n,m

{

(ρnFn)∇ · (FmA†
mn

)− F∇ · (FmA†
mnρn

)}

(2.21a)

and

Dij (x) =
∑

m,n∈Γ

Fm,i(x)A†
mn(x)ρn(x)

[

Fj (x) − Fn,j (x)
]

.

Since
∑

m A
†
mn = 0, we can rewrite the diffusion matrix as

Dij (x) =
∑

m,n∈Γ

[

Fm,i(x) − F i(x)
]

A†
mn(x)ρn(x)

[

Fj (x) − Fn,j (x)
]

. (2.21b)

In the one-dimensional case, the CK equation (2.10) reduces to the one-
dimensional Itô FP equation

∂C

∂t
= − ∂

∂x

([

F(x) + εV (x)
]

C
)+ ε

∂2

∂x2

(

D(x)C
)

(2.22)

with the diffusion coefficient D(x) given by

D(x) =
∑

n∈Γ

Zn(x)Fn(x), (2.23)

where Zn(x) is the unique solution to
∑

m∈Γ

Anm(x)Zm(x) = [F(x) − Fn(x)
]

ρn(x),
∑

m

Zm(x) = 0. (2.24)

For N0 > 2, we typically have to solve equation (2.24) numerically in order to find
the pseudoinverse of A. However, in the special case of a two-state discrete process
(n = 0,1), we have the explicit solution

D(x) = β(x)[F0(x) − F(x)]F0(x) + α(x)[F1(x) − F(x)]F1(x)

[α(x) + β(x)]2
. (2.25)

At a fixed point x∗ of the deterministic equation ẋ = F(x), we have F(x∗) = 0 and
β(x∗)F0(x∗) = −α(x∗)F1(x∗). This gives the reduced expression

D(x∗) = |F0(x∗)F1(x∗)|
α(x∗) + β(x∗)

. (2.26)

One subtle point is the nature of boundary conditions under the QSS reduction,
since the FP equation is a second-order parabolic PDE, whereas the original CK
equation is an N0th-order hyperbolic PDE. It follows that, for N0 > 2, there is a
mismatch in the number of boundary conditions between the CK and FP equations.
This implies that the QSS reduction may break down in a small neighborhood of
the boundary, as reflected by the existence of boundary layers [152]. One way to
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eliminate the existence of boundary layers is to ensure that the boundary conditions
of the CK equation are compatible with the QSS reduction.

2.3 Metastability in Stochastic Hybrid Systems

Several examples of stochastic hybrid systems are known to exhibit multistability in
the fast-switching limit ε → 0 [14]. That is, the deterministic equation (2.8) supports
more than one stable equilibrium. In the absence of noise, the particular state of the
system is determined by initial conditions. On the other hand, when noise is included
by taking into account the stochastic switching, fluctuations can induce transitions
between the metastable states. If the noise is weak (fast switching 0 < ε � 1), then
transitions are rare events involving large fluctuations that are in the tails of the un-
derlying probability density function. This means that estimates of mean transition
times and other statistical quantities can be sensitive to any approximations, includ-
ing the Gaussian approximation based on the QSS approximation of Sect. 2.3, and
can sometimes lead to exponentially large errors.

The analysis of metastability has a long history [70], particularly within the con-
text of SDEs with weak noise. The underlying idea is that the mean rate to transi-
tion from a metastable state in the weak noise limit can be identified with the prin-
cipal eigenvalue of the generator of the underlying stochastic process, which is a
second-order differential operator in the case of a Fokker–Planck equation. Calculat-
ing the eigenvalue typically involves obtaining a Wentzel–Kramers–Brillouin (WKB)
approximation of a quasistationary solution and then using singular perturbation the-
ory to match the solution to an absorbing boundary condition [69, 97, 99, 103, 130].
The latter is defined on the boundary that marks the region beyond which the system
rapidly relaxes to another metastable state, becomes extinct, or escapes to infinity.
In one-dimensional systems (d = 1), this boundary is simply an unstable fixed point,
whereas in higher-dimensions (d > 1), it is generically a (d − 1)-submanifold. In the
weak noise limit, the most likely paths of escape through an absorbing boundary are
rare events, occurring in the tails of the associated functional probability distribution.
From a mathematical perspective, the rigorous analysis of the tails of a distribution is
known as large deviation theory [39, 53, 55, 138], which provides a rigorous proba-
bilistic framework for interpreting the WKB solution in terms of optimal fluctuational
paths. The analysis of metastability in chemical master equations has been devel-
oped along analogous lines to SDEs, combining WKB methods and large deviation
principles[43, 45, 49, 53, 69, 75, 85, 124] with path-integral or operator methods [40,
41, 121, 128, 143]. The study of metastability in stochastic hybrid systems is more
recent, and much of the theory has been developed in a series of papers on stochastic
ion channels [25, 109, 114, 115], gene networks [108, 110], and stochastic neural
networks [24]. Again there is a strong connection between WKB methods, large de-
viation principles [15, 51, 84], and formal path-integral methods [11, 26], although
the connection is now more subtle.

For illustration, we will focus on a one-dimensional stochastic hybrid system and
develop the theory using WKB methods. First, suppose that the deterministic equa-
tion (2.8) is written as

ẋ = F(x) = −dU(x)

dx
(2.27)
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Fig. 2 Sketch of a double-well
potential of a bistable
deterministic system in R

with the potential U(x) having two minima (stable equilibria) separated by a single
maximum (unstable equilibrium), as illustrated in Fig. 2. To calculate the mean es-
cape rate from the metastable state x−, say, the CK equation (2.6) is supplemented
by an absorbing boundary condition at x = x0. The initial condition is taken to be
pn(x,0|y,0) = δ(x − y)ρn(y), where y is in a neighborhood of x−, and ρn(y) is
the stationary distribution of the switching process. Let T (y) denote the (stochastic)
first passage time for which the system first reaches x0, given that it started at y. The
distribution of first passage times f (t, y) is related to the survival probability that the
system has not yet reached x0:

S(t, y) =
∫

Σ

∑

n∈Γ

pn(x, t |y,0) dx. (2.28)

That is, Prob{t > T |X(0) = y} = S(y, t), and the first passage time density f (y, t) =
−∂S/∂t . Substituting for ∂pn/∂t using the CK equation (2.10) shows that

f (y, t) =
∫

Σ

[
∑

n∈Γ

∂[Fn(x)pn(x, t |y,0)]
∂x

]

dx =
∑

n∈Γ

pn(x0, t |y,0)Fn(x0) (2.29)

with Γ = {0,1} for the two-state model. We have used
∑

n∈Γ Anm(x) = 0 and the
asymptotic limit Fn(x)pn(x, t |y,0) → 0 as x → ±∞. The mean first passage time
(MFPT) τ(y) is then given by

τ(y) = 〈T (y)
〉≡
∫ ∞

0
f (y, t)t dt =

∫ ∞

0
S(y, t) dt.

It turns out that for small ε, the MFPT has an Arrhenius-like form analogous to
SDEs [69]:

τ(x−) = 4πΓ (x0, x−)
√|Φ ′′(x0)|Φ ′′(x−)

e[Φ(x0)−Φ(x−)]/ε,

where Φ(x) is known as the quasipotential or stochastic potential, and Γ is a pref-
actor. One important observation is that the escape time is exponentially sensitive to
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the precise form of Φ . If we were first to carry out the QSS reduction of Sect. 2.3 and
then use a standard analysis of the one-dimensional FP equation in order to estimate
the MFPT [61], then we would find that Γ = 1 and, to O(1),

ΦQSS(x) = −
∫ x F (x′)

D(x′)
dx′ (2.30)

with D(x) given by equation (2.25). In particular, if D(x) is independent of x, then
Φ(x) = U(x)/D with U(x) the deterministic potential. The escape time then de-
pends on the barrier height ΔE shown in Fig. 2. As we have already commented,
the Gaussian approximation may not accurately capture the statistics of rare events
that dominate noise-induced escape. This is reflected by the observation that ΦQSS(x)

can differ significantly from the true quasipotential. A much better estimate can be
obtained using WKB.

To apply the WKB method, we can exploit the fact that, in the weak noise limit
(ε � 1), the flux through the absorbing boundary is exponentially small. This has
major implications for the spectral decomposition of the solution to the CK equation
with an absorbing boundary at x = x0. More specifically, consider the eigenfunction
expansion

pn(x, t) =
∑

r

Cre−λ
(r)
ε tφ(r)

ε (x, n), (2.31)

where (−λ
(r)
ε , φ

(r)
ε (x)) is an eigenpair of the matrix-valued linear operator

Lε = − ∂

∂x
diag

(

Fn(x)
)+ 1

ε
A(x)

appearing on the right-hand side of (2.6), that is,

Lεφ
(r)
ε = −λ(r)

ε φ(r)
ε (2.32)

together with the absorbing boundary conditions φ
(r)
ε (x0, n) = 0 for all n. We also

assume that the eigenvalues λ
(r)
ε all have positive definite real parts and the small-

est eigenvalue λ
(0)
ε is real and simple, so that we can introduce the ordering 0 <

λ
(0)
ε < Re[λ(1)

ε ] ≤ Re[λ(2)
ε ] ≤ · · · . The exponentially slow rate of escape through x0

in the weak-noise limit means that λ
(0)
ε is exponentially small, λ

(0)
ε ∼ e−C/ε , whereas

Re[λ(r)
ε ] is only weakly dependent on ε for r ≥ 1. Under these assumptions, we have

the quasistationary approximation for large t :

pn(x, t) ∼ C0e−λ
(0)
ε tφ(0)

ε (x, n). (2.33)

Substituting such an approximation into equation (2.29) and suppressing the initial
conditions give

f (t) ∼ C0e−λ
(0)
ε t
∑

n∈Γ

Fn(x0)φ
(0)
ε (x0, n), (2.34)



Journal of Mathematical Neuroscience            (2018) 8:12 Page 13 of 71

and thus

λ(0)
ε =

∑

n∈Γ Fn(x0)φ
(0)
ε (x0, n)

∑

n

∫

Σ
φ

(0)
ε (x, n) dx

. (2.35)

Since λ
(0)
ε is exponentially small, we can take the quasistationary solution φ

(0)
ε to

satisfy the time-independent CK equation. We then seek a WKB approximation of
the quasistationary solution by making the ansatz

φ(0)
ε (x, n) ∼ Zn(x) exp

(

−Φ(x)

ε

)

, (2.36)

where Φ(x) is the WKB quasipotential. Substituting into the time-independent ver-
sion of equation (2.10) yields

∑

m

(

Anm(x) + Φ ′(x)δn,mFm(x)
)

Zm(x) = ε
dFn(x)Zn(x)

dx
, (2.37)

where Φ ′ = dΦ/dx. Introducing the asymptotic expansions Φ ∼ Φ0 + εΦ1 and Z ∼
Z(0) + εZ(1), the leading order equation is

∑

m∈Γ

Anm(x)Z(0)
m (x) + Φ ′

0(x)Fn(x)Z(0)
n (x) = 0. (2.38)

Positivity of the quasistationary density φ
(0)
ε requires positivity of the corresponding

solution Z(0). One positive solution is the trivial solution Z(0)(x) = ρ(x) for all x ∈
Σ , where ρ is the unique right eigenvector of A, for which Φ ′

0 = 0. Establishing the
existence of a nontrivial positive solution requires more work and is related to the
fact that the connection of the WKB solution to optimal fluctuational paths and large
deviation principles is less direct in the case of stochastic hybrid systems.

It turns out that we have to consider the eigenvalue problem [11, 15, 25, 51, 84]
∑

m∈Γ

[

Anm(x) + qδn,mFm(x)
]

Rm(x, q) = Λ(x,q)Rn(x, q). (2.39)

Assuming that A(x) is irreducible for all x, we can use the Perron–Frobenius theorem
(see the end of Sect. 2.3) to show that, for fixed (x, q), there exists a unique eigenvalue
Λ0(x, q) with a positive eigenvector R

(0)
n (x, q). The optimal fluctuational paths are

obtained by identifying the Perron eigenvalue Λ0(x, q) as a Hamiltonian and finding
zero energy solutions to Hamilton’s equations

ẋ = ∂H

∂q
, q̇ = −∂H

∂x
, H(x, q) = Λ0(x, q). (2.40)

This can be established using large deviation theory or path-integrals. In the latter
case, we can show that a path-integral representation of the density p(x, τ ) is

p(x, τ ) =
∫ x(τ)=x

x(0)=x0

exp

(

−1

ε

∫ τ

0

[

qẋ − Λ0(x, q)
]

dt

)

D[q, x]
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for some appropriate measure D[q, x]. Applying steepest descents to the path integral
then yields a variational principle in which optimal paths minimize the action

S[x, q] =
∫ τ

0

[

qẋ − Λ0(x, q)
]

dt.

Comparison of equation (2.38) with equation (2.39) then shows that there exists
a nontrivial positive solution of equation (2.38) given by Z

(0)
n (x) = R

(0)
n (x, q) with

q = Φ ′
0(x) and Φ0 satisfies the corresponding Hamilton–Jacobi equation

Λ0
(

x,Φ ′
0(x)

)= 0. (2.41)

Note that since Φ ′
0(x) vanishes at x = x0, it follows that Z(0)(x0) = ρ(x0), and simi-

larly for the other fixed points. Deterministic mean field equations and optimal paths
of escape from a metastable state both correspond to zero energy solutions. Along
zero-energy paths,

S[x, q] ≡
∫ τ

−∞
[

qẋ − Λ0(x, q)
]

dt =
∫ τ

−∞
Φ ′

0(x)ẋ dt =
∫ x

xs

Φ ′
0(x) dx.

2.3.1 Calculation of Principal Eigenvalue

To calculate the principal eigenvalue, it is necessary to determine the first-order cor-
rection Φ1 to the quasipotential of the WKB solution (2.36). Proceeding to the next
order in the asymptotic expansion of equation (2.37), we have

∑

m

(

Anm(x) + Φ ′
0(x)δn,mFn(x)

)

Z(1)
m (x)

= dFn(x)Z
(0)
n (x)

dx
− Φ ′

1(x)Fn(x))Z(0)
n (x). (2.42)

For fixed x and WKB potential Φ0, the matrix operator

Ānm(x) = Anm(x) + Φ ′
0(x)δn,mFm(x)

on the left-hand side of this equation has a one-dimensional null space spanned by
the positive WKB solution Z(0)(x). The Fredholm alternative theorem (see Sect. 2.2)
then implies that the right-hand side of (2.42) is orthogonal to the left null vector S

of Ā. That is, we have the solvability condition

∑

n∈Γ

Sn(x)

[
dFn(x)Z

(0)
n (x)

dx
− Φ ′

1(x)Fn(x)Z(0)
n (x)

]

= 0

with S satisfying

∑

n∈Γ

Sn(x)
(

Anm(x) + Φ ′
0(x)δn,mFm(x)

)= 0. (2.43)
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Given Z(0),S, and Φ0, the solvability condition yields the following equation for Φ1:

Φ ′
1(x) =

∑

n∈Γ Sn(x)[Fn(x)Z
(0)
n (x)]′

∑

n∈Γ Sn(x)Fn(x)Z
(0)
n (x)

. (2.44)

Combining the various results and defining

k(x) = exp
(−Φ1(x)

)

(2.45)

give to leading order in ε,

φ(0)
ε (x, n) ∼ N k(x) exp

(

−Φ0(x)

ε

)

Z(0)
n (x), (2.46)

where we choose
∑

n Z
(0)
n (x) = 1 for all x, and N is the normalization factor,

N =
[∫

Σ

k(x) exp

(

−Φ0(x)

ε

)]−1

.

The latter can be approximated using Laplace’s method to give

N ∼ 1

k(x−)

√

|Φ ′′
0 (x−)|
2πε

exp

(
Φ0(x−)

ε

)

. (2.47)

The final step is to use singular perturbation theory to match the outer quasistationary
solution to the absorbing boundary condition at x0. The analysis is quite involved [80,
108], so here we simply quote the result for the 1D model:

λ(0)
ε ∼ 1

π

k(x0)D(x0)

k(x−)

√

Φ ′′
0 (x−)

∣
∣Φ ′′

0 (x0)
∣
∣ exp

{

−Φ0(x0) − Φ0(x−)

ε

}

(2.48)

with D(x) the effective diffusion coefficient (2.23) obtained using a QSS reduction.

