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Abstract
The emergent activity of biological systems can often be represented as
low-dimensional, Langevin-type stochastic differential equations. In certain systems,
however, large and abrupt events occur and violate the assumptions of this approach.
We address this situation here by providing a novel method that reconstructs a
jump-diffusion stochastic process based solely on the statistics of the original data.
Our method assumes that these data are stationary, that diffusive noise is additive,
and that jumps are Poisson. We use threshold-crossing of the increments to detect
jumps in the time series. This is followed by an iterative scheme that compensates for
the presence of diffusive fluctuations that are falsely detected as jumps. Our approach
is based on probabilistic calculations associated with these fluctuations and on the
use of the Fokker–Planck and the differential Chapman–Kolmogorov equations. After
some validation cases, we apply this method to recordings of membrane noise in
pyramidal neurons of the electrosensory lateral line lobe of weakly electric fish. These
recordings display large, jump-like depolarization events that occur at random times,
the biophysics of which is unknown. We find that some pyramidal cells increase their
jump rate and noise intensity as the membrane potential approaches spike threshold,
while their drift function and jump amplitude distribution remain unchanged. As our
method is fully data-driven, it provides a valuable means to further investigate the
functional role of these jump-like events without relying on unconstrained
biophysical models.

Keywords: Stochastic differential equations; Jump-diffusion processes; Membrane
noise; Channel noise; Electric fish; Pyramidal neurons; Fokker–Planck equation;
Chapman–Kolmogorov equation

1 Introduction
Complex systems are ubiquitous in many areas of science, including biology, neuroscience,
climatology, engineering, as well as in finance and social sciences [1, 2]. The common
feature uniting such vastly different systems is the nonlinear interaction between their nu-
merous microscopic constituents. This collective activity leads to the emergence of macro-
scopic order that cannot be reduced to microscopic properties [3]. It is often these macro-
scopic variables that can be measured experimentally, allowing the emergent dynamics of
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the system to be captured by low-dimensional data sets. The search for a macroscopic-
level representation of the system thus relies on extracting dynamical information from
observed time series [4].

For some systems, the high-dimensional, microscopic degrees of freedom can be well
approximated by simple stochastic fluctuations. These fluctuations often participate as
dynamical noise in the macroscopic evolution of the system. The low-dimensional repre-
sentation of the system’s dynamics can then be expressed as a stochastic dynamical sys-
tem [5]. More specifically, the observed data are usually assumed to satisfy a Langevin-
type stochastic differential equation (SDE). A common approach is to obtain the drift and
diffusion functions of this equation by estimating the first and second Kramers–Moyal
coefficient [6, 7]. The resulting model is completely data-driven and captures the core
phenomenology of the original data without relying on knowledge or assumptions about
the microscopic constituents of the observed system. This approach has been successfully
applied in a variety of contexts, ranging from neuronal dynamics [8–12], heart rate vari-
ability [13, 14], turbulence [15, 16], calibration of optical tweezers [17], and others (see
Ref. [5] for a review).

In all mentioned cases, however, the noise is assumed to be purely diffusive, i.e., random
fluctuations with continuous sample paths. This description is incomplete if, in addition to
diffusive fluctuations, large and abrupt events appear at random times throughout the time
series. In this case, jump-diffusion stochastic processes provide a more appropriate frame-
work to model these data. Jump-diffusion processes have been used in neuroscience as a
model for the spatial [18–21] and temporal [22] organization of synaptic bombardment,
in physics as a model for noise-driven transport in ratchet potentials [23–25], as well as in
finance [26, 27] and soil moisture dynamics [28]. The Langevin approach is likely to fail if
the observed system exhibits jump-diffusion characteristics, such as skewed distributions
and sudden large jumps. In such cases, and especially when the microscopic dynamics
are unknown, extracting a phenomenological model from the experimental data would
provide a valuable tool to probe the dynamics of the observed system, its interaction with
other systems, and the interplay between diffusive and jump noise sources in shaping the
observed behavior.

In this paper, we present a novel, data-driven inference method that fits a jump-diffusion
SDE to experimental time series. By detecting jumps through threshold-crossing and by
calculating the contribution of diffusive fluctuations that are falsely detected as jumps,
we iteratively estimate the drift function, noise intensity, jump rate, and jump amplitude
distribution. The result of this semi-parametric method is a jump-diffusion SDE that suc-
cessfully fits the original data. Our method is applicable in cases where these data are
stationary, with additive diffusive noise and Poisson jumps. Note that other studies have
attempted to infer jump-diffusion dynamics from data, but they rely on assuming a para-
metric form of the jump amplitude distribution [29–31], or consider only Lévy processes
[32, 33].

We test our method with two validation cases, where realizations of known jump-
diffusion processes with different characteristics are used as validation data. In both cases,
by using only the simulated time series, we precisely recover the correct parameters and
functions used in the original simulations. We also compare the autocorrelation functions
(ACF) of the validation data and of fitted SDE. We then apply our method to recordings
of intrinsic membrane voltage fluctuations in pyramidal neurons of electric fish. These
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recordings contain sudden and unpredictable jump-like events that occur among more
typical diffusive membrane noise. Although the exact biophysical origin of these fluctua-
tions is unknown, we find that the recordings are well fitted by jump-diffusion processes.
We evaluate goodness of fit quantitatively by comparing the observed and the estimated
probability density functions (PDF) and power spectral densities (PSD). Interestingly, we
find that some pyramidal cells increase their jump rate and noise intensity as the mem-
brane potential approaches spike threshold, while their drift function and jump amplitude
distribution remain unchanged.

