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Abstract

Background: Trigeminal neuralgia (TN) is a severe neuropathic pain, which has an
electric shock-like characteristic. There are some common treatments for this pain
such as medicine, microvascular decompression or radio frequency. In this regard,
transcranial direct current stimulation (tDCS) is another therapeutic method to reduce
pain, which has been recently attracting the therapists’ attention. The positive effect
of tDCS on TN was shown in many previous studies. However, the mechanism of the
tDCS effect has remained unclear.

Objective: This study aims to model the neuronal behavior of the main known
regions of the brain participating in TN pathways to study the effect of transcranial
direct current stimulation.

Method: The proposed model consists of several blocks: (1) trigeminal nerve,
(2) trigeminal ganglion, (3) PAG (periaqueductal gray in the brainstem), (4) thalamus,
(5) motor cortex (M1) and (6) somatosensory cortex (S1). Each of these components is
represented by a modified Hodgkin-Huxley (HH) model. The modification of the HH
model was done based on some neurological facts of pain sodium channels. The
input of the model involves any stimuli to the ‘trigeminal nerve,’ which cause the pain,
and the output is the activity of the somatosensory cortex. An external current, which
is considered as an electrical current, was applied to the motor cortex block of the
model.

Result: The results showed that by decreasing the conductivity of the slow sodium
channels (pain channels) and applying tDCS over the M1, the activity of the
somatosensory cortex would be reduced. This reduction can cause pain relief.

Conclusion: The proposed model provided some possible suggestions about the
relationship between the effects of tDCS and associated components in TN, and also
the relationship between the pain measurement index, somatosensory cortex
activity, and the strength of tDCS.

Keywords: Computational modeling; Pain network; Neuropathic pain; Transcranial
direct current stimulation

1 Background
The TN (trigeminal neuralgia) is a rare facial pain disorder that leads to a sudden, short,
and severe sense of pain in the face [1, 2]. It is one of the most severe neuropathic forms
of pain [3]. This pain does not have a regular and normal behavior with a specific pattern.
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Therefore, the prediction of its occurrence is in a certain measure impossible. It may occur
either spontaneously without doing any particular activity or by doing some routine tasks
such as chewing, brushing teeth or even shaving, which can trigger the pain attack [1, 2].

Physiological factors (e.g., superior cerebellar artery compression) and plasticity of the
nervous system have roles in TN to play [4]. Many diverse regions of the brain such as
the thalamus, motor cortex (M1), brainstem, primary somatosensory cortex are included
in the TN processing [5, 6], and connections and communications between these regions
processing the TN, result in the TN network or the TN neuromatrix.

Carbamazepine, as one of the TN medicine treatments, can reduce the pain. However,
the side effects of this medicine (e.g., drowsiness and confusion) usually result in discon-
tinuation of its usage [1, 7]. Surgical interventions such as microvascular decompression
or radiotherapies are other options that may be suggested to the patient with TN. Pa-
tients often do not tend to have surgery, because it has a high risk of face mutilation [1].
Transcranial direct current stimulation (tDCS) is another therapeutic method that was
recently used in the field of pain and shows positive effect [1, 8]. This method is cheap and
non-invasive. No serious side effect has been reported for this method.

The tDCS is a low direct current (usually 1 or 2 mA) which is applied to a specific region
of the brain using two electrodes, which are placed on the superficial part of the brain.
Motor cortex (M1) stimulation is more prevalent than in other regions of the brain. In
this regard, M1 stimulation is utilized for pain relief, depression, addiction and so on [9,
10]. It was suggested that, by applying tDCS, pain perception is modulated by shifts of
the resting membrane potential [1] and consequently results in the modification of the
neuronal excitability at the stimulation site [1, 11]. Electrical stimulation (e.g., tDCS) of an
appropriate area can play a role similar to that of the medial brain in reducing pain [4].

Despite the positive results of the effect of stimulation in pain relief, it is still unknown
how tDCS can reduce the symptoms of TN. Modeling the pain pathway can provide a tool
to understand some aspects of TN and to investigate the mechanism of tDCS effect. No
computational model has been suggested for TN. However, there are some models of pain
based on gate control theory [4] and artificial neural networks [12].

In the current study, we simplified a conceptual model of TN pathways that is proposed
in the previous study [6]. Then we represented this conceptual model by a mathematical
formula based on a modified version of the Hodgkin-Huxley (HH) equations. By using
this model, the possible effects and mechanism of the influence of an external input such
as tDCS were investigated. To evaluate the outcomes of our model, as we may not able
to understand the meaning of S1 output potential or S1 activity outcome clearly, which
is essential for investigating any modification in neuronal behavior in our model, we can
change it to a more tangible and practical scale, such as visual analog scale (VAS) to com-
prehend the intensity of pain and the activity of S1. As a result, interpreting the output
of our model, S1 activity is turned to VAS display, a method which is indeed efficient and
practical for subjective measuring of pain, including TN. This self-evaluation scale ranges
from 0 to 10 as visually described in centimeter units: 0 cm indicates no pain, and 10 cm
means the worst pain possible. Participants will be asked to rate their pain during the pre-
vious 24 hours to get a baseline pain. This scale has been widely used in studies to evaluate
pain as an outcome [13]. There are a few types of research which have done some experi-
ments on TN patients by applying tDCS over M1 [1, 8, 14, 15].
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In the next section, the details of the proposed conceptual and computational mod-
els are presented. The results of the simulation of the proposed model, considering the
effect of tDCS, are described in the Results section. In the last part, the discussion and
interpretation of the obtained results are provided as regards different computational and
physiological aspects.