2.3.2 Two-State Model

We now illustrate the above theory for the simple two-state model of equation
(2.10). The specific version of the linear equation (2.39) can be written as the two-
dimensional system

(−α(x) + qF0(x) β(x)

α(x) −β(x) + qF1(x)

)(

R0
R1

)

= Λ

(

R0
R1

)

. (2.49)

The corresponding characteristic equation is

0 = Λ2 + Λ
[

α(x) + β(x) − q
(

F0(x) + F1(x)
)]

+ (qF1(x) − β(x)
)(

qF0(x) − α(x)
)− β(x)α(x).
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It follows that the Perron eigenvalue is given by

Λ0(x, q) = 1

2

[

Σ(x,q) +
√

Σ(x,q)2 − 4h(x, q)
]

, (2.50)

where

Σ(x,q) = q
(

F0(x) + F1(x)
)− [α(x) + β(x)

]

,

and

h(x, q) = q2F1(x)F0(x) − q
[

β(x)F0(x) + α(x)F1(x)
]

.

A little algebra shows that

D(x, q) ≡ Σ(x,q)2 − 4h(x, q)

= [q(F0 − F1) − (α(x) − β(x)
)]2 + α(x)β(x) > 0,

so that, as expected, Λ0 is real. The quasipotential Φ0(x) satisfies the HJ equation
Λ0(x, q) = 0 with q = Φ ′

0(x), which reduces to the conditions

h
(

x,Φ ′
0(x)

)= 0, Σ
(

x,Φ ′
0(x)

)

< 0. (2.51)

This has two solutions: the classical deterministic solution q = 0 with Φ ′
0(x) = 0 and

a nontrivial solution whose quasipotential satisfies

Φ ′
0(x) = β(x)

F1(x)
+ α(x)

F0(x)
. (2.52)

(Note that Fn(x) does not vanish anywhere and F0(x)F1(x) < 0.) The quasipoten-
tial can be determined by numerically integrating with respect to x. The resulting
quasipotential differs significantly from the one obtained by carrying out a QSS
diffusion approximation of the stochastic hybrid system along the lines outlined in
Sect. 2.2.

For this simple model, it is also straightforward to determine the various prefactors
in equation (2.48). For example, the normalized positive eigenvector Z(0) has the
components

Z
(0)
0 = F1(x)

F1(x) − F0(x)
, Z

(0)
1 = −F0(x)

F1(x) − F0(x)
.

Since F0(x) < 0 and F1(x) > 0 for x ∈ Σ , it follows from equation (2.52) that Z
(0)
0

is positive. The components of the adjoint eigenvector S satisfy

S1

S0
= −α + Φ ′

0(x)F0(x)

α
= −β + Φ ′

0(x)F1(x)

β
.

It then follows from equation (2.44) that the first correction to the quasipotential
satisfies

Φ ′
1(x) = 1

F0(x)F1(x)

d

dx

(

F0(x)F1(x)
)

. (2.53)
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Hence

k(x) ≡ e−Φ1(x) = 1

|F0(x)|F1(x)
. (2.54)

Finally, D(x0) is given by equation (2.26).

2.3.3 Fredholm Alternative Theorem

Consider an M-dimensional linear inhomogeneous equation Az = b with z,b ∈R
M .

Suppose that the M × M matrix A has a nontrivial null-space and let u be a null
vector of the adjoint matrix A†, that is, A†u = 0. The Fredholm alternative theorem
for finite-dimensional vector spaces states that the inhomogeneous equation has a
(nonunique) solution for z if and only if u · b = 0 for all null vectors u. Let us ap-
ply this theorem to equation (2.18) for fixed x, t . The one-dimensional null-space is
spanned by the vector with components un = 1, since

∑

n unAnm =∑n A
†
mnun = 0.

Hence equation (2.18) has a solution, provided that

0 =
∑

n

[
∂[Fn(x)p∗

n(x)C(x, t)]
∂x

− p∗
n(x)

∂F (x)C

∂x

]

.

This immediately follows since
∑

n pn(x) = 1 and
∑

n p∗
n(x)Fn(x) = F(x) for all x.

2.3.4 Perron–Frobenius Theorem

If T is an irreducible positive finite matrix, then

1. there is a simple eigenvalue λ0 of T that is real and positive, with positive left and
right eigenvectors;

2. the remaining eigenvalues λ satisfy |λ| < λ0.

If Tnm = Wnm/
∑

k Wkm, then λ0 = 1, where W is an irreducible transition matrix,
then the left positive eigenvector is ψ = (1, . . . ,1), and the right positive eigenvector
is the stationary distribution ρ. In the case of the matrix operator L(x) with com-
ponents Lnm(x) := Anm(x) + qFn(x)δn,m, which appears in the eigenvalue equation
(2.39), it is clear that not all components of the matrix are positive for a given x ∈ Σ .
However, taking ζ > supx∈Σ ‖L(x)‖∞, the matrix L(x) + ζ I satisfies the conditions
of the Perron–Frobenius theorem for all x ∈ Σ .

3 Stochastic Ion Channels and Membrane Voltage Fluctuations

The generation and propagation of a neuronal action potential arises from nonlinear-
ities associated with active membrane conductances. Ions can diffuse in and out of
the cell through ion specific channels embedded in the cell membrane; see Fig. 3. Ion
pumps within the cell membrane maintain concentration gradients such that there is a
higher concentration of Na+ and Ca2+ outside the cell and a higher concentration of
K+ inside the cell. The membrane current through a specific channel varies approxi-
mately linearly with changes in the voltage v relative to some equilibrium or reversal
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Fig. 3 Opening and closing of ion channels underlying initiation and propagation of an action potential

potential, which is the potential at which there is a balance between the opposing ef-
fects of diffusion and electrical forces. (We will focus on a space-clamped model of
a neuron whose cell body is taken to be an isopotential.) Summing over all channel
types, the total membrane current (flow of positive ions) leaving the cell through the
cell membrane is

Icon =
∑

s

gs(v − Vs), (3.1)

where gs is the conductance due to channels of type s, and Vs is the corresponding
reversal potential.

Recordings of the current flowing through single channels indicate that channels
fluctuate rapidly between open and closed states in a stochastic fashion. Neverthe-
less, most models of a neuron use deterministic descriptions of conductance changes,
under the assumption that there are a large number of approximately independent
channels of each type. It then follows from the law of large numbers that the fraction
of channels open at any given time is approximately equal to the probability that any
one channel is in an open state. The conductance gs for ion channels of type s is
thus taken to be the product gs = ḡsPs where ḡs is equal to the density of channels
in the membrane multiplied by the conductance of a single channel, and Ps is the
fraction of open channels. The voltage-dependence of the probabilities Ps in the case
of a delayed-rectifier K+ current and a fast Na+ current were originally obtained by
Hodgkin and Huxley [76] as part of their Nobel prize winning work on the genera-
tion of action potentials in the squid giant axon. The delayed-rectifier K+ current is
responsible for terminating an action potential by repolarizing a neuron. We find that
opening of the K+ channel requires structural changes in four identical and indepen-
dent subunits so that PK = n4 where n is the probability that any one gate subunit
has opened. In the case of the fast Na+ current, which is responsible for the rapid
depolarization of a cell leading to action potential generation, the probability of an
open channel takes the form PNa = m3h where m3 is the probability that an activating
gate is open and h is the probability that an inactivating gate is open. Depolarization
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causes m to increase and h to decrease, whereas hyperpolarization has the opposite
effect.

The dynamics of the gating variables m, n, h are usually formulated in terms of
a simple kinetic scheme that describes voltage-dependent transitions of each gating
subunit between open and closed states. More specifically, for each Y ∈ {m,n,h},

dY

dt
= αY (v)(1 − Y) − βY (v)Y, (3.2)

where αY (v) is the rate of the transition closed → open, and βY (v) is the rate of the
reverse transition open → closed. From basic thermodynamic arguments, the opening
and closing rates are expected to be exponential functions of the voltage v:

αY (v) = AY e−BY v, βY (v) = A′
Y e−B ′

Y v.

Hodgkin and Huxley originally fitted exponential-like functions to the experimental
data obtained from the squid axon. The corresponding conductance-based model (in
the absence of synaptic inputs) can then be written in the form

C
dv

dt
= f (v,m,n,h) + Iext (3.3)

with

f (v,m,n,h) = −ḡNam
3h(v − VNa) − ḡKn4(v − VK) − ḡL(v − VL). (3.4)

Here IL = gL(v − VL) is called a leak current, which represents the passive flow of
ions through nongated channels.

3.1 Morris–Lecar Model

It is often convenient to consider a simplified planar model of a neuron, which tracks
the membrane voltage v, and a recovery variable w that represents the fraction of
open potassium channels. The advantage of a two-dimensional model is that we can
use phase-plane analysis to develop a geometric picture of neuronal spiking. One
well-known example is the Morris–Lecar (ML) model [100]. Although this model
was originally developed to model Ca2+ spikes in molluscs, it has been widely used
to study neural excitability for Na+ spikes [48], since it exhibits many of the same
bifurcation scenarios as more complex models. The ML model has also been used
to investigate subthreshold membrane potential oscillations (STOs) due to persistent
Na+ currents [27, 145]. Another advantage of the ML model is that it is straight-
forward to incorporate intrinsic channel noise [80, 109, 114, 132]. To capture the
fluctuations in membrane potential from stochastic switching in voltage-gated ion
channels, we will consider a stochastic version of the ML model that includes both
discrete jump processes (to represent the opening and closing of Ca2+ or Na+ ion
channels) and a two-dimensional continuous-time piecewise process (to represent
the membrane potential and recovery variable w). We thus have an explicit exam-
ple of a two-dimensional PDMP. (We can also consider fluctuations in the opening
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and closing of the K+ ion channels, in which w is replaced by an additional discrete
stochastic variable, representing the fraction of open K+ channels [114, 132]. This
would yield a one-dimensional PDMP for the voltage alone.)

3.1.1 Deterministic Model

First, consider a deterministic version of the ML model [100] consisting of a fast
inward calcium current (Ca2+), a slow outward potassium current (K+), a leak current
(L), and an applied current (Iapp). (In [80, 114] the inward current is interpreted as a
Na+ current, but the same parameter values as the original ML model are used.) For
simplicity, each ion channel is treated as a two-state system that switches between
an open and a closed state—the more detailed subunit structure of ion channels is
neglected [64]. The membrane voltage v evolves as

Cm

dv

dt
= a∞(v)fCa(v) + wfK(v) + fL(v) + Iapp,

dw

dt
= (1 − w)αK(v) − wβK(v) = φ

τ(v)

[

w∞(v) − w
]

,

(3.5)

where w is the K+ gating variable. It is assumed that Ca2+ channels are in quasi-
steady state a∞(v), thus eliminating the fraction of open Ca2+ channels as a variable.
For i = K,Ca,L, let fi = gi(Vi −v), where gi are ion conductances, and Vi are rever-
sal potentials. Opening and closing rates of ion channels depend only on membrane
potential v are represented by α and β , respectively, so that

a∞(v) = αCa(v)

αCa(v) + βCa(v)
. (3.6)

For the ML model,

αCa(v) = βCa exp

(
2[v − vCa,1]

vCa,2

)

(3.7)

with βCa, vCa,1, vCa2 constant. The transition rates αK(v) and βK(v) are chosen such
that

w∞(v) = 1

2

(

1 + tanh

[
v − vK,1

vK,2

])

, τ (v) = cosh

[
v − vK,1

2vK,2

]

. (3.8)

The dynamics of this system can be explored using phase-plane analysis as illus-
trated in Fig. 4 for an excitable regime. Exploiting the fact that the K+ dynamics is
much slower than the voltage and Ca2+ dynamics, we can use a slow/fast analysis to
investigate the initiation of an action potential following a perturbing stimulus [81].
The ML model can also support oscillatory solutions; see also Sect. 6.

3.1.2 Stochastic Model

The deterministic ML model holds under the assumption that the number of ion chan-
nels is very large, thus the ion channel activation can be approximated by the average
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Fig. 4 Deterministic phase plane dynamics (adapted from [114]). Thick curves show the nullclines:
v̇ = 0 as grey and ẇ = 0 as black. Black stream lines represent deterministic trajectories. Green/blue
curves represent an action potential trajectory in the limit of slow w. Parameter values are Cm = 20 mF,
VCa = 120 mV, VK = −84 mV, VL = −60 mV, gCa = 4.4 mS, gK = 8 mS, gL = 2.2 mS, βCa = 0.8 s−1,
vCa,1 = −1.2 mV, vCa,2 = 18 mV, vK,1 = 2 mV, vK,2 = 30 mV, and φ = 0.04 ms−1

ionic currents. However, it is known that channel noise does affect membrane poten-
tial fluctuations and thus neural function [146]. To account for ion channel fluctua-
tions, we consider a stochastic version of the ML model [80, 114, 132], in which the
number N of Ca2+ channels is taken to be relatively small. (For simplicity, we ignore
fluctuations in the K+ channels by taking the number of the latter to be very large.)
Let n(t) be the number of open Ca2+ channels at time t , which means that there are
N − n(t) closed channels. The voltage and recovery variables then evolve according
to the following PDMP:

Cm

dv

dt
= n

N
fCa(v) + wfK(v) + fL(v) + Iapp,

dw

dt
= φ

τ(v)

[

w∞(v) − w
]

(3.9)

for n(t) = n. Suppose that individual channels switch between open (O) and closed
(C) states via a two-state Markov chain,

C
αCa(v)/ε

�
βCa/ε

O. (3.10)

It follows that at the population level, the number of open ion channels evolves ac-
cording to a birth–death process with

n → n − 1, ω−
n (v) = nβCa/ε,

n → n + 1, ω+
n (v) = (N − n)αCa(v)/ε.

(3.11)

Note that we have introduced the small parameter ε to reflect the fact that Ca2+ chan-
nels open and close much faster than the relaxation dynamics of the system (v,w).
This is consistent with the parameter values of the ML model, where the slowness of
the K+ channels is reflected by the fact that the parameter φ = 0.04 ms−1, the mem-
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brane rate constant is of order 0.05 ms−1, whereas the transition rates of Ca2+ or Na+
channels are of order 1 ms−1. The stationary density of the birth–death process is

ρn(v) = N !
n!(N − n)!