In Sect. 2, we present the various steps involved in the inference procedure, including
the detection scheme, the calculation relating to false positive, and the iterative approach.
In Sect. 3, we validate this procedure against one pure diffusion and two jump-diffusion
test cases, and then we apply it to neurophysiological recordings of membrane noise. This
is followed by a discussion on the possible generalizations of our method and on future
work with the experimental data (Sect. 4).

2 Methods
2.1 Definitions and overview
Let {X(t)} represent data in the form of a stationary time series. In what follows, {X(t)}
is obtained either from experimental observations or from numerical simulation. In ei-
ther case, the situation of interest here is when {X(t)} exhibits both diffusive fluctuations
and abrupt events (henceforth called jumps). From {X(t)}, our goal is then to fit a jump-
diffusion SDE of the form

dY (t) = F
(
Y (t)

)
dt +

√
2D dW (t) + dJ(t), (1)

where F is the drift function, D is the noise intensity, and W (t) is a Wiener process (i.e.,
Brownian motion). Here J(t) is a compound Poisson process representing the jumps

J(t) =
Nλ(t)∑

i=0

Bi, (2)

where Nλ(t) is a Poisson point process with rate λ, and the Bi’s are the independent and
identically distributed jump amplitudes drawn from a distribution QB. For a small enough
sampling interval, or time step �t, jumps will occur with probability ΓB ≡ λ�t.

Although the method developed herein is applicable to a wide array of experimental
data types, we do, however, impose certain conditions on the underlying dynamical pro-
cess. Notably, we limit our analysis to systems where the dynamics are stationary (in the
strict sense), the diffusion noise is additive, the jumps have positive amplitudes (Bi > 0),
and where the Poisson rate λ is constant in time and small enough so that ΓB � 1. Further-
more, we assume here that F is continuous and that a single stable fixed point arises from
the deterministic part of the dynamics, but our method could be generalized to multistable
systems. Except for this restriction, we assume no particular shape for the drift function
as long as it generates a stationary process. Finally, we assume that, on average, jump am-
plitudes are greater than the typical magnitude of diffusive increments: E[Bi] > (2D�t) 1

2

by one order of magnitude of more.
In terms of the time series itself, we assume that the data were sampled at a high-

frequency, such that �t can be assumed to be small with respect to the total duration
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of the time series. Note that the value of �t is set from the experiments that produced the
data, and so is not a variable we can control. For experimental data, however, it is possible
that the Markov property breaks down on the timescale of individual observations [5], but
we assume that, in that case, the time series can be downsampled to a timescale where the
Markov property then holds.

Furthermore, in the cases considered below, jumps appear unambiguously in the data,
and so a jump-diffusion approach is warranted. In situations where this is not the case,
the presence of jumps can be assessed from the fourth-order Kramers–Moyal coefficient,
which is non-vanishing for processes with discontinuities [31, 34]. Lastly, note that we
make no assumptions regarding the structure of the ACF of {X(t)}; we only assume sta-
tionarity in these data. In fact, we compare the ACFs (and PSDs) of time series generated
by the fitted SDE with those of the original data as a means of validating the inference
procedure.

Below we develop a data-driven inference procedure that successfully generates the
estimates D̂, λ̂, F̂ , and Q̂B, where the unknown functions F and QB are estimated non-
parametrically. This inference procedure results in a fitted stochastic process Y (t) that is
an adequate model of the original data. In this sense, we implicitly assume that the data
{X(t)} are sampled from a realization of Y (t). In our calculations, we thus associate the
first-order equilibrium PDF of Y (t), PY , to the empirical PDF of {X(t)} (obtained by kernel
density estimation) PX .

Our approach is predicated on the detection of jumps in the data via the applica-
tion of a threshold θ∗ > 0 on the increments �X(t + �t) ≡ X(t + �t) – X(t). This
procedure creates a pool of detected jumps with various amplitudes. Let QC be the
empirical PDF estimated from these measured jump amplitudes. Also, let n be the
total number of increments in the time series, and m be the number of increments
whose value is greater than θ∗. We define the (overall) jump detection probability as
ΓC ≡ Prob{detecting an increment larger than θ∗ across an interval �t}, which we esti-
mate from the data as ΓC = m

n .
An inherent challenge with this threshold-crossing approach is that, in addition to the

true jumps generated by the compound Poisson process, we also unavoidably detect large
diffusive fluctuations that are falsely identified as jumps, henceforth called false positives
(FP; Fig. 1, top). A direct estimation of the true jump rate λ and of the true jump amplitude
distribution QB is thus impossible because the detected jump pool consists of a mixture of
true jumps and false positives. Our main contribution, and the central component of our
inference procedure, is the calculation of FP-related statistics, namely the FP detection
probability ΓA ≡ Prob{detecting a diffusive increment larger than θ∗ across a given time
step �t} and the distribution from which FP amplitudes are drawn QA. Once ΓA and QA

are calculated, we then extract λ (or, equivalently, ΓB) and QB from ΓC and QC . Note that
the subscripts “A”, “B”, and “C” will hereafter refer to FPs, true jumps, and both combined,
respectively. More precisely, we measure quantities in “C” from the detected jump pool,
we calculate FP statistics in “A”, and we seek the true jump statistics in “B”.