2 Method
In this section, the stages of modeling have been described. At first, a simplified conceptual
model of TN pathway has been introduced. This model, which has been explained in [6]
in detail, consists of some important brain regions involved in TN. Then each part of the
TN pathway has been modeled by a modified version of the HH model. At the last step,
an external current stimulation has been applied over M1 to show the effect of external
stimuli on TN.

2.1 Trigeminal neuralgia pathway
Many studies have investigated the brain regions involved in pain processing [1, 8, 16–18].
According to the results of these studies, there are a wide variety of brain areas that are
involved in pain processing that can form a vast network with complex interactions. In our
previous work [6], we have described this complicated network as a pain neuromatrix dia-
gram. A simplified version of this neuromatrix is proposed that consists of the leading and
substantial blocks of pain network in TN processing system from the initial noxious stim-
uli of TN to somatosensory cortex [11, 19–23]. The simplified pain neuromatrix model is
shown in Fig. 1.

As shown in Fig. 1, this model includes the following blocks.

2.1.1 Trigeminal ganglion
Trigeminal neuralgia begins from the root of the nerve and trigeminal ganglion (TG) that
is involved in the pain processing pathway. Somas of face neurons are in TG. The signals
come from the face, and trigeminal afferents project using the TG, thereby they directly
go to the brainstem and then project to the brain [16, 24].

Figure 1 Concise TN pathway block diagram. PAG: periaqueductal gray, VPL: ventral posterolateral nucleus
(reprinted from [6])
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2.1.2 Brainstem
After TG, the nociceptive signals reach to different parts of the brainstem [25, 26]. The
brainstem consists of trigeminal nuclei [16, 18, 27–30], the para brachial (PB) nucleus,
and PAG (periaqueductal gray). The brainstem projects signals to different nuclei of the
thalamus [29, 31] especially the VPL (ventral posterolateral nucleus) and VPM (ventral
posteromedial nucleus) regions [16, 19, 30].

2.1.3 Periaqueductal gray (PAG)
Periaqueductal gray is one of the substantial main parts of the pain-mediating process,
which is in the middle part of the brainstem. It receives signals from thalamus [32], insula,
and hypothalamus [31]. Periaqueductal gray involves the secretion of endogenous opioids,
such as encephalin, for relieving pain [12, 19, 26, 28, 31–37].

2.1.4 Thalamus
The thalamus is one of the major structures that receives pain signals from diverse pain
pathways [18, 19, 25, 26, 28–32, 34–43]. The thalamus processes the nociceptive informa-
tion coming from the brainstem [29, 31] especially to the VPL and VPM regions [16, 19,
30] and projects them to different parts of the brain such as S2 (secondary somatosen-
sory cortex) [37, 39, 40], primary somatosensory cortex (S1) [19, 30, 31, 37, 39, 40, 42] and
PAG [32]. It has a reciprocal interaction with some parts of the M1 [35], especially the VL
(ventral lateral nucleus) and anterior nuclei [36]. In this regard, it has been suggested that
the thalamus may play a role in the inhibitory pain pathway by applying anodal tDCS over
M1, which may result in a probable pain-relief effect [44].

2.1.5 Motor cortex
Although the primary motor cortex (M1) is not considered regularly as part of the pain
neuromatrix, it plays a crucial role in modulating the pain in different chronic pain syn-
dromes [25, 28, 35–37, 41, 45]. It has some reciprocal connections with S1 [28, 37, 45].
It receives direct information from the ACC (anterior cingulate cortex) [41] and sends it
to the prefrontal cortex [25], brainstem [25, 26] and thalamus [25, 26], and especially VPL
[28]. Many studies signify the importance and effects of the tDCS over M1 and put empha-
sis on the role of motor cortex stimulation in pain intensity reduction or increase in the
pain threshold [1, 8, 14, 25, 26, 46–49]. Although the mechanism of the effect of the M1
anodal tDCS has remained somewhat unclear, such pain-relief effects may exist because
of sub-cortical and thalamocortical connections [44].

2.1.6 Somatosensory cortex
The primary somatosensory cortex is also one of the main cortical regions in the pain or
TN neuromatrix [5, 16, 19, 28–31, 35–37, 39–42, 45, 50, 51]. The primary somatosensory
cortex has some mutual interaction with M1 [28, 37, 45] and S2 [37]. The primary so-
matosensory cortex receives nociceptive information from S2 [41], and the thalamus [19,
30, 31, 37, 39, 40, 42].

In the above paragraphs, a brief review of the simplified pain neuromatrix model was
provided. More details can be found in [6]. In the next section, this model has been for-
mulated by mathematical equations.



Khodashenas et al. Journal of Mathematical Neuroscience             (2019) 9:4 Page 5 of 23

2.2 Mathematical modeling of the simplified pain neuromatrix
The Hodgkin–Huxley model gives the ability to investigate the chemical reactions and
activity changes of neuronal response. The equations that describe the HH model can be
found in textbooks.