αn
Ca(v)β

(N−n)
Ca

(αCa(v) + βCa)N
. (3.12)

The corresponding CK equation is

∂pn

∂t
= − ∂

∂v

[(
n

N
fCa(v) + wfK(v) + fL(v) + Iapp

)

pn(v,w, t)

]

− ∂

∂w

[(

(1 − w)αK(v) − wβK
)

pn(v,w, t)
]

+ 1

ε

(

ω+
n−1(v)pn−1(v,w, t) + ω−

n+1(v)pn+1(v,w, t)
)

− 1

ε

((

ω+
n (v) + ω−

n (v)
)

pn(v,w, t)
)

. (3.13)

Comparison with the general CK equations (2.6) shows that x = (v,w), ∇ =
(∂v, ∂w)�,

Fn(v,w) :=
(

fn(v,w)

f (v,w)

)

=
(

nfCa(v)/N + wfK(v) + fL(v) + Iapp
(1 − w)αK(v) − wβK

)

,

and A is the tridiagonal generator matrix of the birth–death process. Carrying out the
QSS diffusion approximation of Sect. 2.2 then yields the following Ito FP equation
for C(v,w, t) =∑N

n=0 pn(v,w, t) (see also [27]):

∂C

∂t
= − ∂

∂v

[

fn(v,w)C
]− ∂

∂w

[

f (v,w)C
]−ε

∂

∂v

[

V (v,w)C
]+ε

∂2D(v)C

∂v2
(3.14)

with

V =
∑

m,n

(

f (v,w)
∂

∂v

[

ρn(v)A†
mn(v)fm(v,w)

− ρn(v)fn(v,w)
∂

∂v

(

A†
mn(v)fm(v,w)

)
])

(3.15a)

and

D =
∑

m,n

[

fm(v,w) − f (v,w)
]

A†
mn(v)ρn(v)

[

f (v,w) − fn(v,w)
]

=
∑

m,n

[
m − 〈m〉

N
fCa(v)

]

A†
mn(v)ρn(v)

[ 〈n〉 − n

N
fCa(v)

]

= 1

N
fCa(v)2a∞(v)

[

1 − a∞(v)
]2

. (3.15b)

The last line follows from a calculation in [80].
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Almost all previous studies of ion channel fluctuations are based on some form
of diffusion approximation, thus reducing the continuous dynamics to an effective
Langevin equation [32, 54, 64, 146]. However, these various approximations can lead
to exponentially large errors in estimates for quantities such as the rate at which noise-
driven action potentials are generated in the excitable regime. This has motivated
recent work that deals directly with the CK equation (3.13). For example, Keener and
Newby [80, 115] consider the simplified problem of how ion channel fluctuations
affect the initiation of an action potential due to the opening of a finite number of
Ca2+ or Na+ channels. The slow K+ channels are assumed to be frozen, so that
they effectively act as a leak current, and each sodium channel is treated as a single
activating subunit. The recovery variable w is thus fixed so the potassium current can
be absorbed into the function g(v) := −[wfK(v) + fL(v) + Iapp]. We then have the
one-dimensional PDMP

dv

dt
= n

N
fCa(v) − g(v), (3.16)

and the CK equation (3.13) reduces to

∂pn

∂t
= − ∂

∂v

(
n

N
fCa(v) − g(v)

)

pn(v, t)

+ 1

ε

(

ω+
n−1(v)pn−1(v, t) + ω−

n+1(v)pn+1(v, t)
)

− 1

ε

(

ω+
n (v) + ω−

n (v)
)

pn(v, t). (3.17)

Since the right-hand side of equation (3.16) is negative (positive) for large (small)
v, it follows that there exists an invariant interval for the voltage dynamics. In par-
ticular, let v0 denote the voltage for which v̇ = 0 when n = 0, and let vN be the
corresponding voltage when n = N , that is, g(v0) = 0 and fCa(vN) − g(vN) = 0.
Then v(t) ∈ [v0, vN ] if v(0) ∈ [v0, vN ]. In the fast switching limit ε → 0, we obtain
the first-order deterministic rate equation

dv

dt
= a∞(v)fCa(v) − g(v) ≡ −dΨ

dv
. (3.18)

We have introduced the effective potential Ψ (v) whose minima and maxima corre-
spond to stable and unstable fixed points of the mean-field equation. By plotting the
potential Ψ , it is straightforward to show that equation (3.18) exhibits bistability for
a range of stimuli Iapp, that is, there exist two stable fixed points v± separated by an
unstable fixed point v0; see Fig. 5. The problem of the spontaneous initiation of an ac-
tion potential for small but finite ε thus reduces to an escape problem for a stochastic
hybrid system, as outlined in Sect. 2.3.

3.2 Metastability in the Stochastic Ion Channel Model

To calculate the mean escape rate from the resting state v− using the Arrhenius for-
mula (2.48), we take v → x and calculate the functions Φ0(x), k(x), and D(x). In
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Fig. 5 Sketch of deterministic
potential Ψ (v) as a function of
voltage v for different values of
the applied stimulus current
Iapp. At a critical current I∗, the
deterministic system switches
from a bistable to a monostable
regime, that is, I∗ is the
threshold current for action
potential generation

the case of the stochastic ion channel model, equation (2.39) takes the explicit form

(N − n + 1)αRn−1 − [Λ0 + nβ + (N − n)α
]

Rn + (n + 1)βRn+1

= −q

(
n

N
f − g

)

Rn. (3.19)

Consider the trial solution

Rn(x, q) = Γ (x, q)n

(N − n)!n! , (3.20)

which yields the following equation relating Γ and Λ0:

nα

Γ
+ Γβ(N − n) − Λ0 − nβ − (N − n)α = −q

(
n

N
f − g

)

.

Collecting terms independent of n and terms linear in n yields the pair of equations

q = − N

f (x)

(
1

Γ (x, q)
+ 1

)
(

α(x) − β(x)Γ (x, q)
)

(3.21)

and

Λ0(x, q) = −N
(

α(x) − Γ (x, q)β(x)
)− qg(x). (3.22)

Eliminating Γ from these equation gives

q = 1

f (x)

(
Nβ(x)

Λ0(x, q) + Nα(x) + qg(x)
+ 1

)
(

Λ0(x, q) + qg(x)
)

.

This yields a quadratic equation for Λ0 of the form

Λ2
0 + σ(x)Λ0 − h(x, q) = 0 (3.23)

with

σ(x) = (2g(x) − f (x)
)+ N

(

α(x) + β(x)
)

,
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Fig. 6 Phase portrait of
Hamilton’s equations of motion
for the ion channel model with
Hamiltonian given by the Perron
eigenvalue (3.22). (x and q are
taken to be dimensionless.) The
zero energy solution
representing the maximum
likelihood path of escape from
x− is shown as the gray curve.
(The corresponding path from
x+ is not shown.) Same
parameter values as Fig. 4

h(x, q) = q
[−Nβ(x)g(x) + (Nα(x) + qg(x)

)(

f (x) − g(x)
)]

.

Along the zero-energy surface Λ0(x, q) = 0, we have h(x, q) = 0, which yields the
pair of solutions

q = 0 and q = Φ ′
0(x) ≡ −N

α(x)f (x) − (α(x) + β)g(x)

g(x)(f (x) − g(x))
. (3.24)

The normalized eigenfunction for the nontrivial case is

Z(0)
n (x) = N !

(N − n)!n!
(f (x) − g(x))N−ng(x)n

f (x)N
. (3.25)

Note that Φ ′
0(x) vanishes at the fixed points x−, x0 of the mean-field equation (3.18)

with Φ ′
0(x) > 0 for 0 < x < x− and Φ ′

0(x) > 0 for x− < x < x0. In Fig. 6, we show
solutions to Hamilton’s equations in the (x, q)-plane, highlighting the zero-energy
maximum likelihood curve linking x− and x0. Note that NΦ(x0), where Φ(x0) is the
area enclosed by the heteroclinic connection from x− to x0, gives the leading order
contribution to log τ , where τ is the mean escape time.

The next step is to determine the null eigenfunction Sn(x) of equation (2.43),
which becomes

(N − m)αSm+1 − [(N − m)α + mβ
]

Sm + mβSm−1 = −Φ ′
0

(
m

N
f (x) − g(x)

)

Sm.

Trying a solution of the form Sm(x) = Γ (x)m yields

(N − m)αΓ − ((N − m)α + mβ
)+ mβΓ −1 = −Φ ′

0

(
m

N
f (x) − g(x)

)

. (3.26)

Γ is then determined by canceling terms independent of m:

Sn(x) =
(

βg(x)

α(x)(f (x) − g(x)))

)n

. (3.27)
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Fig. 7 Schematic diagram
comparing MFPT calculated
using the diffusion
approximation with the MFPT
of the full system. (Redrawn
from [80].) The scales of the
axes are based on numerical
results for N = 10. Other
parameter values as in Fig. 4

Finally, a QSS analysis of the CK equation shows that [80]

D(x0) = f (x0)
2α(x0)β

N(α(x0) + β)3
, (3.28)

where have used the fixed point condition g(x0) = f (x0)a∞(x0).
Keener and Newby [80] calculated the MFPT (τ = 1/λ0) using equation (2.48)

and showed that their results agreed very well with Monte Carlo simulations of the
full system, whose probability density evolves according to the CK equation (3.17).
A summary of their findings is shown schematically in Fig. 7, together with the cor-
responding MFPT obtained using a quasi-steady-state diffusion approximation. The
main observation is that although the Gaussian-like diffusion approximation does
well in the superthreshold regime (Iapp > I∗), it deviates significantly from the full
model results in the subthreshold regime (Iapp < I∗), where it overestimates the mean
time to spike. This is related to the fact that the effective potential of the steady-state
density under the diffusion approximation generates exponentially large errors in the
MFPT.

In the above analysis of membrane voltage fluctuations, it was assumed that the
potassium channel dynamics could be ignored during initiation of a spontaneous ac-
tion potential (SAP). This corresponds to keeping the recovery variable w fixed. The
resulting stochastic bistable model supported the generation of SAPs due to fluctu-
ations in the opening and closing of fast Ca2+ or Na+ channels. However, it is also
possible to generate a SAP due to fluctuations causing several K channels to close si-
multaneously, effectively decreasing w, and thereby causing v to rise. It follows that
keeping w fixed in the stochastic model excludes the latter mechanism, and thus the
resulting MFPT calculation underestimates the spontaneous rate of action potentials.
To investigate this phenomenon, it is necessary to consider the full stochastic ML
model given by equations (3.9) with a multiplicative noise term added to the dynam-
ics of the recovery variable, which takes into account a finite number M of potassium
ion channels. An additional complication is that the full model is an excitable rather
than a bistable system, so it is not straightforward to relate the generation of SAPs
with a noise-induced escape problem. Nevertheless, Newby et al. [110, 114] used
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Fig. 8 Electrical coupling via gap junctions. (a) Schematic diagram of gap junction coupling between two
cells. (b) Schematic illustration of a Cx43 gap junction channel containing fast (arrow with square) and
slow (arrow with hexagon) gates. Voltage gating is mediated by both fast and slow gating mechanisms.
Chemical gating is mediated by the slow gating mechanism in both hemichannels

WKB methods to identify the most probable paths of escape from the resting state
and obtained the following results:

(i) The most probable paths of escape dip significantly below the resting value for
w, indicating a breakdown of the deterministic slow/fast decomposition.

(ii) Escape trajectories all pass through a narrow region of state space (bottleneck or
stochastic saddle node) so that, although there is no well-defined separatrix for
an excitable system, it is possible to formulate an escape problem by determining
the MFPT to reach the bottleneck from the resting state.

4 Stochastic Gap Junctions and Randomly Switching Environments

Many neurons in the mammalian central nervous system communicate via gap junc-
tions, also known as electrical synapses [35]. Gap junctions are arrays of transmem-
brane channels that connect the cytoplasm (aqueous interior) of two neighboring
cells and thus provide a direct diffusion pathway for ionic current and small organic
molecules to move between cells. In many cases the electrical coupling is strong
enough to mediate the synchronization of subthreshold and spiking activity among
clusters of neurons. Cells sharing a gap junction channel each provide a hemichannel
(also known as a connexon) that connect head-to-head [50, 66, 127]; see Fig. 8(a).
Each hemichannel is composed of proteins called connexins that exist as various iso-
forms named Cx23 through Cx62, with Cx43 being the most common. Just as with
the opening and closing of ion channels (see Sect. 2), gap junctions can be gated
by both voltage and chemical agents. There appear to be at least two gating mech-
anisms associated with gap junctions [31], as illustrated in Fig. 8(b). Even when a
gap junction is open, it tends to restrict the flow of molecules, and this is typically
modeled by assuming that a gap junction has a certain channel permeability [81].
Given that gap junctions are gated, this suggests that thermal fluctuations could re-
sult in the stochastic opening and closing of gap junctions in an analogous fashion
to ion channels. There has been relatively little work on the effects of thermal noise
on gap junction diffusive coupling, beyond modeling the voltage characteristics of
a single stochastically-gated gap junction [120]. Recently, however, there have been
several studies on analyzing the effective permeability of stochastic gap junctions by
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Fig. 9 One-dimensional diffusion in a domain with a randomly switching gate on the right-hand side

formulating the problem as diffusion in a domain with randomly switching internal
barriers, which is modeled as a piecewise deterministic PDE [12, 19].

To introduce the basic theory, we begin with the simpler problem of diffusion in a
bounded interval with a randomly switching exterior boundary [11, 92]. The latter can
represent the random opening and closing of a stochastic ion channel in the plasma
membrane of a cell or a subcellular compartment [17].

4.1 Diffusion on an Interval with a Switching Exterior Boundary

Consider particles diffusing in the finite interval [0,L] with a fixed absorbing bound-
ary at x = 0 and a randomly switching gate at x = L, see Fig. 9. Let N(t) ∈ {0,1}
denote the discrete state of the gate such that it is open when N(t) = 1 and is closed
when N(t) = 0. Assume that N(t) evolves according to a two-state Markov process
with switching rates α, β:

(closed)
α
�
β

(open). (4.1)

Consider a particular realization σ(T ) = {N(t),0 ≤ t ≤ T } of the gate, and let u(x, t)

denote the population density of particles in state x at time t given the realization
σ(T ) up to time T . The population density evolves according to the diffusion equa-
tion

∂u

∂t
= D

∂2u

∂x2
, x ∈ (0,L), t > 0, (4.2a)

with u satisfying the boundary conditions

u(0, t) = 0, J (L, t) = 0 for N(t) = 0,

u(L, t) = η for N(t) = 1,
(4.2b)

and J (x, t) = −D∂xu(x, t). We are assuming that when the gate is open, the system
is in contact with a particle bath of density η. Note that equation (4.2a)–(4.2b) only
holds between jumps in the state of the gate, so that it is an example of a piecewise de-
terministic PDE. Since each realization of the gate will typically generate a different
solution u(x, t), it follows that u(x, t) is a random field.

4.1.1 Derivation of Moment Equations

In [18] a method has been developed for deriving moment equations of the stochastic
density u(x, t) in the case of particles diffusing in a domain with randomly switching
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boundary conditions. The basic approach is to discretize the piecewise determinis-
tic diffusion equation (4.2a)–(4.2b) with respect to space using a finite-difference
scheme and then to construct the differential CK equation for the resulting finite-
dimensional stochastic hybrid system. One of the nice features of finite-differences
is that we can incorporate the boundary conditions into the resulting discrete linear
operators. Since the CK equation is linear in the dependent variables, we can derive a
closed set of moment equations for the discretized density and then retake the contin-
uum limit. (For an alternative, probabilistic approach to deriving moment equations,
see [90].)

The first step is to introduce the lattice spacing a such that (N + 1)a = L for
integer N and let uj = u(aj), j = 0, . . . ,N + 1. Then we obtain the PDMP

dui

dt
=

N
∑

j=1

Δn
ijuj + ηaδi,Nδn,1, i = 1, . . . ,N,ηa = ηD0

a2
(4.3)

for n = 0,1. Away from the boundaries (i 	= 1,N ), Δn
ij is given by the discrete Lapla-

cian

Δn
ij = D

a2
[δi,j+1 + δi,j−1 − 2δi,j ]. (4.4a)

On the left-hand absorbing boundary, we have u0 = 0, whereas on the right-hand
boundary, we have

uN+1 = η for n = 1, uN+1 − uN−1 = 0 for n = 0.

These can be implemented by taking

Δ0
1j = D

a2
[δj,2 − 2δj,1], Δ1

1j = D

a2
[δj,2 − 2δj,1] (4.4b)

and

Δ0
Nj = 2D

a2
[δN−1,j − δN,j ], Δ1

Nj = D

a2
[δN−1,j − 2δN,j ]. (4.4c)

Let u(t) = (u1(t), . . . , uN(t)) and introduce the probability density

Prob
{

u(t) ∈ (u,u + du),N(t) = n
}= pn(u, t) du, (4.5)

where we have dropped the explicit dependence on initial conditions. The probability
density evolves according to the following differential CK equation for the stochastic
hybrid system (4.3) (see Sect. 2.1):

∂pn

∂t
= −

N
∑

i=1

∂

∂ui

[(
N
∑

j=1

Δn
ijuj +ηaδi,Nδn,1

)

pn(u, t)

]

+
∑

m=0,1

Anmpm(u, t), (4.6)

where A is the matrix

A =
[−α β

α −β

]

. (4.7)
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Since the drift terms in the CK equation (4.6) are linear in the uj , it follows that we
can obtain a closed set of equations for the moment hierarchy.

Let

vn,k(t) = E
[

uk(t)1N(t)=n

]=
∫

pn(u, t)uk(t) du. (4.8)

Multiplying both sides of the CK equation (4.6) by uk(t) and integrating with respect
to u give (after integrating by parts and using that pn(u, t) → 0 as u → ∞ by the
maximum principle)

dvn,k

dt
=

N
∑

j=1

Δn
kj vn,j + ηaρ0δk,Nδn,1 +

∑

m=0,1

Anmvm,k. (4.9)

We have assumed that the initial discrete state is distributed according to the station-
ary distribution ρn, so that

∫

pn(u, t) du = ρn.