2.2 Choice of threshold
To ensure that a minimal number of true jumps are missed during the jump detection pro-
cedure, the threshold θ∗ should ideally be set as low as possible. If set too low, however,
the number of FPs becomes so large that the statistics of true jumps, i.e., λ and QB, cannot
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Figure 1 Jumps are detected by applying a threshold on the increments, but this also creates false positives. Top:
An example of a simulated jump-diffusion process where both true jumps (grey dots) and false positives (grey
rings) are detected. The inset shows how the jump offset can be registered even if subsequent increments are
positive. Bottom: Increment time series of the simulated process in the top panel. A jump is detected every
time an increment exceeds the threshold. In this exaggerated case, true jumps are well above threshold, while
false positives barely exceed it. This clear separation is not generally the case

Figure 2 The choice of θ∗ is based on comparing the statistics of positive and negative increments. We show here
how this strategy is applied to the two jump-diffusion validation cases presented in Sect. 3.2. (A) The
presence of true jumps allows the PDF of positive increments (blue histogram) to be differentiated from that
of negative increments (red histogram) above a certain threshold (dashed line). (B) This threshold is chosen as
the inflection point (red asterisks) of the difference between the sample means of the (truncated) positive and
negative increments

be extracted from the statistical fluctuations of QC and ΓC . We thus aim for an intermedi-
ate value of θ∗ that captures most true jumps while allowing a manageable number of FPs.
This is done by relying on our assumption of positive jump amplitudes and, more precisely,
by exploiting the asymmetry between positive and negative increment statistics. Note that
the threshold depends implicitly on the time step of the original time series: a smaller �t
means that diffusive fluctuations are smaller, and thus a smaller value of θ∗ can be used.

Let {�X+} and {�X–} be the sets of positive and negative increments of {X(t)}, respec-
tively (Fig. 2(A)). In addition, let M+(θ ) = {�X+ : �X+ > θ} and M–(θ ) = {–�X– : –�X– >
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θ} be the reduced sets truncated by θ , where θ spans the common range of {�X+} and
{–�X–}. We use the difference between the sample mean of these sets M+ – M– as a func-
tion of θ to quantify the relative importance of true jumps with respect to diffusive fluc-
tuations, over different increment sizes. The value of θ for which M+ – M– is a maximum
corresponds to the greatest separability between positive and negative increments. We
find, however, that using the inflection point, i.e., where the second derivative becomes
0, located to the left of this maximum (Fig. 2(B), asterisks) is a better choice of threshold.
This slightly lower value retains a greater range of true jumps, which is desirable, while
avoiding the inclusion of an overwhelmingly large number of FPs. Choosing this inflec-
tion point rather than the maximum impacts primarily the estimation of λ, since it relies
on the proper detection of true jumps in the time series. A slightly higher value of θ∗ will
introduce a bias in λ̂. For instance, in the first jump-diffusion validation case that we con-
sider in Sect. 3.2, choosing the maximum as the threshold roughly yields a 1% increase in
the error on λ̂ compared to when the inflection point is used. Our approach for setting θ∗

is thus motivated by the fact that it is advantageous to choose a value as small as possible
for θ∗, and the inflection point in the curve of M+ – M– provides a reliable way to achieve
this.

2.3 Jump detection
Here we describe how the threshold is applied to the increments in order to generate
the detected jump pool. We apply a detection scheme tailored specifically to handle two
aspects that we observe in experimental data with jumps, and it is inspired by the method
used in [35]. Firstly, if the data are resolved on a fine enough time scale, jumps may last
longer than a single sampling interval. Secondly, jumps need not be followed immediately
by negative increments. In data, and in some simulations as well, the diffusive increments
following a jump can still be positive, but we seek a method for identifying when the jump
actually ends (Fig. 1, inset). These two considerations shape the method used to calculate
the FP amplitude distribution in Sect. 2.4.2.

When a given increment is larger than the threshold, a jump onset time Ton is registered,
and if the next increment is below threshold, the associated offset time Toff is registered
(even if this increment is positive). This defines a jump of duration Toff – Ton = �t, where
�t is the sampling interval of the data. We henceforth refer to this type of jump as a sin-
glet, as it spans the duration of a single time step. In contrast, if two or more successive
increments are above threshold, then the jump is of duration 2�t or more, which we refer
to as a doublet, triplet, and so forth. In other words, the jump offset time is only registered
at the end of the sequence of above-threshold increments. With the onset and offset times
identified, a jump amplitude is defined as the difference between X(Toff ) and X(Ton).

2.4 FP and true jump statistics
Here we present the calculations of the FP detection probability ΓA and of the FP ampli-
tude distribution QA. We then show how these quantities are used to extract the true jump
rate λ and the true jump amplitude distribution QB from the detected jump probability ΓC

and the detected jump amplitude distribution QC . For the calculations in this subsection,
we assume that the drift function F and noise intensity D are known. In the next sub-
section, we show how these calculations can be incorporated into an iterative scheme that
allows the simultaneous estimation of all unknowns, including F and D. Furthermore, note
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that the FP-related calculations involve only the diffusive part of Eq. (1) since, by defini-
tion, FPs occur during the purely diffusive segments between true jumps. The calculations
in Sects. 2.4.1 and 2.4.2 thus pertain only to diffusive increments �Y diff (t). Finally, note
that we perform validation tests of the calculations of ΓA and QA in Sect. 3.1.