It has been shown that some ion channels, such as the Nav1.8 slow sodium channels,
play a role in pain pathway and pain intensity modification. In this regard, their synthesis
and activity may also cause different neuronal potential and behavior [52]. The HH model
has the capability to model and describe the effect of diverse factors influencing the ion
channels. Moreover, the equations presented for the HH model can take into account the
activity variation of neuronal behaviors. Importantly, use-dependent sodium channel in-
hibitors are clinically effective in the treatment of many types of chronic pain [53]. Hy-
peralgesia is removed by factors decreasing impulse activity of Nav1.8 channels. That is
why these factors are believed to be of use in highly selective pain-killing medicine [52].
Considering the physiological role of the activation gating structure of the slow sodium
channels Nav1.8 in impulse coding of nociceptive information [54], and observing that the
modification of specified slow sodium channels in the membrane of nociceptive neurons
is the basis of the pain perception [52], it seems that the HH model is able to be a proper
candidate for modeling the pain modulation process. However, it needs some modifica-
tions for using in our pain processing study. A voltage-gated slow Na+ current needs to
be added into the HH equations. In other words, despite HH original model being useful
for modeling the behavior of neurons, it is a general model and should be specialized for
our use in pain-related neurons and simulating their behavior. Considering one more ion
channel will definitely result in a more realistic simulation, since we have separated the
current and gating variables related to it in our model. Besides, it is necessary to under-
stand what parameters cause the possibility of the nociceptive neuron to affect generating
or preventing a painful signal. As a result, the extra current for pain intensity plus its cor-
responding activity fluctuation needs to be considered in the HH model. In fact, the added
current is the Nav1.8 slow sodium channel current specified for pain and pain modulation
processing [52]. Therefore, the modifications have been applied by adding two more equa-
tions to the main HH equations (Eqs. (5) and (6)). The modified version of the HH (MHH)
model is described by Eqs. (1)–(16):

Cm
dE
dt

= I – gNaf m3h(E – ENa) – gkn4(E – EK ) – gL(E – EL) – gNaSm3
ShS(E – ENa), (1)

dm
dt

= αm(E)(1 – m) – βm(E)m, (2)

dh
dt

= αh(E)(1 – h) – βh(E)h, (3)

dn
dt

= αn(E)(1 – n) – βn(E)n, (4)

dms

dt
= αms (E)(1 – ms) – βms (E)ms, (5)

dhs

dt
= αhs (E)(1 – hs) – βhs (E)hs, (6)
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where

αm(E) =
0.115(1 + e E+70

10 )
e E+40

42 + 1
, (7)

βm(E) = 0.015
(
1 + e

E+25
8

)
, (8)

αh(E) = 0.012
(
1 + e

–(E+43)
10

)
, (9)

βh(E) =
1.32

1 + 0.2e
(E+10)

7
, (10)

αn(E) =
0.006(E + 45)

1 – e E+45
12

, (11)

βn(E) = 0.13
(
e

–(E+45)
30

)
, (12)

αmS(E) =
(
e0.0769(E)–0.553), (13)

βmS(E) =
(
e–0.00029(E)–2.523), (14)

αhS(E) = 0.0015
(
e

–(E+40)
30

)
, (15)

βhS(E) =
(

0.1

1 + 0.2e
–(E+10)

7

)
. (16)

The parameters and variables used in Eqs. (1)–(16) have been introduced in Table 1.
These equations are voltage-dependent expressions which are extracted from previous
studies [52]. HH model parameters are obtained by space-clamped experiments.

As shown in Fig. 2, to formulate the simplified pain neuromatrix model (Fig. 1), each
block was modeled by MHH equations. The input current (I) is the noxious stimuli. So,

Table 1 Variables and parameters definitions

Variable or paremeter name Definition

E Membrane potential
m Activation of fast sodium channels
h Inactivation of fast sodium channels
ms Activation of slow sodium channels
hs Inactivation of slow sodium channels
n Activation of potassium channels
Cm Equivalence membrane capacitance
gNaf Fast sodium channels conductance
gk Potassium channels conductance
gl Leak channels conductance
gNaS Slow sodium channels conductance
ENa Nernst potentials of fast sodium ions
Ek Nernst potentials of potassium ions
El Nernst potentials of leakage ions
αm and βm Transition rates between open and closed states of the activation of

sodium channels
αh and βh Transition rates between open and closed states of the inactivation

of sodium channels
αn and βn Transition rates between open and closed states of the potassium

channels
αmS and βmS Transition rates between open and closed states of the activation of

Slow sodium channels
αhS and βhS Transition rates between open and closed states of the inactivation

of slow sodium channels
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Figure 2 Embedding MHH for each block and inserting ItDCS to M1. MHH: modified Hodgkin Huxley, TG:
trigeminal ganglion. PAG: periaqueductal, M1: motor cortex, S1: somatosensory cortex

this input was applied to the region where the pain started (i.e., TG). The characteristics
of TN, such as high intensity of pain, shock-likeness and discontinuity of occurrence, have
been represented by the features of the input (I).