Equations for r th-order moments r ≥ 2 can be obtained in a similar fashion. Let

v
(r)
n,k1···kr

(t) = E
[

uk1(t) · · ·ukr (t)1N(t)=n

]=
∫

pn(u, t)uk1(t) · · ·ukr (t) du. (4.10)

Multiplying both sides of the CK equation (4.6) by uk1(t) · · ·ukr (t) and integrating
with respect to u give (after integration by parts)

dv
(r)
n,k1···kr

dt
=

r
∑

l=1

N
∑

j=1

Δn
klj

v
(r)
n,k1···kl−1jkl+1···kr

+ ηaδn,1

r
∑

l=1

v
(r−1)
n,k1···kl−1kl+1···kr

δkl ,N

+
∑

m=0,1

Anmv
(r)
m,k1···kr

. (4.11)

Finally, taking the continuum limit a → 0 in equation (4.9) and setting

Vn(x, t) = E
[

u(x, t)1N(t)=n

]

, (4.12)

we obtain the first-order moment equations

∂V0

∂t
= D

∂2V0

∂x2
− αV0 + βV1, (4.13a)

∂V1

∂t
= D

∂2V1

∂x2
+ αV0 − βV1, (4.13b)

with

V0(0, t) = V1(0, t) = 0, ∂xV0(L, t) = 0, V1(L, t) = ρ1η > 0, (4.14)
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and

ρ0 = β

α + β
, ρ1 = α

α + β
. (4.15)

A similar procedure can be used to derive higher-order moment equations [18].
For example, the second-order moments

Cn(x, y, t) = E
[

u(x, t)u(y, t)1N(t)=n

]

(4.16)

satisfy the equations

∂C0

∂t
= D

∂2C0

∂x2
+ D0

∂2C0

∂y2
− αC0 + βC1, (4.17a)

∂C1

∂t
= D

∂2C1

∂x2
+ D1

∂2C1

∂y2
+ αC0 − βC1, (4.17b)

and couple to the first-order moments via the boundary conditions

C0(0, y, t) = C0(x,0, t) = C1(x,0, t) = C1(0, y, t) = 0 (4.18a)

and

∂xC0(L,y, t) = ∂yC0(x,L, t) = 0,

C1(L,y, t) = ηV1(y, t),

C1(x,L, t) = ηV1(x, t).

(4.18b)

One of the important points to highlight regarding the stochastic diffusion equation
(4.2a)–(4.2b) is that it describes a population of particles diffusing in the same ran-
dom environment. This means that although the particles are noninteracting, statisti-
cal correlations arise at the population level. The inequality follows from the obser-
vation that the second-order moment equations are nonseparabale, that is,

Cn(x, y, t) 	= Vn(x, t)Vn(y, t).

4.1.2 Analysis of First-Order Moments

The steady-state solution of equations (4.13a) and (4.13b) can be determined explic-
itly. First, note that

E
[

u(x, t)
]= V0(x, t) + V1(x, t). (4.19)

Since equations equations (4.13a) and (4.13b) have a globally attracting steady-state,
it follows that

lim
t→∞E

[

u(x, t)
]= V (x) ≡

∑

n=0,1

Vn(x), (4.20)

where Vn(x) ≡ limt→∞ Vn(x, t). Adding equations (4.13a) and (4.13b) and using the
boundary conditions in equation (4.14) give

d2V

dx2
= 0, V (0) = 0, V (L) = ρ1η + κ, (4.21)
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where κ = V0(L) has to be determined. Hence

V (x) = x

L
[ρ1η + κ].

Setting V1 = V − V0 in equation (4.13a) then shows that

D
d2V0

dx2
− (α + β)V0 = −β

L
x(ρ1η + κ) (4.22)

with V0(0) = 0, ∂xV0(L) = 0. It follows that

V0(x) = ae−ξx + beξx + ρ0

L
(ρ1η + κ)x

with ξ = √
(α + β)/D. The boundary conditions imply that

a = −b, 2ξa cosh(ξL) = ρ0

L
(ρ1η + κ),

which yields the solution

V0(x) = ρ0(ρ1η + κ)

[

− 1

ξL

sinh(ξx)

cosh(ξL)
+ x

L

]

. (4.23)

Finally, we obtain κ by setting x = L:

κ = ρ0(ρ1η + κ)
[

1 − (ξL)−1 tanh(ξL)
]

,

which can be rearranged to yield

κ = ρ1ρ0η
1 − (ξL)−1 tanh(ξL)

ρ1 + ρ0(ξL)−1 tanh(ξL)
,

and thus [11, 92]

V (x) = x

L

η

1 + (ρ0/ρ1)(ξL)−1 tanh(ξL)
. (4.24)

In the limit ξ → ∞ (fast switching),

V (x) = x

L
η.

4.2 Diffusive Flux Along a One-Dimensional Array of Electrically
Coupled Neurons

Let us now consider a simple one-dimensional (1D) model of molecules diffusing
along a line of M cells that are connected via gap junctions, see Fig. 10. For the mo-
ment, we ignore the effects of stochastic gating. Since gap junctions have relatively
high resistance to flow compared to the cytoplasm, we assume that each intercellular
membrane junction acts like an effective resistive pore with some permeability μ.
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Fig. 10 One-dimensional line of cells coupled by gap junctions. At steady-state there is a uniform flux J0
through each cell but a jump discontinuity ΔU = −J0/μ in the concentration across each gap junction,
where μ is the permeability of each junction. See text for details

Suppose that we label the cells by an integer k, k = 1, . . . ,M , and take the length of
each cell to be L. Let u(x, t) for x ∈ ([k − 1]L,kL) denote the particle concentration
within the interior of the kth cell, and assume that it evolves according to the diffusion
equation

∂u

∂t
= D

∂2u

∂x2
, x ∈ ([k − 1]L,kL

)

, t > 0. (4.25)

However, at each of the intercellular boundaries x = lj ≡ jL, j = 1, . . . ,M − 1, the
concentration is discontinuous due to the permeability of the gap junctions. Conser-
vation of diffusive flux across each boundary then implies that

−D
∂u(l−k , t)

∂x
= −D

∂u(l+k , t)

∂x

= μ
[

u
(

l−k , t
)− u

(

l+k , t
)]

, k = 1, . . . ,M − 1, (4.26)

where the superscripts + and − indicate that the function values are evaluated as lim-
its from the right and left, respectively. Finally, it is necessary to specify the exterior
boundary conditions at x = 0 and x = ML. We impose Dirichlet boundary conditions
with u(0, t) = η and u(ML, t) = 0.

In steady-state, there is a constant flux J0 = −DK0 through the system, and the
steady-state concentration takes the form

u(x) =

⎧

⎪⎨

⎪⎩

K0x + η, x ∈ [0,L),

K0(x − [k − 1]L) + Uk, x ∈ ([k − 1]L,kL), k = 2, . . . ,M − 1,

K0(x − ML), x ∈ ([M − 1]L,ML],
(4.27)

for the M − 1 unknowns K0,Uk = u((k − 1)L), k = 2, . . . ,M − 1. These are deter-
mined by imposing the M − 1 boundary conditions (4.26) in steady state:

J0 = μ[η + K0L − U2] = μ[K0L + U2 − U3]
= · · · = μ[K0L + UM−2 − UM−1], (4.28a)

J0 = μ[2K0L + UM−1]. (4.28b)



Page 34 of 71 P.C. Bressloff, J.N. Maclaurin

Rearranging equations (4.28a) gives

U2 = η − J0L

D
− J0

μ
, Uk = Uk−1 − J0L

D
− J0

μ
, k = 3, . . . ,M − 1, (4.29)

which can be iterated to give

UM−1 = η − (M − 2)J0

[
L

D
+ 1

μ

]

.

Since we also have

UM−1 = 2J0

[
L

D
+ 1

μ

]

− J0

μ
,

it follows that [81]

J0 = Dη

ML

[

1 + D(M − 1)

μLM

]−1

. (4.30)

Introducing the effective diffusion coefficient De according to

J0 = Deη

ML
, (4.31)

we see that, for large M ,

1

De

=
[

1

D
+ 1

μL

]

. (4.32)

4.3 Effective Permeability for Cells Coupled by Stochastically Gated Gap
Junctions

This deterministic model has recently been extended to incorporate the effects of
stochastically gated gap junctions [12]. The resulting model can be analyzed by ex-
tending the theory of diffusion in domains with randomly switching exterior bound-
aries [18] (see Sect. 4.1) to the case of switching interior boundaries. Solving the
resulting first-order moment equations of the stochastic concentration allows us to
calculate the mean steady-state concentration and flux, and thus extract the effective
single-gate permeability of the gap junctions.

We start by looking at a pair of stochastically-coupled cells; see Fig. 11. For the
sake of generality, we allow the two cells to have different lengths l and 2L − l with
0 < l ≤ L. The basic problem can be formulated as follows: We wish to solve the
diffusion equation in the open domain Ω = Ω1 ∪ Ω2 with Ω1 = (0, l) and Ω2 =
(l,2L), with the interior boundary between the two subdomains at x = l randomly
switching between an open and a closed state. Let N(t) denote the discrete state of
the gate at time t with N(t) = 0 if the gate is closed and N(t) = 1 if it is open.
Assume that transitions between the two states n = 0,1 are described by the two-
state Markov process (4.1). The random opening and closing of the gate means that
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Fig. 11 Pair of cells coupled by a stochastically gated gap junction

particles diffuse in a random environment according to the piecewise deterministic
equation

∂u

∂t
= D

∂2u

∂x2
, x ∈ Ω1 ∪ Ω2, t > 0, (4.33)

with u satisfying Dirichlet boundary conditions on the exterior boundaries of Ω ,

u(0, t) = η > 0, u(2L, t) = 0, (4.34)

and N(t)-dependent boundary conditions on the interior boundary at x = l:

∂xu
(

l−, t
)= 0 = ∂xu

(

l+, t
)

for N(t) = 0, (4.35)

and

u
(

l−, t
)= u

(

l+, t
)

, ∂xu
(

l−, t
)= ∂xu

(

l+, t
)

for N(t) = 1, (4.36)

where l± = limε→0+ l ± ε. That is, when the gate is open, there is continuity of the
concentration and the flux across x = l, whereas when the gate is closed, the right-
hand boundary of Ω1 and the left-hand boundary of Ω2 are reflecting. For simplicity,
we assume that the diffusion coefficient is the same in both compartments, so that the
piecewise nature of the solution is solely due to the switching gate. For illustration,
we take the exterior boundary conditions to be Dirichlet, but the analysis is easily
modified, for example, in the case of a Neumann boundary condition at one of the
ends.

4.3.1 First-Order Moment Equations and Effective Permeability (M = 2)

To determine the effective permeability of a stochastically gated gap junction, we
need to calculate the mean of the concentration u(x, t) defined by equation (4.19).
The corresponding first-order moment equations for Vn can be derived along similar
lines to the case of 1D diffusion in a domain with an exterior gate. We thus obtain
equations (4.13a) and (4.13b) for x ∈ Ω1 ∪Ω2 with exterior boundary conditions [12]

V0(0, t) = ρ0η, V1(0, t) = ρ1η, V0(2L, t) = V1(2L, t) = 0, (4.37)
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and interior boundary conditions

∂xV0
(

l−, t
)= 0 = ∂xV0

(

l+, t
)

,

V1
(

l−, t
)= V1

(

l+, t
)

,

∂xV1
(

l−, t
)= ∂xV1

(

l+, t
)

.

(4.38)

As in Sect. 4.1, we will analyze the steady-state solution. From the interior boundary
conditions (4.38) we set

∂xV1
(

l−
)= ∂xV1

(

l+
)= K1

with K1 to be determined later by imposing V1(l
−) = V1(l

+). Adding equations
(4.13a) and (4.13b) and imposing the boundary conditions then give

d2V

dx2
= 0, x ∈ [0, l), V (0) = η, ∂xV

(

l−
)= K1, (4.39)

and

d2V

dx2
= 0, x ∈ (l,2L], ∂xV

(

l+
)= K1, V (2L) = 0. (4.40)

This yields the piecewise linear solution

V (x) =
{

K1x + η, x ∈ [0, l),

K1(x − 2L), x ∈ (l,2L]. (4.41)

Since V1 = V − V0, we can rewrite equation (4.13a) as

D
d2V0

dx2
− (α + β)V0(x) = −βV (x) (4.42)

with V0(0) = ρ1η, V0(2L) = 0, and ∂xV0(l
−) = 0 = ∂xV0(l

+). Substituting for V (x)

using equation (4.41), we obtain a piecewise solution of the form

V1(x) = B sinh(ξx) + ρ0(K1x + η), x ∈ [0, l), (4.43a)

V1(x) = C sinh
([2L − x]ξ)+ ρ0K1(x − 2L), x ∈ (l,2L], (4.43b)

with ξ = √
(α + β)/D. We have imposed the exterior boundary conditions. The inte-

rior boundary conditions for V0 then determine the coefficients B , C in terms of K1

so that we find

V0(x) = −ρ0K1

ξ

sinh(ξx)

cosh(ξ l)
+ ρ0(K1x + η), x ∈ [0, l), (4.44a)

V0(x) = ρ0K1

ξ

sinh(ξ [2L − x])
cosh(ξ [2L − l]) + ρ0K1(x − 2L), x ∈ (l,2L]. (4.44b)
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Finally, we determine the unknown coefficient K1 by requiring that V1(x) is contin-
uous across x = l, that is,

K1l + η − V0
(

l−
)= K1(l − 2L) − V0

(

l+
)

,

which yields the result

ρ0K1

ξ

[

tanh
(

ξ [2L − l])+ tanh(ξ l)
]= −ρ1(η + 2K1L).

This can be rearranged to yield the following result for the mean flux through the
gate, J0 = −DK0:

J0 = Dη

2L

1

1 + (ρ0/ρ1)(2ξL)−1[tanh(ξ [2L − l]) + tanh(ξ l)] . (4.45)

Comparison with equation (4.30) for M = 2 and l = L implies that the stochastically
gated gap junction has the effective permeability μe with

1

μe

= 2ρ0

ρ1

tanh(ξL)

ξD
. (4.46)

It is useful to note some asymptotic properties of the solution given by equations
(4.41) and (4.45). First, in the fast switching limit ξ → ∞, we have J0 → ηD/2L,
μe → ∞, and equation (4.41) reduces to the continuous steady-state solution

V (x) = η(2L − x)

2L
, x ∈ [0,2L].

The mean flux through the gate is the same as the steady-state flux without a gate.
On the other hand, for finite switching rates, the mean flux J0 is reduced. In the limit
α → 0 (gate always closed), J0 → 0, so that V (x) = η for x ∈ [0, l) and V (x) = 0
for x ∈ (l,L]. Finally, in the limit l → 2L, we recover the result for 1D diffusion in a
single domain with a switching external boundary [11, 92] (see also equation (4.24)):

V (x) = η
2L − x

2L

1

1 + (ρ0/ρ1)(2ξL)−1 tanh(2ξL)
. (4.47)

4.3.2 Multicell Model (M > 2)

Let us return to the general case of a line of M identical cells of length L coupled by
M − 1 gap junctions at positions x = lk = kL, 1 ≤ k ≤ M − 1; see Fig. 10. (Interest-
ingly, such a model is formally equivalent to a signaling model analyzed in [94].) The
analysis is considerably more involved if the gap junctions physically switch because
there are significant statistical correlations arising from the fact that all the particles
move in the same random environment, which exists in 2M−1 different states if the
gates switch independently [12]. Therefore we will restrict the analysis to the simpler
problem in which individual particles independently switch conformational states: if
a particle is in state N(t) = 0, then it cannot pass through a gate, whereas if it is in
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state N(t) = 1, then it can. Hence, from the particle perspective, either all gates are
open, or all gates are closed. If Vn(x, t) is the concentration of particles in state n,
then we have the pair of PDEs given by equations (4.13a) and (4.13b) on the domain
x ∈ [0,ML], except now the exterior boundary conditions are

Vn(0) = ρnη, Vn(L) = 0, n = 0,1, (4.48)

and the interior boundary conditions at the j th gate are

∂xV0
(

l−j
) = 0 = ∂xV0

(

l+j
)

, (4.49a)

[

V1(x)
]x=l+j
x=l−j

= 0,
[

∂xV1(x)
]x=l+j
x=l−j

= 0. (4.49b)

These equations can be solved along similar lines to the two-cell case [12]. This
ultimately yields the following expression for the flux J0:

J0 = Dη

ML

1

1 + (ρ0/ρ1)(MξL)−1[2 tanh(ξL) + (2M − 4)
cosh(ξL)−1

sinh(ξL)
] . (4.50)

We deduce that the effective permeability μe(M) in the case of M cells with M − 1
independent, stochastically gated gap junctions is

1

μe(M)
= ρ0

[M − 1]ρ1ξD

[

2 tanh(ξL) + (2M − 4)
cosh(ξL) − 1

sinh(ξL)

]

. (4.51)

This reduces to equation (4.46) when M = 2. We conclude that the effective single-
gate permeability is M-dependent with

lim
M→∞

1

μe(M)
= 2ρ0

ρ1ξD

cosh(ξL) − 1

sinh(ξL)
.