2.4.1 FP detection probability
As mentioned in Sect. 2.1, sampling a jump-diffusion process such as Eq. (1) at finite in-
tervals and applying a threshold on the observed increments leads to the detection of FPs,
i.e., diffusive (rather than true jump) increments larger than the threshold. Importantly,
these FPs occur with a probability that depends on the value of the process at the start of
the interval. Let this conditional detection probability be defined as

α(y) ≡ Prob
{

detecting an FP in the interval [t, t + �t], given that Y (t) = y
}

= Prob
(
�Y diff (t + �t) > θ∗|Y (t) = y

)
. (3)

As α does not depend explicitly on time, this definition relies on our assumption that
Y (t) is stationary. The y-dependence arises from the drift function F . Indeed, if the drift
function is positive (respectively, negative) at a given time, it biases diffusive fluctuations
toward (away from) the threshold. This translates into an FP detection probability that
assumes higher values when F(y) > 0 than when F(y) < 0. We now turn to the explicit
calculation of α(y).

Let Ξ�Y |Y (ξ |Y (t) = y) denote the PDF of �Y diff (t + �t) conditioned on the value of the
process at the start of the interval, and where ξ assumes the possible values of the incre-
ments. Note that, because the time step remains constant, it is always implied that the
increments are defined across an interval �t. Given that we assume �t to be sufficiently
small, we approximate Ξ�Y |Y as the short-time propagator of the Fokker–Planck equation
[36, 37] associated with the diffusive part of jump-diffusion process (recall that what con-
cerns us here are the purely diffusive segments between the true jumps of Y (t)). We thus
have �Y diff (t + �t) ≈N (F(Y (t))�t, 2D�t) and

Ξ�Y |Y
(
ξ |Y (t) = y

) ≈ 1√
4πD�t

exp

(
–

(ξ – F(y)�t)2

4D�t

)
, (4)

that is, a Gaussian distribution with mean F(y)�t and variance 2D�t.
For the test cases presented in Sect. 3 (with �t = 10–4 s), we have validated this ap-

proximation by comparing it with numerical solutions of the associated Fokker–Planck
equation solved at a finer temporal resolution (�t/1000) across the time step �t. The nu-
merical solutions were indeed well fitted with the approximation in Eq. (4) (not shown).
Numerical integration was performed with a custom partial differential equation solver
that implements a finite volume discretization along with the fully implicit Euler scheme.
The advective term was treated with the upwind scheme, and a linear interpolation profile
for the spatial derivative was applied to the diffusive term. The resulting algebraic equation
was solved with the tridiagonal matrix algorithm [38].

Once the conditional PDF of the increments is evaluated with Eq. (4), we calculate the
conditional FP detection probability, given that the process starts at y, as follows:

α(y) =
∫ ∞

θ∗
Ξ�Y |Y

(
ξ |Y (t) = y

)
dξ , (5)
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that is, the probability of observing an increment larger than θ∗ starting at y. Finally, the
unconditional FP detection probability is calculated based on the empirical PDF of {X(t)},
PX :

ΓA =
∫ ∞

–∞
α(y)PX(y) dy. (6)

We validate these calculations in Sect. 3.1.

2.4.2 FP amplitude distribution
We now proceed with the calculation of QA, i.e., the distribution from which FP amplitudes
are drawn. First, recall that our detection scheme allows for jumps of different durations
(Sect. 2.3). As such, the detection of an FP implies either a succession of above-threshold
increments (e.g., Fig. 3(A)) or, at least, a single above-threshold increment. Let TFP

on denote
the FP onset time, that is, the time at the start of the first above-threshold increment, and
let Y0 ≡ Y (TFP

on ) be referred to as the starting value of the FP. Moreover, let τ denote the FP
duration, an integer multiple of �t, such that τ = �t corresponds to an FP singlet, τ = 2�t
to an FP doublet, and so forth.

In order to calculate QA, let us first identify the factors that influence FP amplitudes.
Firstly, it must be noted that the FP amplitudes will exhibit a similar y-dependence as that
discussed in the preceding section. Indeed, an increment starting at Y0 ≡ Y (TFP

on ) = y will
tend to be larger when F(y) > 0 than when F(y) < 0. Secondly, the amplitude of an FP will
also depend on its duration, τ . For instance, the three increments of a triplet FP will sum-
mate and tend to have a larger amplitude than that of a singlet. The FP amplitudes A will
thus covary with Y0 and with τ , but note that τ also depends on Y0. Indeed, longer FPs
will tend to occur where the drift function is more positive, and vice versa. To account for
these dependencies, let us define the trivariate random variable {A, τ , Y0}, distributed ac-
cording to its joint PDF PA,τ ,Y0 (a, i�t, y), where we explicitly write τ as an integer multiple
of �t. What we seek then is the marginal:

QA(a) =
∫ ∞

–∞

∞∑

i=1

PA,τ ,Y0 (a, i�t, y) dy, (7)