Each block of the model is differentiated from the other ones by considering its spe-
cific characteristics such as the membrane capacitances, initial membrane potentials, and
conductivities of channels that are proportional to initial potentials of the block. The con-
ductance of each block can be varied from one block to another; however, without losing
the whole issue, we considered the same conductance for each block for simplicity, which
can be calculated by separate studies for each part of the brain in future research and be
as precise as validated experiments. In other words, the same conductance for each block
(except the trigeminal ganglion) is considered regarding the Gabriel paper [55] for electri-
cal conductivity of body tissues, and the values in the model and because of simplicity, as
mentioned. The MHH applied for each block is the following.

At first, the initial values for reversal potentials related to each channel, the maximum
of the conductance of them, the initial potential for the first block and the gating variables
were defined. Then, at the beginning of each block, there were different Alphas and Betas
related to each block was calculated. Then these Alphas and Betas were applied to the
related gating variables such as m, h, n, mS, and hS. After calculating the gating variables,
the conductivity of each channel and then the specified current related to each channel
was calculated. At last, the output potential of the block was obtained by considering the
(I)-form of MHH (Eq. (11)) and the input stimuli (or current for other blocks except the
first one). So the input current of the next block was calculated from the output potential
of the previous block multiplied by the conductance of that block, which results in the
current (I)-form of the next block and these procedures continue till obtaining the output
potential (or activity) of S1 block. The values have been shown in Table 2.

The output potential (E) of each block is the input of the next block. Therefore, it is
required to reform the output potential (E) to input current (I) of the next block. The
mentioned conductance (G) is used to transform the output potential (E) form of the pre-
vious block to the input current form (I) of the next block (i.e., I = G ∗ V ).
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Table 2 Specific values used for simulation

Variable or parameter name Definition

Cm 5 pF [54]
gNaf 25 nS [54]
gk 20 nS [52, 54]
gl 5 nS [52]
gNaS 100 nS [52]
ENa 60 mV [54]
Ek –75 mV [54]
El –55 mV [54]
εr (TG) 2.01 ∗ 107 [55]
εr (all blocks except TG) 4.07 ∗ 107 [55]
ε0 8.854 ∗ 10–12

Cm (TG) 5 pF [54]
Cm (all blocks except TG) 10.1245 pF (using Eq. (17))
G 1

2.2 (Ω m) = 0.45( Sm ) [56]

The capacitance of the blocks is calculated from Eq. (17),

C = ε0εr
A
d

. (17)

Here ε0 = 8.854 ∗ 10–12 and εr are the absolute permittivity and relative permittivity of
the selected region (i.e., each block) of the brain, respectively. A is the area of the mem-
brane cross-section, d is a separation between intra- and extracellular.

The proposed model has been simulated considering parameters amounts that have
been reported in the next part.

Matlab R2013b with SCR:001622 RRID number was used as a software tool.

3 Results
In the equations which were described in the previous section, the values of the parameters
have been selected as indicated in Table 2. The numbers are based on some formula and
the amounts reported in previous studies, which have been mentioned next to each value.

As shown in Fig. 2, the input stimulus is applied to the TG block. As a result, the sim-
ulation indicates that the amplitude of the input affects the output behavior of this block
that is shown in Fig. 3.

Figure 3 demonstrates that applying a different amount of input stimulus changes the
behavior of the output of the first block. According to Fig. 3, the peak to peak value of
the output decreased by increasing the input stimulus. Regardless of the transient part
of the output, the increment of the input stimulus led to the increment of the minimum
value of the output and decrement of the maximum value. Increasing the input amplitude
had no considerable effect on the transient part. However, it seems that the upward slope
of the output changes declined by the increment of the input stimulus. When the input
amplitude is 5 pA, Fig. 3(a) shows that the output has 11 peaks (cycles) during the time of
the stimulation (i.e., length of the horizontal axis). According to Fig. 3(b), increasing the
input to 15 pA, the number of peaks increased to 14. The more increment of the input to
30 pA led to the changes in the peak’s number from 14 to 16 (Fig. 3(c)). Therefore, it can
be concluded that increasing the input amplitude (i.e., the strength of the pain) affects the
activity and the amplitude of the TG output.

According to the outcomes of previous studies, ordinary pain can be simulated by a
constant input current [52, 54]. Figure 3 showed the behavior of the TG block to a common
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Figure 3 The response of the first block of the model (TG) to the input stimulus with different amplitudes
((a) input stimulus = 5 pA; (b) input stimulus = 15 pA; (c) input stimulus = 30 pA)
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Figure 4 The output of TG and S1 blocks with different input stimulus maximum amplitudes.
(a) Maximum amplitude = 5 pA, (b) maximum amplitude = 30 pA. TG: trigeminal ganglion, S1: somatosensory
cortex

pain (i.e., constant current). However, the pain of TN does not have a regular shape. It
seems that its pattern changes randomly [1, 2, 57]. Therefore, to simulate such a pain, we
have considered an input current that randomly fluctuated between zero and a positive
or negative value. Figure 4 shows the output of TG and S1 (i.e., the output of the model)
blocks to this random input with two maximum values.