4.4 Volume Neurotransmission

Although many neurons communicate via synapse-specific connections or gap junc-
tions, it is also possible for populations of neurons to make nonspecific connections
via volume neurotransmission [33, 58]; see Fig. 12. For example, neurons may send
projections to some distant nucleus or subnucleus, where they increase the concentra-
tion of neurotransmitter within the extracellular space surrounding the nucleus. The
resulting increase in concentration modulates the electrophysiological neural activity
in the distant region by binding of neurotransmitter to receptors on the target cells.
One important class of volume transmission involves axonal projections transmitting
neuromodulators such as dopamine and serotonin from brain stem nuclei to other
brain regions such as the striatum and cortex.

Recently, volume transmission has been formulated as another example of diffu-
sion in a randomly switching environment [91]. Here, the environment is the extra-
cellular volume surrounding the target cells, whereas each axonal terminal acts as a
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Fig. 12 Schematic diagram illustrating volume neurotransmission. Stimulation of an axon terminal con-
tacting a specific synapse on the dendrite of one neuron leads to the release of neurotransmitter within the
corresponding synaptic cleft. (A) If neurotransmitter uptake is weak, then it is possible for neurotransmit-
ters to diffuse in the extracellular space and subsequently bind to receptors at other synaptic locations of
the same neuron (B) or of another neuron (C)

source of neurotransmitter when the source neuron fires and is a sink for neurotrans-
mitter otherwise. The latter is due to the reuptake of neurotransmitter into the termi-
nals. Lawley et al. [91] consider diffusion on a finite interval [0,L] as in Sect. 4.1 but
with modified boundary conditions. One example assumes a reflecting boundary at
x = 0 and a switching boundary at x = L due to the presence of a source cell at the
right-hand side. The boundary condition thus switches between absorbing when the
neuron is not firing (quiescent state N(t) = 0) and constant flux when the neuron is
firing (firing state N(t) = 1). This yields the system of equations

∂u

∂t
= D

∂2u

∂x2
, x ∈ (0,L), t > 0, (4.52)

with u satisfying the boundary conditions

∂xu(0, t) = 0, u(L, t) = 0 for N(t) = 0,

∂xu(L, t) = c for N(t) = 1.
(4.53)

Analysis of the first-order moment equations for Vn(x) = E[u(x, t)1N(t)=n] estab-
lishes that in steady-state the total mean concentration V = V0(x) + V1(x) is inde-
pendent of spatial location x with [91]

V = c
μ

η
cothLη,

where

μ = α

β
, η =

√

α + β

D
.
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Here α is the switching rate from the quiescent state to the firing state, and β is the
switching rate of the reverse transition. Thus we observe the same mean concentration
V throughout the extracellular domain, even though some parts are further away from
the source than others. Consistent with intuition, V increases with μ, which reflects
the fact that the neuron on the boundary fires more often. Now suppose that both α

and β become large (fast switching) but their ratio μ is fixed. In this case, η becomes
large, and V → 0. This is due to the fact that any neurotransmitter that is released
is rapidly reabsorbed at the same terminal. (Note that if the left-hand boundary is
taken to be absorbing rather than reflecting, u(0, t) = 0, then the concentration is a
linear function of x; this could represent a glial cell on the left-hand boundary, which
absorbs neurotransmitter but does not fire.) The authors also consider the case where
there is a source neuron at each end, so that each boundary switches according to
an independent two-state Markov process. If we denote the two Markov processes by
the discrete variables M(t) ∈ {0,1} and N(t) ∈ {0,1}, respectively, then the boundary
conditions become [91]

u(0, t) = 0 for M(t) = 0, ∂xu(0, t) = −c0 for M(t) = 1, (4.54)

and

u(L, t) = 0 for N(t) = 0, ∂xu(L, t) = cL for N(t) = 1. (4.55)

Now we find that the mean concentration approaches a uniform concentration, pro-
vided that the two neurons are identical; otherwise, the concentration is a linear func-
tion of x.

5 Stochastic Vesicular Transport in Axons and Dendrites

The efficient delivery of mRNA, proteins, and other molecular products to their cor-
rect location within a cell (intracellular transport) is of fundamental importance to
normal cellular function and development [1, 23]. The challenges of intracellular
transport are particularly acute for neurons, which are amongst the largest and most
complex cells in biology, in particular, with regards to the efficient trafficking of
newly synthesized proteins from the cell body or soma to distant locations on the
axon and dendrites. In healthy cells, the regulation of mRNA and protein traffick-
ing within a neuron provides an important mechanism for modifying the strength
of synaptic connections between neurons [9, 34, 72, 139], and synaptic plasticity is
generally believed to be the cellular substrate of learning and memory. On the other
hand, various types of dysfunction in protein trafficking appear to be a major contrib-
utory factor to a number of neurodegenerative diseases associated with memory loss,
including Alzheimer’s [38].

Broadly speaking, there are two basic mechanisms for intracellular transport: pas-
sive diffusion within the cytosol or the surrounding plasma membrane of the cell, and
active motor-driven transport along polymerized filaments such as microtubules and
F-actin that comprise the cytoskeleton. Newly synthesized products from the nucleus
are mainly transported to other intracellular compartments or the cell membrane via
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a microtubular network that projects radially from organizing centres (centrosomes)
and forms parallel fiber bundles within axons and dendrites. The same network is
used to transport degraded cell products back to the nucleus. Moreover, various an-
imal viruses including HIV take advantage of microtubule-based transport in order
to reach the nucleus from the cell surface and release their genome through nuclear
pores [36]. Microtubules are polarized filaments with biophysically distinct plus and
minus ends. In general, a given molecular motor will move with a bias toward a spe-
cific end of the microtubule; for example, kinesin moves toward the (+) end and
dynein moves toward the (−) end. Microtubules are arranged throughout an axon
or dendrite with a distribution of polarities: in axons and distal dendrites, they are
aligned with the (−) ends pointing to the soma (plus-end-out), and in proximal den-
drites, they have mixed polarity.

Axons of neurons can extend up to 1 m in large organisms, but synthesis of many
of its components occurs in the cell body. Axonal transport is typically divided into
three main categories based upon the observed speed [29]: fast transport (1–9 μm/s)
of organelles and vesicles and slow transport (0.004–0.6 μm/s) of soluble proteins
and cytoskeletal elements. Slow transport is further divided into two groups; actin
and actin-bound proteins are transported in slow component A, whereas cytoskeletal
polymers such as microtubules and neurofilaments are transported in slow compo-
nent B. It had originally been assumed that the differences between fast and slow
components were due to differences in transport mechanisms, but direct experimen-
tal observations now indicate that they all involve fast motors but differ in how the
motors are regulated. Membranous organelles, which function primarily to deliver
membrane and protein components to sites along the axon and at the axon tip, move
rapidly in a unidirectional manner, pausing only briefly. In other words, they have a
high duty ratio—the proportion of time a cargo complex is actually moving. On the
other hand, cytoskeletal polymers and mitochondria move in an intermittent and bidi-
rectional manner, pausing more often and for longer time intervals, and sometimes
reversing direction. Such a transport has a low duty ratio.

Another example of a transport process in neurons that exhibits bidirectionality
is the trafficking of mRNA containing granules within dendrites. There is increasing
experimental evidence that local protein synthesis in the dendrites of neurons plays a
crucial role in mediating persistent changes in synaptic structure and function, which
are thought to be the cellular substrates of long-term memory [8, 82, 133]. This is con-
sistent with the discovery that various mRNA species and important components of
the translational machinery, such as ribosomes, are distributed in dendrites. Although
many of the details concerning mRNA transport and localization are still unclear, a
basic model is emerging. First, newly transcribed mRNA within the nucleus binds
to proteins that inhibit translation, thus allowing the mRNA to be sequestered away
from the protein-synthetic machinery within the cell body. The repressed mRNAs are
then packaged into ribonucleoprotein granules that are subsequently transported into
the dendrite via kinesin and dynein motors along microtubules. Finally, the mRNA
is localized to an activated synapse by actin-based myosin motor proteins, and lo-
cal translation is initiated following neutralization of the repressive mRNA-binding
protein. Details regarding the motor-driven transport of mRNA granules in dendrites
have been obtained by fluorescently labeling either the mRNA or mRNA-binding
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Fig. 13 Schematic diagram illustrating mRNA granule mobility in dendrites. Under basal conditions,
most granules are either stationary (or exhibit localized oscillations), whereas a minority exhibit bidirec-
tional transport. Depolarization by bathing in extracellular KCl solution activates transcription of mRNA
at the cell body and converts existing stationary granules into anterograde granules [125]

proteins and using live-cell imaging to track the movement of granules in cultured
neurons [44, 86, 125]. It has been found that, under basal conditions, the majority of
granules in dendrites are stationary or exhibit small oscillations around a few synap-
tic sites. However, other granules exhibit rapid retrograde (toward the cell body) or
anterograde (away from the cell body) motion consistent with bidirectional transport
along microtubules. These movements can be modified by neuronal activity as il-
lustrated in Fig. 13. In particular, there is an enhancement of dendritically localized
mRNA due to a combination of newly transcribed granules being transported into the
dendrite, and the conversion of stationary or oscillatory granules already present in
the dendrite into anterograde-moving granules.

5.1 Intracellular Transport as a Velocity Jump Process

In terms of the general theme of this review, intracellular transport models are relevant
because they consist of a special type of PDMP known as a velocity jump process
[57, 112, 113, 122, 123]. In the case of one-dimensional transport along a filament,
an individual particle moves according to the piecewise deterministic ODE

dx

dt
= vn(t), (5.1)

where the discrete random variable n(t) ∈ Γ indexes the current velocity state vn(t).
The simplest example is a particle switching between an anterograde state with ve-
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locity v1 > 0 and a retrograde state of velocity v0 < 0, so that we have

dx

dt
= ξ(t) ≡ [v1 − v0]n(t) + v0, n(t) ∈ {0,1}.

In the physics literature, ξ(t) is called a dichotomous Markov noise process (DMNP);
see the review [5]. The corresponding CK equation is

∂p0

∂t
= −v0

∂p0

∂x
− αp0 + βp1, (5.2a)

∂p1

∂t
= −v1

∂p1

∂x
+ αp0 − βp1, (5.2b)

where α, β are the corresponding switching rates, which can depend on the cur-
rent position x. In applications, we are typically interested in the marginal density
p(x, t) = p0(x, t) + p1(x, t), which can be used to calculate moments of p such as
the mean and variance,

〈

x(t)
〉=
∫

xp(x, t) dx, Var
[

x(t)
]=

∫

x2p(x, t) dx − 〈x(t)
〉2

.

In the unbiased case, v1 = v, v0 = −v, α = β , the marginal probability density
p(x, t) satisfies the telegrapher’s equation

[
∂2

∂t2
+ 2α

∂

∂t
− v2 ∂2

∂x2

]

p(x, t) = 0. (5.3)

(The individual densities p0,1 satisfy the same equations.) The telegrapher’s equation
can be solved explicitly for a variety of initial conditions. More generally, the short-
time behavior (for t � 1/α) is characterized by wave-like propagation with 〈x(t)〉2 ∼
(vt)2, whereas the long-time behavior (t � 1/α) is diffusive with 〈x2(t)〉 ∼ 2Dt ,
D = v2/2α. As an explicit example, the solution for the initial conditions p(x,0) =
δ(x) and ∂tp(x,0) = 0 is given by

p(x, t) = e−αt

2

[

δ(x − vt) + δ(x + vt)
]

+ αe−αt

2v

[

I0
(

α

√

t2 − x2/v2
)+ t

√

t2 − x2/v2
I0
(

α

√

t2 − x2/v2
)
]

× [Θ(x + vt) − Θ(x − vt)
]

,

where In is the modified Bessel function of nth order, and Θ is the Heaviside func-
tion. The first two terms clearly represent the ballistic propagation of the initial data
along characteristics x = ±vt , whereas the Bessel function terms asymptotically ap-
proach Gaussians in the large time limit. The steady-state equation for p(x) is simply
p′′(x) = 0, which from integrability means that p(x) = 0 pointwise. This is con-
sistent with the observation that the above explicit solution satisfies p(x, t) → 0 as
t → ∞.



Page 44 of 71 P.C. Bressloff, J.N. Maclaurin

One of the first examples of modeling intracellular transport as a velocity jump
process was within the context of the slow axonal transport of neurofilaments [6,
57, 123]. Neurofilaments are space-filling cytoskeletal polymers that increase the
cross-sectional area of axons, which then increases the propagation speed of action
potentials. Radioisotopic pulse labeling experiments provide information about the
transport of neurofilaments at the population level, which takes the form of a slowly
moving Gaussian-like wave that spreads out as it propagates distally. Blum and Reed
[6] considered the following system on the semiinfinite domain 0 ≤ x < ∞:

ε

[
∂p1

∂t
+ v

∂p1

∂x

]

=
n
∑

j=1

A1jpj , (5.4a)

ε
∂pi

∂t
=

n
∑

j=1

Aijpj , 1 < i ≤ N, (5.4b)

where p1 represents the concentration of moving neurofilament proteins, and pi ,
i > 1, represent the concentrations in n − 1 distinct stationary states. In contrast
to the two-state model of bidirectional transport, the system jumps between a sin-
gle anterograde state and a set of stationary states. Conservation of mass implies that
Ajj = −∑i 	=j Aij . The initial condition is pi(x,0) = 0 for all 1 ≤ i ≤ n, 0 < x < ∞.
Moreover p1(0, t) = 1 for t > 0. Reed et al. [123] carried out an asymptotic analysis
of equations (5.4a)–(5.4b) that is related to the QSS reduction method of Sect. 2.2.
Suppose that p1 is written in the form

p1(x, t) = Qε

(
x − ut√

ε
, t

)

,

where u is the effective speed, u = vpss
1 /
∑n

j=1 pss
j , and pss is the steady-state solu-

tion for which Apss = 0. They then showed that Qε(s, t) → Q0(s, t) as ε → 0, where
Q0 is a solution to the diffusion equation

∂Q0

∂t
= D

∂2Q0

∂x2
, Q0(s,0) = H(−s),

with H the Heaviside function. The diffusivity D can be calculated in terms of v

and the transition matrix A. Hence the propagating and spreading waves observed
in experiments could be interpreted as solutions to an effective advection–diffusion
equation. More recently, [56, 57] have developed a more rigorous analysis of spread-
ing waves. Note that the large time behavior is consistent with the solution of the
diffusion equation obtained in the fast switching limit.

In contrast to these population models, direct observations of neurofilaments in
axons of cultured neurons using fluorescence microscopy has demonstrated that in-
dividual neurofilaments are actually transported by fast motors but in an intermit-
tent fashion [142]. Hence, it has been proposed that the slow rate of movement of a
population is an average of rapid bidirectional movements interrupted by prolonged
pauses, the so-called stop-and-go hypothesis [28, 77, 93]. Computational simulations
of an associated system of PDEs shows how fast intermittent transport can account
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Fig. 14 Transition diagram of
“stop-and-go” model for the
slow axonal transport of
neurofilaments. See text for
definition of different states

for the slowly spreading wave seen at the population level. One version of the model
assumes that the neurofilaments can be in one of six states [28, 93]: anterograde mov-
ing on track (state a), anterograde pausing on track (a0 state), anterograde pausing off
track (state ap), retrograde pausing on track (state r0), retrograde pausing off track
(state rp), and retrograde moving on track (state r). The state transition diagram is
shown in Fig. 14.