Figure 3 The estimate of QA is obtained through a probabilistic analysis of FP detection. (A) Example of a diffusive
fluctuation registered as an FP triplet. (B) The situation in A is addressed by calculating ρi , the PDF of Yi
conditioned on Y0. (C) From ρi–1, we then calculate Ξi , the PDF of �Yi conditioned on Y0, which is used to
evaluate Zi (shaded area), the probability that the ith increment is above threshold, given Y0. Note that,
although they look similar, the Ξi ’s are slightly different from each other
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where the sum extends over all possible FP durations, and where a > 0 represents all pos-
sible amplitudes. From the definition of conditional PDFs, we can expand the joint PDF as
follows:

PA,τ ,Y0 (a, i�t, y) = PA|τ ,Y0 (a|i�t, y)Pτ ,Y0 (i�t, y)

= PA|τ ,Y0 (a|i�t, y)Pτ |Y0 (i�t|y)PY0 (y), (8)

where Pτ |Y0 (i�t|y) = Prob(detecting an FP of duration i�t, given the starting value y) is
the conditional probability mass function of the FP duration τ . We can thus write Eq. (7)
asa

QA(a) =
∫ ∞

–∞

( ∞∑

i=1

PA|τ ,Y0 (a|i�t, y)Pτ |Y0 (i�t|y)

)

PY0 (y) dy. (9)

The sum in the large parentheses is a function of y, and Eq. (9) is merely calculating its
average with respect to the starting value Y0. This sum can further be interpreted as a so-
called mixture distribution: consider a collection of random variables, one of which is cho-
sen according to a certain probability (its mixture weight) and is then realized according to
its own PDF (its mixture component). The outcome of this experiment is itself a random
variable whose PDF is called a mixture distribution and is expressed as a sum over the
PDFs of the random variables in the collection, weighted by their respective probabilities.
In our case, for a fixed value of Y0, an FP duration is drawn according to a countable set
of mixture weights Pτ |Y0 , and an FP amplitude is then realized according to the associated
mixture component PA|τ ,Y0 . In practice, the sum will be truncated after the first few terms
because the subsequent mixture weights become negligible.

From Eq. (9), we see that in order to arrive at the desired QA, the functions PA|τ ,Y0 , Pτ |Y0 ,
and PY0 must first be calculated. Let us first consider the latter. Because Y0 represents, by
definition, the value of Y (t) at the start of an above-threshold increment, we can express
its PDF in terms of the joint PDF of �Y diff (t + �t) and Y (t):

PY0 (y) = K
∫ ∞

θ∗
P�Y ,Y (ξ , y) dξ

= K
∫ ∞

θ∗
Ξ�Y |Y

(
ξ |Y (t) = y

)
PY (y) dξ

= KPY (y)
∫ ∞

θ∗
Ξ�Y |Y

(
ξ |Y (t) = y

)
dξ

= KPX(y)α(y), (10)

where K is a normalization constant and where, in the last line, we have replaced PY by
the empirical PDF of {X(t)}. Note that we integrate with θ∗ as a lower bound in order to
enforce that Y0 is associated with the onset of an above-threshold increment. Let us now
consider the calculation of PA|τ ,Y0 .

In what follows, we simplify the notation by labeling time with the index i, such that
i = 0 represents the time TFP

on , i = 1 the time TFP
on + �t, i = 2 the time TFP

on + 2�t, and so
forth. With this notation, Yi ≡ Y (TFP

on + i�t) denotes the ith point following the FP onset
time, and �Y diff

i ≡ Yi –Y(i–1) the ith diffusive increment. Furthermore, our focus here is on
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FPs of duration, say i�t, which corresponds to a sequence of i successive above-threshold
increments. As such, the forthcoming calculations involve PDFs that are implicitly condi-
tioned on the event {�Y diff

n > θ∗,∀n ≤ i}.
For an FP of duration τ = i�t starting at Y0, we define its amplitude as A = Yi – Y0, and

we seek the conditional PDF PA|τ ,Y0 . For this purpose, let ρi(y) ≡ PYi|Y0 (y|y0) denote the
PDF of Yi, i > 1, conditioned on Y0. Since A is expressed as the difference between Yi and
Y0, we can directly write

PA|τ ,Y0 (a|i�t, y0) = ρi(a + y0). (11)

The ρi’s, for i > 1, are evaluated sequentially based on the fact that Yi = �Y diff
i + Yi–1. The

PDF of this sum, conditioned on Y0, gives

ρi(y) =
∫ ∞

–∞
P�Yi ,Yi–1|Y0 (ξ , y – ξ |y0) dξ

=
∫ ∞

–∞
P�Yi|Yi–1,Y0 (ξ |y – ξ , y0)PYi–1|Y0 (y – ξ |y0) dξ

=
∫ ∞

–∞
P�Yi|Yi–1 (ξ |y – ξ )ρi–1(y – ξ ) dξ . (12)

To enforce the condition of above-threshold increments, {�Y diff
n > θ∗,∀n ≤ i}, we evaluate

P�Yi|Yi–1 based on Eq. (4), but we truncate the distribution below ξ = θ∗:

P�Yi|Yi–1 (ξ |y) = K

⎧
⎨

⎩
Ξ�Yi|Yi–1 (ξ |Y (t) = y) if ξ > θ∗,

0 otherwise,
(13)

where K is a normalization constant. With Eq. (13) and (12), we finalize the calculation of
PA|τ ,Y0 in Eq. (11). In Fig. 3(B), we see the representation of the ρi for an FP triplet. From
ρi, we can also calculate the PDF of �Y diff

i , conditioned on Y0 (this will be useful in the
calculation of Pτ |Y0 ). Let this PDF be defined as Ξi(ξ ) ≡ P�Yi|Y0 (ξ |y0). We calculate it as a
marginal over Yi–1:

Ξi(ξ ) =
∫ ∞

–∞
P�Yi ,Yi–1|Y0 (ξ , y|y0) dy

=
∫ ∞

–∞
Ξ�Yi|Yi–1 (ξ |y)ρi–1(y) dy, (14)

where the dependence of Ξ�Yi|Yi–1 on Y0 disappears because of the Markov property. In
Fig. 3(C), we see the representation of the Ξi ’s for an FP triplet.

We now turn to the calculation of Pτ |Y0 , the probability of observing an FP of duration
τ , conditioned on the starting value Y0. We are interested in the conditional probability of
the event {τ = i�t}, where i is an integer. This event is equivalent to the intersection of the
events E1 ≡ {�Y diff

1 > θ∗}, E2 ≡ {�Y diff
2 > θ∗}, . . . and E′

i+1 ≡ {�Y diff
i+1 ≤ θ∗}. In other words,

we obtain an FP of duration i�t when the first i increments are above threshold, but the
(i + 1)th increment is below threshold.
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By successively applying the definition of conditional probability, we can expand Pτ |Y0

as follows:

Pτ |Y0 (i�t|y0) = Prob(τ = i�t|y0)

= Prob

[

E′
i+1 ∩

( i⋂

n=1

En

)∣
∣∣y0

]

= Prob

[

E′
i+1

∣∣
∣

( i⋂

n=1

En

)

, y0

]

· Prob

[

Ei

∣∣
∣

( i–1⋂

n=1

En

)

, y0

]

· Prob

[

Ei–1

∣∣
∣

( i–2⋂

n=1

En

)

, y0

]

· . . . · Prob(E2|E1, y0) · Prob(E1|y0).

Let Zi(y0) ≡ Prob[Ei|(⋂i–1
n=1 En), y0], i > 1, represent the probability that the ith increment

is above threshold, given that the i – 1 previous increments were also above threshold,
and given the starting value y0. These Zi’s can be calculated from the Ξi’s of Eq. (14) as
(Fig. 3(B), shaded area):

Zi(y0) = Prob
(
�Y diff

i > θ∗|�Y diff
n > θ∗,∀n < i; y0

)

=
∫ ∞

θ∗
Ξi(ξ ) dξ . (15)

We now arrive at the desired probability mass function:

Pτ |Y0 (i�t|y0) = Prob(τ = i�t|y0) =
(
1 – Zi+1(y0)

) i∏

n=1

Zn(y0), (16)

where we have used the fact that 1 – Zi+1 is equal to the probability that the (i + 1)th
increment is below threshold, and where we have defined Z1(y0) ≡ Prob(E1|y0) = α(y0),
i.e., the probability that the first increment after Y0 is above threshold. Once Eq. (10), (11),
and (16) are evaluated, we apply Eq. (9) to obtain the desired QA. Using this approach, we
obtain an excellent agreement between theory and simulations, as reported in Sect. 3.1.

2.4.3 True jump rate
Our estimate of the true jump rate λ relies on the knowledge of the overall jump detection
probability ΓC and on the FP detection probability ΓA (both defined in Sect. 2.1). Recall
that we calculate ΓA from Eq. (6), while we estimate ΓC directly from the data as m/n,
where m is the number of time steps with �X(t) > θ∗ (either from a true jump or an FP)
and n is the total number of time steps in the data time series. On the other hand, from
the definition of ΓC we can write:

ΓC ≡ Prob
{

detecting an increment larger than θ∗ across an interval �t
}

= Prob
{

(detecting an FP across �t) ∪ (detecting a true jump across �t)
}

= ΓA + ΓB – ΓAΓB

= ΓA + λ�t – ΓAλ�t, (17)
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where ΓB = λ�t is the probability of observing a true jump in an interval �t. This is merely
a statement of the addition law of probability, which would read: the probability of detect-
ing a jump in an interval �t is the sum of the probability of observing a true jump, plus that
of observing an FP, minus the probability of observing both at the same time, where we
use the fact that FPs and true jumps are independent events. For the test cases described
in Sect. 3.2, isolating λ in Eq. (17) is accurate up to an error of 0.02%.

2.4.4 True jump amplitude distribution
As in the previous subsection, we obtain an estimate for the true jump amplitude distri-
bution QB based on the empirical PDF of jump amplitudes measured from the time series
QC and on the calculated FP amplitude distribution QA. Because detected jumps are a
mixture of true jumps and FPs, we can write, a priori,

QC = WAQA + WBQB, (18)

where WA = ΓA
ΓC

is the probability that a detected jump is an FP, and WB = ΓB
ΓC

that it is a
true jump. The subtlety here is that, contrary to FPs, true jumps are never detected on
their own, as they always summate with a diffusive fluctuation. In other words, we never
observe the Bi’s directly, but rather the Bi’s plus a diffusive increment. Over a short enough
time step, diffusive increments are Gaussian variables and are approximately independent
of each other. For the purpose of calculating QB, we will thus assume these increments are
Gaussian with mean zero and variance 2D�t. Properly accounting for the y-dependence
of the mean would be more precise, but would require QC to be broken down into a family
of distributions parameterized by y, which would require a very large number of detected
jumps in the data.