As shown in Fig. 4, considering the TN pain the output of the TG block is not as regular
as the common pain (Fig. 3). It can be seen that increasing the range of the changes of the
input (i.e., TN pain) led to the decrement of the sum squares of the outputs of both TG
and S1 blocks. It has also been observed that the phase difference between the output of
TG and S1 increases as the range of the input changes is increased.

Figure 5 shows the bifurcation diagram of the extreme values of the S1 output (i.e., the
model’s output) considering the range of the input changes as the control parameter. The
conductivity of the slow sodium channel was gNaS = 100 nS.
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Figure 5 The bifurcation diagram of the values of the S1 output. The range of the input changes is the
control parameter (gNaS = 100 nS)

According to Fig. 5, increasing the range of the input changes to higher than about 40 pA
and decreasing this value to lower than about –50 pA led to a regular (i.e., harmonic)
output. Between these two values (i.e., –50 pA and 40 pA), the output behavior is bursting
and increasing the range of the changes of the input stimulus leading to the decrement of
the range of the changes of the S1 output. Acceding to the middle part of the diagram (i.e.,
where the input is between –50 pA to 40 pA), it can be seen that the minimum value of the
output decreases and the maximum value increases by the increment of the range of input
changes. Different values have been considered for input (stimuli) current from I0 = –80
to 80 in order to observe the behavior of S1 behavior with a fixed value of conductivity of
slow sodium channels (gNaS) for Fig. 5. The size of the output potential of S1 was calculated
in rows and columns. Then, for each I0 value mentioned and the related column of the
output potential of S1 with the whole row of that column, the figure was plotted. The entire
I0 value in correspondence to the S1 output potential was created by holding command
on each plotting.

In addition to the input stimulus, the conductivity of channels can affect the pattern
of the output of the model. Figure 6 shows the effect of the conductivity of slow sodium
channels on the output of TG and S1 blocks.

According to Fig. 6, the sum squares of the outputs of both TG and S1 blocks is de-
creased by the increasing of slow sodium channels conductivities named gNaS . The phase
difference between the outputs of TG and S1 blocks is more obvious in the lower value of
the slow sodium channels conductivities than the higher one.

The bifurcation diagram of the values of the S1 output considering the slow sodium
channels conductivity as the control parameter is shown in Fig. 7. The input stimulus is
considered 30 pA.

Figure 7 was created by considering different values for the conductivity of slow sodium
channels gNaS from gNaS = 30 to 120 in order to observe the behavior of S1 behavior with a
fixed value of input stimuli for Fig. 7. The size of the output potential of S1 was calculated
into rows and columns. Then for each gNaS the mentioned value and the related column
of the output potential of S1 with the whole row of that column, the figure was plotted.
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Figure 6 The effect of the conductivity of slow sodium channels on the output pattern of the TG and S1
blocks. (a) Conductivity = 70 nS, (b) conductivity = 100 nS; input stimulus range = (0, 30 pA)

Figure 7 The bifurcation diagram of the extreme values of the S1 output. The slow sodium channels
conductivity (gNaS) is the control parameter (input stimulus = 30 pA)
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The entire gNaS value in correspondence to the S1 output potential was created by holding
command on each plotting.

As shown in Fig. 7, the bifurcation diagram of the S1 output has three different parts.
The first and last parts exhibit a harmonic behavior (with one frequency component) of the
output. The amplitude of this harmonic behavior increases by increasing the gNaS . In the
middle part of the diagram, the output consists of a variety of frequency component (i.e.,
bursting behavior) and the minimum value of the output decreases by the increment of the
range of input changes. However, the maximum amount of the output has an inverse-U
shape. It increases and then decreases by increment of the input range.

3.1 Nonlinear dynamic analysis of the model
Different types of bifurcations have been considered previously in the bifurcation of HH
equations study by Guckenheimer [58] in which a qualitative depiction of the different
regimes of the bifurcation diagrams for HH in the two-dimensional I-VK parameter plane,
limit cycles, diagrams and phase portraits on the two-dimensional invariant manifold for
HH on the I-VK plane have been obtained. In another study, chaos in the HH model [59],
the phase space of the HH model has been described which results in the existence of a
degree of unpredictability about how the system will respond to stimulation. It has been
concluded that the results established the subtlety of the concept of threshold which says:
“the excitability of a neural membrane to fire an action potential may be more complex
than a smooth hypersurface that divides subthreshold and supra-threshold membrane po-
tentials.”

The nonlinear dynamics of the mentioned modified HH model resulting in its different
behaviors are shown in Figs. 5 and 7. Using the MatCont, a standard bifurcation software,
the type of bifurcation that system encounters is shown in Fig. 8 for varying intensity of
the input stimulus (I0), and Fig. 9 for varying conductivity of the slow sodium channels
(gNaS).

Figure 8 has been obtained by activating the parameter I0 in the Equilibrium part of
MatCont. The stability changes upon the variation of I0 and thus we could also see how
the eigenvalues of the Jacobian at the equilibrium develop.