5.2 Tug-of-War Model of Bidirectional Motor Transport

The observation that many types of motor-driven cargo move bidirectionally along
microtubules suggests that cargo is transported by multiple kinesin and dynein mo-
tors. In proximal dendrites, it is also possible that one or more identical motors move a
cargo bidirectionally by switching between microtubules with different polarities. In
either case, it is well established that multiple molecular motors often work together
as a motor-complex to pull a single cargo [144]. An open question concerns how the
set of molecular motors pulling a vesicular cargo are coordinated. One possibility is
that the motors compete against each other in a tug-of-war where an individual motor
interacts with other motors through the force it exerts on the cargo. If the cargo places
a force on a motor in the opposite direction it prefers to move, then it will be more
likely to unbind from the microtubule. A recent biophysical model has shown that a
tug-of-war can explain the coordinated behavior observed in certain animal models
[101, 102].

Suppose that a certain vesicular cargo is transported along a one-dimensional track
via N+ right-moving (anterograde) motors and N− left-moving (retrograde motors).
At a given time t , the internal state of the cargo-motor complex is fully characterized
by the numbers n+ and n− of anterograde and retrograde motors that are bound to a
microtubule and thus actively pulling on the cargo. Assume that over the time-scales
of interest all motors are permanently bound to the cargo, so that 0 ≤ n± ≤ N±. The
tug-of-war model of Muller et al. [101, 102] assumes that the motors act indepen-
dently, other than exerting a load on motors with the opposite directional preference.
(However, some experimental work suggests that this is an oversimplification, that is,
there is some direct coupling between motors [42]). Thus the properties of the mo-
tor complex can be determined from the corresponding properties of the individual
motors together with a specification of the effective load on each motor. There are
two distinct mechanisms whereby such bidirectional transport could be implemented
[102]. First, the track could consist of a single polarized microtubule filament (or a
chain of such filaments) on which up to N+ kinesin motors and N− dynein motors
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Fig. 15 Schematic diagram of
an asymmetric tug-of-war
model. Two kinesin and two
dynein motors transport a cargo
in opposite directions along a
single polarized microtubule
track. Transitions between two
possible motor states are shown

can attach; see Fig. 15. Since individual kinesin and dynein motors have different bio-
physical properties, with the former tending to exert more force on a load, it follows
that even when N+ = N−, the motion will be biased in the anterograde direction.
Hence, this version is referred to as an asymmetric tug-of-war model. Alternatively,
the track could consist of two parallel microtubule filaments of opposite polarity such
that N+ kinesin motors can attach to one filament and N− to the other. In the latter
case, if N+ = N−, then the resulting bidirectional transport is unbiased resulting in a
symmetric tug-of-war model.

When bound to a microtubule, the velocity of a single molecular motor decreases
approximately linearly with force applied against the movement of the motor [141].
Thus, each kinesin is assumed to satisfy the linear force–velocity relation

v(F ) =
{

vf (1 − F/Fs) for F ≤ Fs,

vb(1 − F/Fs) for F ≥ Fs,
(5.5)

where F is the applied force in the retrograde direction, Fs is the stall force satisfying
v(Fs) = 0, vf is the forward motor velocity in the absence of an applied force in the
preferred direction of the particular motor, and vb is the backward motor velocity
when the applied force exceeds the stall force. Dynein motors will also be taken to
satisfy a linear force-velocity relation:

v̂(F ) =
{

v̂f (1 − F/F̂s) for F ≤ F̂s,

v̂b(1 − F/F̂s) for F ≥ F̂s,
(5.6)

where now F is the force in the anterograde direction. Since the parameters associ-
ated with kinesin and dynein motors are different, we distinguish the latter by taking
Fs → F̂s etc. The original tug-of-war model assumes that the binding rate of kinesin
is independent of the applied force, whereas the unbinding rate is taken to be an
exponential function of the applied force:

π(F) = π0, γ (F ) = γ0eF/Fd , (5.7)

where Fd is the experimentally measured force scale on which unbinding occurs.
The force dependence of the unbinding rate is based on measurements of the walking
distance of a single kinesin motor as a function of load [129], in agreement with
Kramer’s rate theory [70]. Similarly, for dynein, we take

π̂ (F ) = π̂0, γ̂ (F ) = γ̂0eF/F̂d . (5.8)
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Let Fc denote the net load on the set of anterograde motors. Suppose that the
molecular motors are not directly coupled to each other, so that they act independently
and share the load; however, see [42]. It follows that a single anterograde motor feels
the force Fc/n+. Equation (5.7) implies that the binding and unbinding rates for n+
kinesin motors take the form

γ+(n+,Fc) = n+γ (Fc/n+), π+(n+) = (N+ − n+)π0. (5.9)

Similarly, each dynein motor feels the opposing force −Fc/n−, so that the binding
and unbinding rates for n− dynein motors take the form

γ−(n−,Fc) = n−γ̂ (Fc/n−), π−(n−) = (N− − n−)π̂0. (5.10)

The cargo force Fc is determined by the condition that all the motors move with
the same cargo velocity vc. Suppose that the net velocity is in the anterograde di-
rection, which implies Fc/(n−F̂s) > 1 > Fc/(n+Fs). It follows from equations (5.5)
and (5.6) that

vc = vf

(

1 − Fc/(n+Fs)
)= −v̂b

(

1 − Fc/(n−F̂s)
)

. (5.11)

This generates a unique solution for the load Fc and cargo velocity vc:

Fc(n+, n−) = (Fn+Fs + (1 − F )n−F̂s

)

, (5.12)

where

F = n−F̂svf

n−F̂svf + n+Fsv̂b

, (5.13)

and

vc(n+, n−) = n+Fs − n−F̂s

n+Fs/vf + + n−F̂s /̂vb

. (5.14)

The corresponding expressions when the backward motors are stronger, n+Fs+ <

n−F̂s , are found by interchanging (vf , v̂b) with (̂vf , vb).
The original study of [101, 102] considered the stochastic dynamics associated

with transitions between different internal states (n+, n−) of the motor complex,
without specifying the spatial position of the complex along a 1D track. This de-
fines a Markov process with a corresponding master equation for the time evolution
of the probability distribution P(n+, n−, t). They determined the steady-state prob-
ability distribution of internal states and found that the motor complex exhibited at
least three different modes of behavior: (i) the motor complex spends most of its
time in states with approximately zero velocity; (ii) the motor complex exhibits fast
backward and forward movement interrupted by stationary pauses, which is consis-
tent with experimental studies of bidirectional transport; and (iii) the motor complex
alternates between fast backward and forward movements. The transitions between
these modes of behavior depend on motor strength, which primarily depends upon
the stall force. The tug-of-war model can also be formulated as a velocity jump pro-
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cess [112, 113]. This version of the tug-of-war model simultaneously keeps track of
the internal state of the motor complex and its location along a 1D track. That is, the
position along the track evolves according to piecewise deterministic ODE

dx

dt
= vc

(

n+(t), n−(t)
)

, (5.15)

in between changes in the number of bound kinesin and dynein motors. The various
state transitions are

(n+ + 1, n−)
π+(n++1)

�
γ+(n+)

(n+, n−), (n+ − 1, n−)
γ+(n+−1)

�
π+(n+)

(n+, n−),

(n+, n− + 1)
π−(n−+1)

�
γ−(n−)

(n+, n−), (n+, n− − 1)
γ−(n−−1)

�
π−(n−)

(n+, n−).

As in previous examples, the corresponding CK equation can be reduced to an effec-
tive advection–diffusion equation in the limit that the rates of binding and unbinding
of molecular motors are sufficiently fast [112, 113].

One of the useful features of the tug-of-war model is that it allows various bio-
physical processes to be incorporated into the model. For example, a convenient
experimental method for changing the stalling force (and hence the mode of mo-
tor behavior) is to vary the level of ATP available to the motor complex. At low
[ATP] the motor has little fuel and is weaker, resulting in mode (i) behavior; then, as
[ATP] increases and more fuel is available, mode (ii) behavior is seen until the stall
force saturates at high values of [ATP] where mode (iii) behavior takes over. Thus,
[ATP] provides a single control parameter that tunes the level of intermittent behavior
exhibited by a motor complex [112]. Another potentially important signaling mech-
anism involves microtubule associated proteins (MAPs). These molecules bind to
microtubules and effectively modify the free-energy landscape of motor-microtubule
interactions [134]. For example, tau is a MAP found in the axon of neurons and is
known to be a key player in Alzheimer’s disease [88]. Another important MAP, called
MAP2, is similar in structure and function to tau, but is present in dendrites; MAP2
has been shown to affect dendritic cargo transport [95]. Experiments have shown that
the presence of tau or MAP2 on the microtubule can significantly alter the dynamics
of kinesin; specifically, by reducing the rate at which kinesin binds to the micro-
tubule [140]. This could be implemented by taking the binding rate γ0 of kinesin
to decrease within the domain of enhanced MAP concentration. This means that in
the fast switching limit, we obtain the deterministic equation (2.8) with F(x) corre-
sponding to an x-dependent mean velocity. Suppose, for example, that F(x) = v̄ > 0
for x /∈ [X − l,X + l] and F(x) a unimodal function for x ∈ [X − l,X + l] with a
negative minimum at x = X. Here we are taking the region of enhanced τ to be an
interval of length 2l centered about x = X. Writing F(x) = −Ψ ′(x − X), the cor-
responding deterministic potential has the form shown in Fig. 16. Since the mean
velocity switches sign within the domain [X − l,X + l], it follows that there exists
one stable fixed point x0 and an unstable fixed point x∗.
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Fig. 16 Diagram showing (a) the effective potential well created by a region of tau coating an MT, and
(b) a representative trajectory showing random oscillations within the well. (Adapted from [113])

One interesting effect of a local increase in MAPs is that it can generate stochas-
tic oscillations in the motion of the motor-complex [113]. As a kinesin driven cargo
encounters the MAP-coated trapping region, the motors unbind at their usual rate
and can’t rebind. Once the dynein motors are strong enough to pull the remaining
kinesin motors off the microtubule, the motor-complex quickly transitions to (−) end
directed transport. After the dynein-driven cargo leaves the MAP-coated region, ki-
nesin motors can then reestablish (+) end directed transport until the motor-complex
returns to the MAP-coated region. This process repeats until the motor-complex is
able to move forward past the MAP-coated region. Interestingly, particle tracking
experiments have observed oscillatory behavior during mRNA transport in dendrites
[44, 125]. In these experiments, motor-driven mRNA granules move rapidly until
encountering a fixed location along the dendrite where they slightly overshoot then
stop, move backward, and begin to randomly oscillate back and forth. After a period
of time, lasting on the order of minutes, the motor-driven mRNA stops oscillating and
resumes fast ballistic motion. Calculating the mean time to escape, the target can be
formulated as an FPT problem, in which the particle starts at x = x0 and has to make
a rare transition to the unstable fixed point at x = x∗. As in the analogous problem
of stochastic action potential generation (Sect. 3), the QSS diffusion approximation
breaks down for small ε, and we have to use the asymptotic methods of Sect. 2.3. The
details can be found elsewhere [115].

Interestingly, there is recent evidence that the selective transport of cargo into the
axon depends on the localized restriction of MAP2 to the proximal axon [67]. It is
known that in both mammalian and Drosophila axons, secretory vesicles are traf-
ficked by the cooperative action of two types of kinesin motors, KIF5 and KIF1 mo-
tors. Experimental studies of their motility indicate that MAP2 directly inhibits KIF5
motor activity and that axonal cargo entry and distribution depend on the balanced
activities between KIF5 and KIF1 bound to the same cargo. That is, cargoes bound
to the dominant motor KIF5 are unable to enter the axon, whereas those bound to
motors that are not influenced by MAP2 are able to quickly enter the axon and move
to the distal terminals. Moreover, cargoes bound to both KIF1 and KIF5 will enter
the axon, but their axonal distribution will be affected by the reactivation of KIF5
past the proximal axon as the inhibition by MAP2 wears off, which slows down the
transport; see Fig. 17.
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Fig. 17 Schematic illustration of how MAP2 regulation of kinesin motor activities leads to cargo sorting
and trafficking in axons. (Redrawn from [68])

5.3 Synaptic Democracy

A number of recent experimental studies of intracellular transport in axons of C. ele-
gans and Drosophila have shown that (i) motor-driven vesicular cargo exhibits “stop
and go” behavior, in which periods of ballistic anterograde or retrograde transport
are interspersed by long pauses at presynaptic sites, and (ii) the capture of vesicles
by synapses during the pauses is reversible in the sense that the aggregation of vesi-
cles can be inhibited by signaling molecules resulting in dissociation from the target
[96, 148]. It has thus been hypothesized that the combination of inefficient capture at
presynaptic sites and the back-and-forth motion of motor-cargo complexes between
proximal and distal ends of the axon facilitates a more uniform distribution of re-
sources, that is, greater “synaptic democracy” [96].

The idea of synaptic democracy has previously arisen within the context of equal-
izing synaptic efficacies, that is, ensuring that synapses have the same potential for
affecting the postsynaptic response regardless of their locations along the dendritic
tree [71, 126]. An analogous issue arises within the context intracellular transport,
since vesicles are injected from the soma (anterograde transport) so that one might
expect synapses proximal to the soma to be preferentially supplied with resources.
In principle, this could be resolved by routing cargo to specific synaptic targets, but
there is no known form of molecular address system that could support such a mecha-
nism, particularly in light of the dynamically changing distribution of synapses. From
a mathematical perspective, the issue of synaptic democracy reflects a fundamental
property shared by the one-dimensional advection–diffusion equation used to model
active transport and the cable equation used to model ionic current flow, namely, they
generate an exponentially decaying steady-state solution in response to a localized
source of active particles or current.

The hypothesized mechanism of synaptic democracy that combines bidirectional
transport with reversible delivery of cargo to synaptic targets has recently been inves-
tigated in a series of modeling studies [13, 16, 20, 78]. Consider a simple three-state
transport model of a single motor-complex moving on a semiinfinite 1D track as
shown in Fig. 18. The motor complex is taken to be in one of three motile states la-
beled by n = 0,±: stationary or slowly diffusing with diffusivity D0 (n = 0), moving
to the right (anterograde) with speed v+ (n = +), or moving to the left (retrograde)
with speed −v− (n = −); transitions between the three states are governed by a dis-
crete Markov process. In addition, the motor complex can carry a single vesicle,
which is reversibly exchanged with membrane-bound synaptic targets when in the
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Fig. 18 Three-state model of the bidirectional transport of a single motor-cargo complex. The particle
switches between an anterograde state (n = +) of speed v+ , a stationary or slowly diffusing state (n = 0),
and a retrograde state (n = −) of speed v− . The motor-complex can only deliver a vesicle to a presynaptic
target in the state n = 0

state n = 0. Let pn(x, t) denote the probability density that at time t the complex is
at position x, x ∈ (0,∞), is in motile state j , and a vesicle is not bound to the com-
plex. Similarly, let p̂n(x, t) be the corresponding probability density when a vesicle is
bound. We allow for the possibility that the velocities and diffusivity are different for
the bound state by taking v± → v̂± and D0 → D̂0. The evolution of the probability
density is described by the following system of partial differential equations:

∂p±
∂t

= ∓v±
∂p±
∂x

− βp± + αp0, (5.16a)

∂p̂±
∂t

= ∓v̂±
∂p̂±
∂x

− βp̂± + αp̂0, (5.16b)

∂p0

∂t
= D0

∂2p0

∂x2
+ βp+ + βp− − 2αp0 + k+p̂0 − k−cp0, (5.16c)

∂p̂0

∂t
= D̂0

∂2p̂0

∂x2
+ βp̂+ + βp̂− − 2αp̂0 − k+p̂0 + k−cp0. (5.16d)

Here α, β are the transition rates between the slowly diffusing and ballistic states.
We also assume that there is a uniform distribution c of presynaptic targets along the
axon, which can exchange vesicles with the motor-complex at the rates k±.

Now suppose that the transition rates α, β are fast compared to the exchange rates
k± and the effective displacement rates of the complex on a fundamental microscopic
length-scale such as the size of a synaptic target (l ∼ 1 μm). Following Sect. 2.2,
we can then use a QSS diffusion approximation to derive an advection–diffusion
equation for the total probability densities

p(x, t) =
∑

n=0,±
pn(x, t), p̂(x, t) =

∑

n=0,±
p̂n(x, t). (5.17)
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That is, we obtain the equations

∂p

∂t
= −v

∂p

∂x
+ D

∂2p

∂x2
+ k+p̂ − k−cp (5.18a)

and

∂p̂

∂t
= −v̂

∂p̂

∂x
+ D̂

∂2p̂

∂x2
− k+p̂ + k−cp, (5.18b)

where

v = (v+ − v−)ρ+, v̂ = (̂v+ − v̂−)ρ+,

D = D0ρ0 + α

β(2α + β)

(

(v+ − v)2 + (v− + v)2),

and

D̂ = D̂0ρ0 + α

β(2α + β)

(

(̂v+ − v̂)2 + (̂v− + v̂)2).