Let Ξ̃ represent a Gaussian distribution with zero mean and variance 2D�t. The QB in
Eq. (18) should thus be replaced by the convolution Ξ̃ ∗QB. Furthermore, WA must in fact
be reduced by a factor (1 – ΓB) to account for the probability that FPs can occur during
the same interval as a true jump. This leads to

QC =
ΓA(1 – ΓB)

ΓC
QA +

ΓB

ΓC
(Ξ̃ ∗ QB). (19)

From this equation, we isolate the convolution term and apply the basic deconvolution
algorithm [39] to extract QB. Let f be a measured, convolved signal, where the convolution
kernel h is known. We seek the intact signal g , such that f = (h∗g). We compute an estimate
of g at each iteration as gk+1 = gk + [f – (h ∗ gk)], with g0 = f . The algorithm converges once
the correct signal is reached, since the residual between f and (h ∗ gk) then becomes zero.

2.5 Iterative procedure, noise intensity, and drift function
We now turn to the problem of the simultaneous data-driven estimation of all the un-
knowns in Eq. (1). To this end, we incorporate the calculations of Sect. 2.4 in the itera-
tive scheme depicted in Fig. 4, which consists of three main branches. The first two ini-
tial branches, I and II, are independent and are performed only once; this is followed by
branch III where the iterations take place. In branch I, the threshold is set (Sect. 2.2) and
then applied to the time series to yield the detected jump pool, from which ΓC and QC

are obtained (Sect. 2.3). The noise intensity is estimated in branch II, along with an initial
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Figure 4 Overview of the flow of our iterative procedure. In both validation cases, a satisfying estimate is
obtained after about 10 iterations. The threshold and noise intensity are estimated directly from the data in I
and II, while the true jump rate and amplitude distribution, as well as the drift function, appear in the iterative
phase III. Note that the true jumps statistics are not yet established in II, and this is why we resort to the
Fokker–Planck equation as a means to obtain a preliminary guess of the drift function F̂1. A more refined
estimate of F is later obtained at the end of branch III

guess for the drift function F̂1, which are both used in the first iteration of branch III to
calculate Γ̂B and λ̂ (Sect. 2.4). The last step in branch III uses D̂, Γ̂B, and λ̂ to estimate the
drift function F̂ , which is fed back to the first step of branch III in order to iteratively refine
the estimation procedure.

2.5.1 Noise intensity
As depicted in Fig. 4, the estimation of D does not rely on the value chosen for θ∗. It does,
however, still use the notion of applying a threshold on the increments. Indeed, calculating
D̂ relies on partitioning {X(t)} into mostly jump-free segments, the length and number of
which is sensitive to the value of the threshold used for detection: the lower the threshold,
the more jumps are detected (some of which are FPs) and the shorter these partitions are,
which, as explained below, can skew the estimate of D. A high threshold, on the other
hand, leaves a significant number of true jumps in those segments. The goal here is thus
to vary the threshold θ in order to obtain the optimal estimate of D.

In the limit of an infinitesimally small sampling interval, �t → 0, the quadratic variation
[Y diff (t)] of a pure diffusion process converges to the so-called integrated variation, which,
for additive and time-independent noise, gives [40, 41]

[
Y diff (t)

]
=

∫ T

0
2D ds = 2DT , (20)

where T = (n – 1)�t is the total duration for the n samples of {X(t)}. We can, therefore,
estimate D via the sample quadratic variation, also known as realized variance, RV (t) [40,
41]:

D̂ ≈ 1
2T

RV (t) =
1

2T

n–1∑

k=0

(
Xdiff (tk+1) – Xdiff (tk)

)2. (21)

For instance, for a test diffusive process with F(y) = –0.2y and D = 0.15 and sampled at
�t = 0.01 s (N = 106), Eq. (21) estimates D with an error of 0.002%. In contrast, apply-
ing Eq. (21) to a realization of a jump-diffusion process returns an overestimated D̂, as
expected due to large, non-diffusive, positive increments that populate {X(t)}. Also note
that if the threshold is set low enough to detect the smallest true jumps, in general, it can
also remove the largest diffusive increments, which are required to properly apply Eq. (21).
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Simply removing the detected jumps from the sum in Eq. (21) would, therefore, yield an
underestimated D̂.

To circumvent this problem, we consider only the negative increments of {X(t)} in the
calculation of D̂, as they will remain essentially unaffected by the presence of positive
jumps, with the exception of a short transient following the jump offset. Indeed, following
each jump, we expect to see a brief period where the process is out of equilibrium. And
since the jumps have positive amplitudes, negative increment statistics are biased toward
negative values during this transient (e.g., Fig. 1). The calculation of D̂ is thus based on ap-
plying Eq. (21) to jump-free segments of {X(t)}, but only including negative increments,
and neglecting the initial transient at the start of each segment (the duration of which is
determined below). This is repeated for various values of θ . The successful estimation of
D based only on negative increments relies on our assumption that �t is small, for in this
case increments are approximately independent and distributed as N (0, 2D�t). For larger
�t, the increment PDF can become asymmetric, meaning that the statistics of negative in-
crements differ from those of positive ones, which would cause errors in our estimation
of D.