We have the following information from the indicated points in Fig. 8.
When I0 = 37.416140 is reached a pair of complex conjugate eigenvalues and a Hopf bi-

furcation occur. By considering the negative first Lyapunov coefficient = –4.294451e–04,

Figure 8 A branch of equilibria in the (I0-S1 output)-plane displaying Hopf bifurcations with gNaS = 100
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Figure 9 A branch of equilibria in the (gNaS-S1 output)-plane displaying Hopf bifurcations with input stimulus
(I0) =30

the resulting Hopf is stable.

label = H ,

x =
(
–16.826666 0.993461 0.009702 0.786201 0.661761 0.260367 37.416140

)
,

First Lyapunov coefficient = –4.294451e–04.

At I0 = –170.355702 the message ‘Limit point’ appears which shows one eigenvalue has
a positive real part. The quadratic coefficient (normal form coefficient) is given as ‘a’.

label = LP,

x =
(
–28.153602 0.992439 0.011037 0.643778 0.449380 0.552195 –170.355702

)
,

a = –3.838174e–04.

When I0 = –49.126377 is reached two pairs of complex conjugate eigenvalues and a
Hopf bifurcation occur. The MatCont named this point ‘Neutral saddle’, which has two
real eigenvalues with opposite sign.

label = H ,

x =
(
–45.015326 0.980167 0.019813 0.356172 0.181721 0.947642 –49.126377

)
,

Neutral saddle.

At I0 = –49.120424 another ‘Limit point’ is found. ‘a,’ in both Limit points, is involved
in the non-degeneracy condition and has been computed automatically.

label = LP,

x =
(
–45.109623 0.980035 0.019914 0.354551 0.180641 0.948439 –49.120424

)
,

a = 2.891546e–02.

The two Limit Point bifurcations are shown, and x indicates the six variables E, m, h, n,
ms, hs and the value of the active parameter I0 at the bifurcation point.
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In Figs. 8 and 9, the limit cycles that were born from the first and second Hopf bifurcation
can be unstable (dotted line) and stable (continuous line) as the first Lyapunov coefficient
is positive and negative, respectively.

When gNaS = 45.162360 is reached, two pairs of complex conjugate eigenvalues and a
Hopf bifurcation occur. The negative first Lyapunov coefficient = –9.946008e–05 shows
the Hopf point is stable.

label = H ,

x =
(
–32.861315 0.990762 0.012243 0.568873 0.362030 0.710132 45.162360

)
,

First Lyapunov coefficient = –9.946008e–05.

At gNaS = 104.772243 a pair of complex conjugate eigenvalues and another Hopf bifurca-
tion occur. The negative first Lyapunov coefficient = –4.731031e–04 demonstrates a sta-
ble Hopf point.

label = H ,

x =
(
–16.229848 0.993428 0.009668 0.792147 0.671994 0.251113 104.772243

)
,

First Lyapunov coefficient = –4.731031e–04.

By selecting one of the Hopf cases, shown in Fig. 8, we found in the equilibrium contin-
uation the initial point and activating I0 and gNaS as active parameters, and changing the
curve type to Hopf from ‘Type’ menu, Fig. 10 has been obtained.

By drawing the I0 – gNaS plane, inside the obtained oval-shaped figure, the system be-
haves differently in comparison to the outside of it. In other words, while we choose an
I0 and a gNaS from the inside of the oval-shaped figure, the output values of the S1 shows
oscillation and a periodic behavior will be presented, and by increasing the input stimu-
lus, the activity of the output of S1 will be increased as well. On the other hand, while we
choose a point outside the oval-shaped figure, no periodic behavior can be seen and the
output of S1 will show constant values.

Figure 10 Hopf bifurcation curves in the (I0 – gNaS)-plane
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Figure 11 Output behavior of S1 (a) without ItDCS, (b) with ItDCS

The previous simulations were for a model without considering an external current
stimulus to M1. By adding another current as an external input current, which can be
regarded as a tDCS current (ItDCS) to M1 block (see Fig. 2), the results of simulations can
show the effect of ItDCS on the output behaviors. Figure 11 shows the outputs behavior
(i.e., the output of TG and S1 blocks) with and without considering ItDCS . In this figure,
the input stimulus is 30 pA, and the conductivity of pain channels is gNaS = 100.

As shown in Fig. 11, the sum squares of the S1 output increased by adding ItDCS .
According to the results of the studies [1, 8, 14, 15] done on the effect of tDCS on the

pain level (VAS), especially on TN, the points shown in Fig. 12 are extracted by calculating
the average VAS in each current stimulation in all mentioned studies.

According to Fig. 12, increasing the level of ItDCS led to the decrement of the pain level
(VAS) exponentially.

By using the simulation results of the proposed model, the relationship between the rate
of S1 activity and ItDCS level is shown in Fig. 13.

Figure 13 shows an exponential relationship between the S1 activity and the strength of
ItDCS . As discussed in the introduction part, (1) the pain level is determined by the VAS;
(2) electrical stimulation (ItDCS) affects the pain level, and (3) the TN as a neuropathic
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Figure 12 The relationship between ItDCS and the mean value of VAS. The star point shows the mean level
of VAS when there is no stimulation obtained from [1, 8, 14]. The triangle point shows the mean level of VAS
when ItDCS = 1 mA obtained from [1, 8, 14]. The circular point shows the mean level of VAS when ItDCS = 2 mA
obtained from [15]

Figure 13 The output of model according to ItDCS

Figure 14 Map of S1 output on VAS

pain changes the pattern of the activities of the neurons [52]. Considering these three
points and combining the results presented in Figs. 12 and 13, an exponential relationship
between S1 activity and VAS index is obtained (see Fig. 14).
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According to Fig. 14, increasing the S1 activity can lead to the increment of the pain
level (VAS).