Here

ρ0 = β

2α + β
, ρ± = α

2α + β
(5.19)

are the stationary probabilities of the three-state Markov process describing transi-
tions between the motile states n = 0 and n = ±, respectively. We have also absorbed
a factor ρ0 into k±.

To investigate how the above form of intracellular transport can lead to synaptic
democracy, we consider a population of identical, noninteracting motor complexes.
Let u(x, t) and û(x, t) denote the density of motor-complexes without and with an
attached vesicle, respectively. From the reduced equations (5.18a)–(5.18b) we have

∂u

∂t
= −v

∂u

∂x
+ D

∂2u

∂x2
− γ u + k+û − k−cu (5.20a)

and

∂û

∂t
= −v̂

∂û

∂x
+ D̂

∂2û

∂x2
− γ̂ u − k+û + k−cu (5.20b)

for x > 0. In the population model, we have included the degradation terms γ u and
γ û, which account for the fact that motor-complexes may dysfunction and no longer
exchange cargo with synaptic targets. Equations (5.20a)–(5.20b) are supplemented
by the following boundary conditions at x = 0:

J
(

u(0, t)
)= J0, J

(

û(0, t)
)= Ĵ0,

where J (u) = −D∂xu + vu etc. That is, motor-complexes without and with cargo
are injected at the somatic end x = 0 at constant rates J0, and Ĵ0, respectively. It is
important to emphasize that the injected motor complexes are not necessarily newly
synthesized from the cell body. For it has been found experimentally that motor-
complexes recycle between the distal and somatic ends of the soma [96, 148]. In the
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case of a finite axon, we could model recycling by imposing an absorbing boundary
condition at the distal end and reinjecting the distal flux into the somatic end. Since
most of these complexes would be without a vesicle, this would mainly contribute
to J0. Moreover, if the axon is much longer than the range of vesicular delivery nec-
essary to supply en passant synapses, then the effects of the absorbing boundary can
be ignored, and we can treat the axon as semiinfinite. Finally, at the population level,
the concentration of vesicles within the presynaptic targets is no longer constant, that
is, c = c(x, t) with

∂c

∂t
= k+u(x, t) − k−c(x, t )̂u(x, t) − γcc(x, t). (5.21)

We have also allowed for the possibility that synaptic vesicles degrade at a rate γc .
Let us begin by considering the case k− > 0 (reversible delivery) and γc = 0

(no vesicular degeneration); the distribution c of presynaptic vesicles will remain
bounded, provided that J0 > 0. Equation (5.21) implies that, at steady state,

c(x) = k+û(x)

k−u(x)
. (5.22)

Then substituting equation (5.22) into the steady-state versions of equations (5.20a)–
(5.20b) gives

u(x) = J0e−x/ξ

D/ξ + v
, ξ = 2D

−v +√v2 + 4Dγ
, (5.23a)

and

û(x) = Ĵ0e−x/̂ξ

D̂/̂ξ + v̂
, ξ̂ = 2D̂

−v̂ +
√

v̂2 + 4D̂γ
. (5.23b)

Combining with equation (5.22) then yields the following result for the steady-state
density of synaptic vesicles:

c(x) = k+
k−

Ĵ0

J0

D/ξ + v

D̂/̂ξ + v̂
e−Γ x, (5.24)

where

Γ = ξ̂−1 − ξ−1.

In particular, if the transport properties of the motor-complex are independent of
whether or not a vesicle is bound (v = v̂, D = D̂), then ξ = ξ̂ , and we have a uniform
vesicle distribution

c(x) = c̄ := k+
k−

Ĵ0

J0
.

To further explore the ability of this model to produce a democratic cargo distri-
bution, equation (5.20a)–(5.20b) can be solved numerically for a range of parameter
values. Following [20], suppose that γc is small (relative to k±) but nonzero and
consider how the normalized distribution c(x)/c(0) varies with φ ≡ k−/γc, which
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Fig. 19 Numerical solutions for
steady-state vesicle
concentration as a function of
axonal distance for different
values of φ = k−/γc and
J0 = 1.5. (Adapted from [20].)
For comparison, the
corresponding concentration
profile when J0 = 0 (which is
insensitive to φ) is shown by the
thick line (red line in color
online). We have also set
γ = 10−2 s−1, Ĵ = 1.5,
k+ = 0.5 s−1, k− = 1.0 μms−1,
v = v̂ = 1 μms−1 and
D = D̂ = 0.1 μms−2

determines the proportion of vesicles that are recycled into the system after leaving
the targets. Figure 19 displays the normalized concentration profiles for a variety of
k−/γc values with either J0 = Ĵ0 or J0 = 0. (The domain size is taken to be suffi-
ciently large to avoid boundary effects.) It can be seen that when J0 > 0, the length
scale over which nonexponential decay occurs is an increasing function of k−/γc,
whereas when J0 = 0, the model fails to distribute cargo across a substantial region
of the axon. Hence an additional component of a delivery mechanism that includes
recapture is a source of motors which are able to receive vesicles. It should be em-
phasized that this does not require additional motors to be synthesized in the soma;
instead, motors may return to the beginning of the axon after delivering their cargo.
From the perspective of synaptic democracy it seems desirable to maximize k−; how-
ever, increasing the recapture rate decreases the efficiency of the delivery mechanism
and can result in a overall loss of vesicles due to motor degradation.

This mechanism for synaptic democracy appears to be quite robust. For example,
it can be extended to the case where each motor carries a vesicular aggregate rather
than a single vesicle, assuming that only one vesicle can be exchanged with a target
at any one time [13]. The effects of reversible vesicular delivery also persist when
exclusion effects between between motor-cargo complexes are taken into account
[16] and when higher-dimensional cell geometries are considered [78].

6 Phase Reduction of Stochastic Hybrid Oscillators

In Sects. 2.3 and 3 we assumed that, in the adiabatic limit ε → 0, the resulting deter-
ministic dynamical system exhibited bistability, and we explored how random switch-
ing of the associated PDMP for small ε can lead to noise-induced transitions between
metastable states. In this section, we assume that the deterministic system supports
a stable limit cycle so that the corresponding PDMP acts as a stochastic limit cycle
oscillator, at least in the weak noise regime. There is an enormous literature on the
analysis of stochastic limit cycle oscillators for SDEs (for recent surveys, see the re-
views [3, 47, 105]). On the other hand, as far as we are aware, there has been very
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Fig. 20 Different choices of
amplitude-phase decomposition.
Two possibilities are orthogonal
projection with phase θ ′(t) and
isochronal projection with phase
θ(t). In the latter case, the
response to perturbations
depends on the phase response
curve R(θ), which is normal to
the isochron at the point of
intersection with the limit cycle

little numerical or analytical work on limit cycle oscillations in PDMPs. A few no-
table exceptions are [21, 27, 52, 89, 137]. One possible approach would be to carry
out a QSS diffusion approximation of the PDMP along the lines of Sect. 2.2 and then
use stochastic phase reduction methods developed for SDEs. In this section, we re-
view an alternative, variational method that deals directly with the PDMP [21], thus
avoiding additional errors arising from the diffusion approximation. Another major
advantage of the variational method is that it allows us to obtain rigorous exponen-
tial bounds on the expected time to escape from a neighborhood of the limit cycle
[21, 22].

Let us first briefly consider SDEs. Suppose that a deterministic smooth dynami-
cal system ẋ = F(x), x ∈ R

d , supports a limit cycle x(t) = Φ(θ(t)) of period Δ0,
where θ(t) is a uniformly rotating phase, θ̇ = ω0, and ω0 = 2π/Δ0. The phase
is neutrally stable with respect to perturbations along the limit cycle; this reflects
invariance of an autonomous dynamical system with respect to time shifts. Now
suppose that the dynamical system is perturbed by weak Gaussian noise such that
dX = F(X)dt + √

2εG(X)dW(t), where W(t) is a d-dimensional vector of inde-
pendent Wiener processes. If the noise amplitude ε is sufficiently small relative to
the rate of attraction to the limit cycle, then deviations transverse to the limit cycle
are also small (up to some exponentially large stopping time). This suggests that the
definition of a phase variable persists in the stochastic setting, and we can derive a
stochastic phase equation by decomposing the solution to the SDE according to

X(t) = Φ
(

β(t)
)+ √

εv(t) (6.1)

with β(t) and v(t) corresponding to the phase and amplitude components, respec-
tively. However, there is not a unique way to define the phase β , which reflects the
fact that there are different ways of projecting the exact solution onto the limit cycle
[7, 21, 65, 87, 147]; see Fig. 20. One well-known approach is to use the method of
isochrons [47, 62, 106, 135, 136, 149]. Recently, a variational method for carrying
out the amplitude-phase decomposition for SDEs has been developed, which yields
exact SDEs for the amplitude and phase [22]. Within the variational framework, dif-
ferent choices of phase correspond to different choices of the inner product space Rd .
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By taking an appropriately weighted Euclidean norm the minimization scheme de-
termined the phase by projecting the full solution on to the limit cycle using Floquet
vectors. Hence, in a neighborhood of the limit cycle the phase variable coincided with
the isochronal phase [7]. This had the advantage that the amplitude and phase decou-
pled to leading order. In addition, the exact amplitude and phase equations could be
used to derive strong exponential bounds on the growth of transverse fluctuations. It
turns out that an analogous variational method can be applied to PDMPs [21], which
will be outlined in the remainder of this section.

Suppose that the deterministic dynamical system (2.8), obtained in the adiabatic
limit ε → 0, supports a stable periodic solution x = Φ(ω0t) with Φ(ω0t) = Φ(ω0[t +
Δ0]), where ω0 = 2π/Δ0 is the natural frequency of the oscillator. In the state space
of the continuous variable, the solution is an isolated attractive trajectory called a
limit cycle. The dynamics on the limit cycle can be described by a uniformly rotating
phase such that

dθ

dt
= ω0, (6.2)

and x = Φ(θ(t)) with a 2π -periodic function Φ . Note that the phase is neutrally
stable with respect to perturbations along the limit cycle—this reflects invariance of
an autonomous dynamical system with respect to time shifts. By definition, Φ must
satisfy the equation

ω0
dΦ

dθ
= F

(

Φ(θ)
)

. (6.3)

Differentiating both sides with respect to θ gives

d

dθ

(
dΦ

dθ

)

= ω−1
0 J (θ) · dΦ

dθ
, (6.4)

where J is the 2π -periodic Jacobian matrix

J jk(θ) ≡ ∂F j

∂xk

∣
∣
∣
∣
x=Φ(θ)

. (6.5)

One concrete example of a PDMP that supports a limit cycle oscillation in the fast
switching limit is a version of the stochastic Morris–Lecar model that has been ap-
plied to sodium-based subthreshold oscillations [27, 145]; the corresponding deter-
ministic model is given by equations (3.5). Numerical solutions of the latter are shown
in Fig. 21.

The isochronal phase map has been the most popular means of decomposing the
phase of stochastic oscillators evolving according to an SDE (and also studying their
synchronization) [3, 47, 105]. Let U be the neighborhood of the limit cycle consist-
ing of all points that eventually converge to the limit cycle under the deterministic
dynamics of (2.8). The isochronal phase map Θ : U → S

1 is defined to be the phase
that a point converges to. That is, Θ(y) is the unique α such that if x(0) = y and

dx

dt
= F

(

x(t)
)

, (6.6)
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Fig. 21 ML model for subthreshold oscillations. (Adapted from [27].) (a) Bifurcation diagram of the
deterministic ML model. As Iapp is increased, the system undergoes a supercritical Hopf bifurcation (H)
at I∗

app = 183 pA, which leads to the generation of stable oscillations. The maximum and minimum values
of oscillations are plotted as black (solid) curves. Oscillations disappear via another supercritical Hopf
bifurcation. (b), (c) Phase plane diagrams of the deterministic model for (b) Iapp = 170 pA (below the
Hopf bifurcation point) and (c) Iapp = 190 pA (above the Hopf bifurcation point). The red (dashed) curve
is the w-nullcline and the solid (gray) curve represents the v-nullcline. (d), (e) Corresponding voltage time
courses. In contrast to Sect. 3.1, we now take αK = βKe2[v−vK,1]/vK,2 . Sodium parameters: gNa = 4.4 mS,
VNa = 55 mV, βNa = 100 ms−1, vNa,1 = −1.2 mV, vNa,2 = 18 mV. Leak parameters: gL = 2.2 mS,
VL = −60 mV. Potassium parameters: gK = 8 mS, VK = −84 mV, βK = 0.35 ms−1, vK,1 = 2 mV,
vK,2 = 30 mV. Also Cm = 1 mF

then limt→∞ ‖x(t)−Φ(α+ tω0)‖ = 0. Hence, in a neighborhood of the deterministic
limit cycle, we have

ω0 = dΘ(x)

dt
= ∇Θ(x) · dx

dt
= ∇Θ(x) · F(x).
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Now let α = Θ(x) for x(t) evolving according to the PDMP (2.1), assuming for the
moment that x(t) ∈ U . From the chain rule of calculus it follows that the isochronal
phase evolves according to the piecewise deterministic dynamics

dα

dt
= 〈∇Θ(x),Fn(x)

〉

, (6.7)

with switching events occurring at the same times {tk} as x(t). The gradient of the
isochronal phase,

R(θ) = ∇Θ(x)|x=Φ(θ), (6.8)

is known as the infinitesimal phase resetting curve. It can be shown that R(θ) satisfies
the adjoint equation [48]

ω0
dR(θ)

dθ
= −J (θ)� · R(θ) (6.9)

under the normalization condition

R(θ) · dΦ(θ)

dθ
= 1. (6.10)

As it stands, equation (6.7) is not a closed equation for the isochronal phase, since
the right-hand side depends on the full set of variables x(t).

6.1 Floquet Decomposition

Suppose that we fix a particular realization σT of the Markov chain up to some time
T , σT = {N(t),0 ≤ t ≤ T }. Suppose that there is a finite sequence of jump times
{t1, . . . , tr} within the time interval (0, T ) and let nj be the corresponding discrete
state in the interval (tj , tj+1) with t0 = 0. Introduce the set

T = [0, T ] ∖
r
⋃

j=1

{tj }.

We wish to decompose the piecewise deterministic solution xt to the PDMP (2.1) for
t ∈ T into two components as in equation (6.1):

xt = Φ(βt ) + √
εvt (6.11)

with βt and vt corresponding to the phase and amplitude components, respectively.
The phase βt and amplitude vt evolve according to a PDMP, involving the vector field
Fnj

in the time intervals (tj , tj+1), analogous to xt ; see Fig. 1. (It is notationally con-
venient to switch from x(t) to xt etc.) However, such a decomposition is not unique
unless we impose an additional mathematical constraint. We will adapt a variational
principle recently introduced to analyze the dynamics of limit cycles with Gaussian
noise [21]. To construct the variational principle, we first introduce an appropriate
weighted norm on R

d , based on a Floquet decomposition.
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For any 0 ≤ t , define Π(t) ∈ R
d×d to be the fundamental matrix for the following

ODE:

dz

dt
= A(t)z, (6.12)

where A(t) = J (ω0t). That is, Π(t) := (z1(t)|z2(t)| · · · |zd(t)), where zi(t) satisfies
(6.12), and {zi(0)}di=1 is an orthogonal basis for Rd . Floquet theory states that there
exists a diagonal matrix S = diag(ν1, . . . , νd) whose diagonal entries are the Floquet
characteristic exponents such that

Π(t) = P(ω0t) exp(tS )P −1(0), (6.13)

with P(θ) a 2π -periodic matrix whose first column is proportional to Φ ′(ω0t), and
ν1 = 0. That is, P(θ)−1Φ ′(θ) = c0e with ej = δ1,j and c0 an arbitrary constant;
we set c0 = 1 for convenience. To simplify the following notation, we will assume
throughout this paper that the Floquet multipliers are real and hence P(θ) is a real
matrix. We can readily generalize these results to the case that S is complex. The
limit cycle is taken to be stable, meaning that, for a constant b > 0 and all 2 ≤ i ≤ d ,
we have νi ≤ −b. Furthermore, P −1(θ) exists for all θ , since Π−1(t) exists for all t .