4 Discussion
TN is one the most severe forms of pain known among other neuropathic pains but the
treatment of it is still a challenge. Today, different treatment methods such as drugs, mi-
crovascular decompression, or surgeries are applied to reduce TN pain. Recently, tDCS
has attracted scientific attention as a tool for pain reduction, which can be considered a
safe, cheap, and accessible intervention. It has been believed that it may have influence
on neurotransmitters (e.g., Glutamate or GABA) and ion concentration in intracellular
and extracellular environments. For example, anodal tDCS, which is usually an excitatory
stimulation, results in GABA reduction [60]. On the other hand, the cathodal stimulation,
which is generally an inhibitory stimulation, causes a decrease of glutamatergic neuronal
activity with a highly correlated decrease in GABA [60, 61]. Despite the mentioned sug-
gestions, it is still unknown how tDCS affects neural processing. In this study, we aimed to
provide some possible ideas about the relationship between the effects of tDCS and the as-
sociated components in TN, using a computational model. According to the results of this
study, as shown in Fig. 6, the improper synthesis of proteins in particular channels (Nav1.8)
may result in a decrease in the sensation of neuropathic pain. As mentioned, some related
factors of slow sodium channels are believed to be analgesic highly selective medicines,
and abnormal sensitivity to pain is removed by descending impulse activity of the Nav1.8
channels [62, 63]. The treatment with carbamazepine, for example, which interacts with
and blocks such sodium channels, alleviates the symptoms of trigeminal neuralgia [64].
Because of the relationship between the activity of these channels and the pain, noxious
mediation may cause abnormal sensitivity states like hyperalgesia, which may be treated
by diminishing the activity of Nav1.8 [52]. The catastrophic pain of TN may stem from the
activity of these sodium channels in the trigeminal ganglion. Also, pain features affect the
response frequency of involved neural systems by influencing neurochemical interactions.

The proposed computational model includes some of the main regions involved in TN.
Each of these regions was modeled by a modified version of the HH differential equa-
tions, and the results of the simulations demonstrated some effects of the pain stimulus
and tDCS on the activity patterns of the model’s components. Although considering the
population effects of a large number of neurons involved in each area of the TN pathway
is highly valuable and is necessary for a better simulation, the complexity of the compu-
tations for considering an MHH for each neuron would definitely prevent us even from
getting such available results. The added equations to the HH model cause it to be six dif-
ferential equations which are considered for each block. Thus, it is almost impossible to
have a simulation by taking a large number of MHH equations into account in this kind of
modeling with Matlab software. As a result, better modeling with more similarities with
the real situation should be considered as future study. It is worth mentioning that, with
increasing the number of equations, the complexity of the model would be increased sig-
nificantly, and the model cannot be studied and verified analytically.

Besides, based on Thévenin’s theorem, any black box containing resistances only and
voltage and current sources can be replaced by a Thévenin equivalent circuit consisting
of an equivalent voltage source in series connection with an equivalent resistance; thus
the MHH equation can be considered as a model of the global behavior of a population of
neurons in the black box (block) of each part of the brain.
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According to Fig. 3, increasing the strength of the input stimulus (i.e., pain) led to the
decrement of the peak to peak output potential value and the increment of the output fre-
quency (i.e., the number of peaks). That is, as shown in Fig. 3, a further increment of the
pain stimulation does not necessarily result in the increase of the S1 activity and conse-
quently pain levels. It seems that there is a nonlinear relationship between the activity of
S1 and the strength of the pain stimulus.

The trigeminal ganglion and somatosensory neuronal potential behaviors are shown in
Fig. 4. While the noxious stimuli are increased, the output peak-to-peak activities of both
TG and S1 blocks would be increased as well. The augmentation of the number of peaks
and the amplitude of the activities was observed. Therefore, it can be speculated that the
more intensifying pain sensation in S1 and TG, the more annoyance and irritation for the
patients would occur.

The conductivity of pain channels, gNaS , is an influential and substantial parameter of
pain propagation in the neuronal pathway [52]. The outputs of the TG and S1 regions, cor-
responding to the two different pain channels’ conductivity, are shown in Fig. 6. The slow
sodium channels, pain channels, synthesis, and activity are reduced by the decrement of
the Nav1.8 channels conductivity. Thereby, the transmission of pain signals may be prop-
agated by decreasing the activity of gNaS , which may lead to pain relief. Incidentally, the
amplitude variation of outputs (e.g., Fig. 6) is because of the TN input pattern fluctua-
tion. As we can see in Fig. 6(b), the existence and absence of TN are more obvious than
Fig. 6(a) with a lower conductivity of the pain channels gNaS . In other words, the different
peak-to-peak values in different time steps stemmed from the existence and absence of
TN.

The diagrams related to Figs. 5 and 7 show the doubling behavior of the output activity
of the S1. As mentioned, they exhibit the bifurcating behavior both in the first part of the
figures and then in the second part of them, which are displaying the damping period of
them. In Figs. 5, 7, 8 to 11, the main point is that the range of the activity of the block is
determined in a specific range, so we can consider it as a ‘resonator’ instead of an ‘integra-
tor.’

In Figs. 8 and 9, the diagram of the nonlinear behavior of the system when changing
the values of I0 and gNaS parameters is provided. In Fig. 8, the output of the S1 block is
activated in the range between two Hopf bifurcation points. Therefore, by considering
the conductivity of slow sodium channels (gNaS) equal to 100, the somatosensory block
would resonate in a specific range of input stimulus, which is related to a painful stimulus.
Mathematically controlling the time of the occurrence of a bifurcation point is possible
[65]. Using such mathematical concepts, it has been shown that controlling the neuronal
behaviors is also possible [65]. In the current study, the onset of Hopf bifurcation points
(shown in Fig. 8) can be controlled. That is, the interval between two Hopf bifurcation
points can be changed by a specific parameter. The parameter that can control the loca-
tion of the Hopf bifurcations is gNaS . By decreasing the amount of gNaS , the somatosensory
block would resonate in a smaller range of input stimulus and output activity of S1, which
results in a more limited range. On the other side, increasing the gNaS will result in a higher
range of input stimuli and output activity of S1, as well. In conclusion, by controlling the
value of the parameter gNaS , the Hopf bifurcation points and pain related to it can be me-
diated.
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As shown in Fig. 9, the output of the S1 block is activated in the interval between two
Hopf bifurcation points. Therefore, considering the painful input stimulus equal to 30, the
somatosensory block would resonate in a specific range of conductivity of slow sodium
channels, which are related to pain and its pathways. The Hopf bifurcation points in Fig. 9
can be changed by modifying the I0 value. That is, by increasing the amount of I0, the
Hopf bifurcation points would be close to each other and the S1 activity would be in a
more limited region. By the increment of the S1 activity, the pain-related signals increase
as well. Therefore, by keeping both Hopf bifurcation points far from each other, we have
less pain-related signals.

In Fig. 10, the diagram shows Hopf bifurcation curves in the (I0, gNaS)-plane. By increas-
ing the values of I0 from negative to positive, the output values of S1 show more activity,
and the number of spikes increases. As mentioned before, while we choose an I0 and a
gNaS from the inside of the oval-shaped figure, the output values of the S1 shows oscilla-
tion, and a periodic behavior appears, which means the increment of pain-related signals.
As a result, the less oval-shaped the figure is, the less pain-related signal (i.e., periodic
signal) appears in the output activity of S1.

In Fig. 11, by applying an external electrical current to the motor cortex block, we see the
effect of external current stimulation. In this case, the motor cortex has two inputs. One in-
put comes from the previous block, and another input is the electrical current stimulation
over the M1 cortex. We called the second one ItDCS . Somatosensory and motor cortices
are connected functionally and structurally [6]. Therefore, they can influence each other
and cause a reduction in the sensation of pain. In this regard, the essential role of the mo-
tor cortex for alleviating pain will be shown in a certain measure, and such neuronal and
functional connections between M1 and other pain-related regions of the brain, especially
S1, are deemed to be the most crucial part of discussing pain relief by applying external
electrical stimulation. In other words, by applying anodal stimulation over the M1 area,
the sub-cortical, cortico-cortical, thalamocortical and connections in the brain may be
modulated, which can result in increasing the activity of significant circuits as inhibitory
pain pathways, e.g., the thalamus and PAG, in the brain, which then causes pain relief. As
shown in Fig. 11, by applying ItDCS , the somatosensory cortex (S1) potential activity is re-
duced. Therefore, it can be suggested that the pain signals in the region of S1 will be less
sensed, which is consistent with the reported results of the pain relief by tDCS [8].

Another capability of the model is its potential to map the S1 activities into the VAS
value. That is, if we get the output potential activity of S1 from the model, we can approx-
imately estimate the VAS value. Then we can find the amount of applied stimulation to
have a desired amount of VAS. About the tDCS variation for the motor cortex block, it
is shown in Fig. 13 that there was no difference in the model, as it shows little difference
between 1 mA and 2 mA even in reality (Fig. 12), which is about 0.5 in the VAS for TN.

It is worth mentioning that considering merely three points is a bit unconvincing for
contributing an exponential relation between VAS and the activity of S1. The point is that
there are very small numbers of experiments in this area working on tDCS and TN. So
it still needs to be validated and improved by further studies. Besides, Fig. 14 has been
extracted from Figs. 12 and 13, which are obtained from the experiments and the model,
respectively. So, there has been no experiment in which we could find a 0.5 mA or 1.5 mA
tDCS current to apply. As a result, the plotted numbers between 0 to 1 and 1 to 2 have
nothing to show as regards the results in Fig. 14, as well.
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5 Conclusion
The developed pain neuromatrix of TN consisted of main regions of the brain that were
modeled by an MHH model. By the current version of the model, the possible effect of
increasing the pain strength and also the external current stimulus on the TN neuroma-
trix components were investigated. For future work, other interventions (e.g., transcranial
alternating current stimulation (tACS)) to other blocks of the model are suggested. The
values of the conductivity and the capacitance could be specified for each block separately
in a future study to have a more accurate model.
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