The above Floquet decomposition motivates the following weighted inner product:
For any θ ∈R, we denote the standard Euclidean dot product on R

d by 〈·, ·〉,
〈x, y〉θ = 〈P −1(θ)x,P −1(θ)y

〉

,

and ‖x‖θ = √〈x, x〉θ . In the case of SDEs, it has been shown that this choice of
weighting yields a leading order separation of the phase from the amplitude and fa-
cilitates strong bounds on the growth of vt [21]. The former is a consequence of
the fact that the matrix P −1(θ) generates a coordination transformation in which the
phase in a neighborhood of the limit cycle coincides with the asymptotic phase de-
fined using isochrons (see also [7]). In particular, we can show that the PRC R(θ) is
related to the tangent vector Φ ′(θ) according to [21]

P �(θ)R(θ) = M
−1
0 P −1(θ)Φ ′(θ), (6.14)

where

M0 := ∥∥Φ ′(θ)
∥
∥

2
θ

= ∥∥P −1(θ)Φ ′(θ)
∥
∥

2 = 1. (6.15)

6.2 Defining the Piecewise Deterministic Phase Using a Variational Principle

We can now state the variational principle for the stochastic phase βt [21]. First,
we consider a variational problem for an arbitrary prescribed function θt (not to be
confused with the phase on the limit cycle), which specifies the weighted Euclidean
norm. Given θt , we determine βt for t ∈ T by requiring βt = ϕt (θt ), where ϕt (θt ) is
a local minimum of the following variational problem:

inf
ϕ∈N

(

ϕt (θt )
)

∥
∥xt − Φ(ϕ)

∥
∥

θt
= ∥∥xt − Φ

(

ϕt (θt )
)∥
∥

θt
, t ∈ T , (6.16)
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with N (ϕt (θt )) denoting a sufficiently small neighborhood of ϕt (θt ). The minimiza-
tion scheme is based on the orthogonal projection of the solution onto the limit cycle
with respect to the weighted Euclidean norm. We will derive an exact SDE for βt (up
to some stopping time) by considering the first derivative

G0(z,ϕ, θ) := ∂

∂ϕ

∥
∥z − Φ(ϕ)

∥
∥

2
θ

= −2
〈

z − Φ(ϕ),Φ ′(ϕ)
〉

θ
. (6.17)

At the minimum,

G0(xt , βt , θt ) = 0. (6.18)

We then determine θt (and hence βt ) self-consistently by imposing the condition
θt = ϕt (θt ) = βt . It follows that the stochastic phase βt satisfies the implicit equation

G (xt , βt ) := G0(xt , βt , βt ) = 0. (6.19)

It will be seen that, up to a stopping time τ , there exists a unique continuous solution
to this equation. Define M(z,ϕ) ∈ R as

M(z,ϕ) := 1

2

∂G (z,ϕ)

∂ϕ

= 1

2

∂G0(z,ϕ, θ)

∂ϕ

∣
∣
∣
∣
θ=ϕ

+ 1

2

∂G0(z,ϕ, θ)

∂θ

∣
∣
∣
∣
θ=ϕ

= M0 − 〈z − Φ(ϕ),Φ ′′(ϕ)
〉

ϕ

−
〈

z − Φ(ϕ),
d

dϕ

{[

P(ϕ)P �(ϕ)
]−1}

Φ ′(ϕ)

〉

. (6.20)

Assume that initially M(u0, β0) > 0. We then seek a PDMP for βt that holds for all
times less than the stopping time

τ = inf
{

s ≥ 0 :M(us, βs) = 0
}

. (6.21)

The implicit function theorem guarantees that a unique continuous βt exists until this
time.

To derive the PDMP for βt , we consider the equation

dGt

dt
≡ dG (xt , βt )

dt
= 0, t ∈ T , (6.22)

with xt evolving according to the PDMP (2.1). From the definition of G (xt , βt ) it
follows that

0 = −2

〈
dxt

dt
,Φ ′(βt )

〉

βt

+ ∂Gt

∂ϕ

∣
∣
∣
∣
ϕ=βt

dβt

dt
, t ∈ T . (6.23)

Rearranging, we find that the phase βt evolves according to the exact, but implicit,
PDMP

dβt

dt
= M(xt , βt )

−1〈Fn(xt ),Φ
′(βt )

〉

βt
, (6.24)
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with n = nj for t ∈ (tj , tj+1). Finally, recalling that the amplitude term vt satisfies√
εvt = xt − Φβt , we have

√
ε
dvt

dt
= dxt

dt
− Φ ′(βt )

dβt

dt

= Fn(xt ) −M(xt , βt )
−1Φ ′(βt )

〈

Fn(xt ),Φ
′(βt )

〉

βt
. (6.25)

6.3 Weak Noise Limit

Equation (6.24) is a rigorous, exact implicit equation for the phase βt . We can derive
an explicit equation for βt by carrying out a perturbation analysis in the weak noise
limit. Let 0 < ε � 1 and set xt = Φ(βt ) on the right-hand side of (6.24), that is,
vt = 0. Writing βt ≈ θt , we have the piecewise deterministic phase equation

dθt

dt
= Zn(θt ) := M

−1
0

〈

Fn

(

Φ(θt )
)

,Φ ′(θt )
〉

θ

= M
−1
0

〈

P(θt )
−1Fn

(

Φ(θt )
)

,P −1(θt )Φ
′(θt )

〉

= M
−1
0

〈

Fn

(

Φ(θt )
)

,
(

P(θt )P (θt )
�)−1

Φ ′(θt )
〉

= 〈Fn

(

Φ(θt )
)

,R(θt )
〉

, n = nj for t ∈ (tj , tj+1)

= ω0 + 〈Fn

(

Φ(θt )
)− F

(

Φ(θt )
)

,R(θt )
〉

(6.26)

after using M(Φ(θ), θ) = M0 and equation (6.14). The last line follows from the
observation

〈

F
(

Φ(θ)
)

,R(θ)
〉= ω0

〈

Φ ′(θ),R(θ)
〉

= ω0M
−1
0

∥
∥Φ ′(θ)

∥
∥

2
θ

= ω0.

Hence, a phase reduction of the PDMP (2.1) yields a PDMP for the phase θt . Of
course, analogously to the phase reduction of SDEs, there are errors due to the fact
that we have ignored O(ε) terms arising from amplitude-phase coupling; see below.
This leads to deviations of the phase θt from the exact variational phase βt over
O(1/ε) time-scales.

In Fig. 22, we show results of numerical simulations of the stochastic ML model
for N = 10 and ε = 0.01 with other parameters as in Fig. 21. We compare solutions
of the explicit phase equation (6.26) with the exact phase defined using the varia-
tional principle; see Eq. (6.24). We also show sample trajectories for (v,w). It can be
seen that initially the phases are very close and then very slowly drift apart as noise
accumulates. The diffusive nature of the drift in both phases can be clearly seen, with
the typical deviation of the phase from ω0t increasing in time.

6.4 Decay of Amplitude Vector

If we are interested in higher-order contributions to the phase equation, then it is nec-
essary to consider the coupling between the phase and amplitude in both the contin-
uous dynamics and the discrete switching process. Hence, the phase equation (6.26)
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Fig. 22 Simulation of the stochastic Morris–Lecar model for subthreshold Na+ oscillations with N = 10
and ε = 0.01. (Adapted from Ref. [21].) Other parameter values as in Fig. 21. (a) Plot of the approximate
phase θt − tω0 in green (with θt satisfying equation (6.26) and the exact variational phase (satisfying
(6.19)) βt − tω0 in black. On the scale [−π,π ] the two phases are in strong agreement. However, zooming
in, we can see that the phases slowly drift apart as noise accumulates. The diffusive nature of the drift
in both phases can be clearly seen with the typical deviation of the phase from ω0t increasing in time.
(b) Stochastic trajectory around limit cycle (dashed curve) in the v,w-plane. The stable attractor of the
deterministic limit cycle is quite large, which is why the system can tolerate quite substantial stochastic
perturbations

will only be a reasonable approximation for small ε if the dynamics remains within
some attracting neighborhood of the limit cycle, that is, the amplitude remains small.
Since the amplitude vt satisfies

√
εvt = xt − Φβt , we have

√
ε
dvt

dt
= dxt

dt
− Φ ′(βt )

dβt

dt

= Fn(xt ) −M(xt , βt )
−1Φ ′(βt )

〈

Fn(xt ),Φ
′(βt )

〉

βt
. (6.27)

Now define wt = √
εP (βt )

−1vt . Using the fact that Ṗ ω0 = J (t)P (t) − P(t)S , we
find that

1

2

d

dt

(‖wt‖2)

=
{

〈wt,S wt 〉 d

dt
βt +

〈

wt,P (βt )
−1
(

Fn(xt ) − JnP (βt )wt

dβt

dt

)〉}

. (6.28)

In the fast switching limit (as ε → 0), we can show that the dynamics of ‖wt‖2 decays
to leading order [21]. That is, there exists a constant C such that the probability
that the expected time to leave an O(a) neighborhood of the limit cycle is less than
T scales as T exp(−Ca/ε). An interesting difference between this bound and the
corresponding one obtained for SDEs [22] is that in the latter the bound is of the form
T exp(−Cba/ε), where b is the rate of decay toward the limit cycle. In other words,
in the SDE case, the bound is still powerful in the large ε case, as long as bε−1 � 1,
that is, as long as the decay toward the limit cycle dominates the noise. However, this
no longer holds in the PDMP case. Now, if ε is large, then the most likely way that the
system can escape the limit cycle is that in stays in any particular state for too long
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without jumping, and the time that it stays in one state is not particularly affected by
b (in most cases).

6.5 Synchronization of Hybrid Oscillators

As we have outlined previously, it is possible to apply phase reduction techniques to
PDMPs that support a limit cycle in the fast switching limit [21]. One of the important
consequences of this reduction is that it provides a framework for studying the syn-
chronization of a population of PDMP oscillators, either through direct coupling or
via a common noise source. In the case of SDEs, there there have been considerable
recent interest in noise-induced phase synchronization [47, 62, 106, 135, 136, 149].
This concerns the observation that a population of oscillators can be synchronized by
a randomly fluctuating external input applied globally to all of the oscillators, even if
there are no interactions between the oscillators. Evidence for such an effect has been
found in experimental studies of neural oscillations in the olfactory bulb [59] and the
synchronization of synthetic genetic oscillators [151]. A related phenomenon is the
reproducibility of a dynamical system response when repetitively driven by the same
fluctuating input, even though initial conditions vary across trials. One example is the
spike-time reliability of single neurons [60, 98].

Most studies of noise-induced synchronization take the oscillators to be driven
by common Gaussian noise. Typically, phase synchronization is established by con-
structing the Lyapunov exponent for the dynamics of the phase difference between a
pair of oscillators and averaging with respect to the noise. If the averaged Lyapunov
exponent is negative definite, then the phase difference is expected to decay to zero
in the large time limit, establishing phase synchronization. However, it has also been
shown that common Poisson-distributed random impulses, dichotomous or telegra-
pher noise, and other types of noise generally induce synchronization of limit-cycle
oscillators [63, 104, 107]. Consider, in particular, the case of an additive dichoto-
mous noise signal I (t) driving a population of M identical noninteracting oscillators
according to the system of equations ẋj = F(xj )+ I (t), where xj ∈ R

d is the state of
the j th oscillator, j = 1, . . . ,M [104]; see Fig. 23. Here I (t) switches between two
values I0 and I1 at random times generated by a two-state Markov chain [5]. (In the
case of the classical ML model, I (t) could represent a randomly switching external
current.) That is, I (t) = I0(1 − N(t)) + I1N(t) for N(t) ∈ {0,1}, with the time T

between switching events taken to be exponentially distributed with mean switching
time τ . Suppose that each oscillator supports a stable limit cycle for each of the two
input values I0 and I1. It follows that the internal state of each oscillator randomly
jumps between the two limit cycles. Nagai et al. [104] show that in the slow switching
limit (large τ ), the dynamics can be described by random phase maps. Moreover, if
the phase maps are monotonic, then the associated Lyapunov exponent is generally
negative, and phase synchronization is stable.

More generally, let N(t) ∈ Γ ≡ {0, . . . ,N0 − 1} denote the state of a randomly
switching environment. When the environmental state is N(t) = n, each oscil-
lator xi(t) evolves according to the piecewise deterministic differential equation
ẋi = Fn(xi) for i = 1, . . . ,M . The additive dichotomous noise case is recovered by
taking N0 = 2 and Fn(x) = F(x) + In. In the slow switching limit, we can gener-
alize the approach of Nagai et al. [104] by assuming that each of the vector fields
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Fig. 23 Pair of noninteracting
limit cycle oscillators with
phases θj (t), j = 1,2, driven by
a common switching external
input I (t)

Fn(xi), n ∈ Γ , supports a stable limit cycle and constructing the associated random
phase maps. Here we briefly discuss the fast switching regime, assuming that in the
adiabatic limit ε → 0, the resulting deterministic system ẋi = F(xi) supports a stable
limit cycle. Since there is no coupling or remaining external drive to the oscillators
in this limit, their phases are uncorrelated. This then raises the issue as to whether or
not phase synchronization occurs when ε > 0.

Again, one approach would be to carry out a QSS analysis along the lines of
Sect. 2.2, in which each oscillator is approximated by an SDE with a common Gaus-
sian input. We could then adapt previous work on the phase reduction of stochastic
limit cycle oscillators [62, 106, 135, 136] and thus establish that phase synchroniza-
tion occurs under the diffusion approximation. However, the QSS approximation is
only intended to be accurate over time-scales that are longer than O(ε). Hence, it
is unclear whether or not the associated Lyapunov exponent is accurate, since it is
obtained from averaging the fluctuations in the noise over infinitesimally small time-
scales. Therefore, it would be interesting to derive a more accurate expression for the
Lyapunov exponent by working directly with an exact implicit equation for the phase
dynamics such as the population analog of equation (6.24).

7 Conclusion

In recent years, it has become clear that stochastic switching processes are prevalent
in a wide range of biological systems. Such processes are typically modeled in terms
of stochastic hybrid systems, also known as PDMPs. In this review, we provided a
basic introduction to stochastic hybrid systems and illustrated the theory by consider-
ing applications to cellular neuroscience. (In a companion review paper, we focus on
applications to switching gene regulatory networks [14].) We showed that although
the theory of stochastic hybrid systems is underdeveloped compared to SDEs and
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discrete Markov processes, analogous techniques can be applied, including large de-
viations and WKB methods, diffusion approximations, and phase reduction methods.
We end by listing several outstanding issues that are worthy of further exploration.

1. Solving the stationary version of the CK equation (2.6) for higher-dimensional
stochastic hybrid systems with multiple discrete states; developing an ergodic the-
ory of PDMPs. (See also the recent paper by Lawley et al. [4])

2. Calculating the Perron eigenvalue (Hamiltonian) of equation (2.39) for a wider
range of models; currently, only a few exact solutions are known such as the ion
channel model of Sect. 3; extending the theory of metastability to PDMPs with
infinite Markov chains, where the Perron–Frobenius theorem does not necessarily
hold.

3. Developing more detailed biophysical models of the transfer of vesicles between
motor-complexes and synaptic targets; identifying local signaling mechanisms for
synaptic targeting; incorporating the contribution of intracellular stores; coupling
mRNA transport to long-term synaptic plasticity.

4. Solving the diffusion equation with randomly switching boundary conditions
when the switching of a gate depends, for example, on the local particle concen-
tration; solving higher-dimensional boundary value problems; analyzing higher-
order moments of the stochastic concentration.

5. Analyzing the synchronization of stochastic hybrid oscillators driven by a com-
mon environmental switching process; extending the theory to take into account a
partial dependence of the switching process on the continuous dynamics of each
oscillator.

6. Modeling synaptically coupled neural networks as a stochastic hybrid system,
where the individual spikes of a neural population are treated as the discrete pro-
cess, and the synaptic currents driving the neurons to fire correspond to the con-
tinuous process. So far, stochastic hybrid neural networks are phenomenologically
based [11, 24]. Can such networks be derived from a more fundamental micro-
scopic theory, and is there a way of distinguishing the output activity of hybrid
networks from those driven, for example, by Gaussian noise?
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