Let Toff and Ton denote the jump offset and onset times, respectively. Note that the
values of these times and the number of detected jumps all depend on the specific value
of the threshold. Then the ith segment is defined by {S(t)}i = {X(t) : Toff (i) < t < Ton(i + 1)}
and is of duration Ti = Ton(i + 1) – Toff (i), and let {�S(t)}i be its ni increments. Out of these
ni increments, we keep only the n–

i that are negative and that occur after the transient of
approximate duration Φ . We are thus left with the following subset of increments from
each segment:

{
�S(t)

}–
i =

{{
�S(t)

}
i :

{
�S(t)

}
i < 0, t > Φ

}
. (22)

For each segment, we obtain an estimate D̂i as follows:

D̂i =
1

2T–
i

n–
i∑

k=1

({
�S(tk)

}–
i

)2, (23)

where T–
i = n–

i �t is the effective duration of the combined n–
i negative increments. We

then calculate D̂ as an average of the D̂i’s, weighted by Ti/T .
More precisely, here are the steps taken in order to arrive at D̂:
• Starting from the largest value of {�X(t)}, lower the threshold until the largest 5% of

jumps are detected, which are the ones with the most prominent transient.
• Let {S∗(t)}i be the segments that follow these jumps (Fig. 5(A)). Average across them

for each time step, creating a jump-triggered average trace (Fig. 5(A)), black line).
• Identify Φ as the approximate moment when the jump-triggered average stabilizes,

quantified here as when its derivative is less than 0.05 (results do not depend strongly
on this particular value: changing Φ by one order of magnitude on either side of the
value used here yields estimates of D that differ by less than 0.2%). This gives us an
estimate for the maximum time scale required for post-jump equilibrium.

• With Φ determined, and for each value of the threshold, extract the {S(t)}i ’s (Fig. 5(B))
and apply Eq. (23) to their negative increments for which t > Φ (neglecting segments
for which Ti < Φ).
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Figure 5 Calculating D̂ relies on partitioning {X(t)} in jump-free segments for different threshold values. We show
here how this strategy is applied to the two jump-diffusion test cases presented in Sect. 3.2. (A) A
jump-triggered average (black curve) is obtained from the largest 5% jumps in the data and is used to obtain
a maximum estimate of the transient time scale Φ (dashed line). (B) Jump-free segments used to calculated
the optimal value of D̂ in C. (C) Different estimates of D are produced for different values of the threshold. We
heuristically choose the minimum value as the optimal value. Traces in A and B are from Case 2

This scheme results in an estimate D̂ for each value of the threshold, and the lowest value
is chosen as the optimal estimate (Fig. 5(C)). This is because this approach overestimates
D on both ends of the range of threshold values, but for different reasons. For low θ , many
more jumps are detected, and this makes the {S(t)}i’s shorter, which means that the asso-
ciated D̂ is more prone to be biased by the residual of the transient. On the other hand, a
very high threshold leaves significant jumps in the {S(t)}i’s, which biases the statistics of
negative increments. The optimal balance is reached somewhere in-between, where the
segments are large enough so that the initial transient is negligible, and where the jumps
that are inevitably left in the segments do not significantly alter the statistics of negative
increments. The heuristic choice of an intermediate value, namely one that corresponds
to the minimal D̂ estimate, gives excellent results in both validation cases (less than 0.1%
error, see Table 2).

2.5.2 Drift function
Our estimation of the drift function F relies on the differential Chapman–Kolmogorov
equation [42], which describes the evolution of the transition probability of a stochastic
process where jumps occur alongside diffusive fluctuations. Let Y (t) be a jump-diffusion
process with transition probability PY |Y0 . For the case of positive Poisson jumps and ad-
ditive diffusive noise, the differential Chapman–Kolmogorov equation reduces to (see the
Appendix)

∂PY |Y0 (y, t|y0, t0)
∂t

= –
∂

∂y
[
F(y)PY |Y0 (y, t|y0, t0)

]
+ D

∂2

∂y2 PY |Y0 (y, t|y0, t0)

– λPY |Y0 (y, t|y0, t0) + λ

∫ ∞

0
QB(s)PY |Y0 (y – s, t|y0, t0) ds. (24)

If Y (t) is assumed to have reached its equilibrium state, then the left-hand side vanishes,
and in the right-hand side we can replace the transition probability with the first-order
equilibrium PDF, PY ,b which we assume to be equal to the empirical PDF, PX , of the mea-
sured time series {X(t)}. The drift function can then be evaluated from Eq. (24) if D, λ,
and QB are known (or estimated).
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Note, however, that F̂ is required in the first step of branch III of the iterative proce-
dure (Fig. 4), since the FP-related statistics, ΓA and QA, are calculated based on the drift
function. A preliminary estimate F̂1 of the drift function is thus required. This particular
estimate, which is needed only once throughout the inference procedure, is obtained by
letting λ = 0 in Eq. (24), such that it becomes the Fokker–Planck equation associated with
the diffusive part of the stochastic process. The stationary solution of this Fokker–Planck
equation can be used to establish a relation between the noise intensity, the drift function,
and PY [37, 43]:

PY (y) =
K
D̂

exp

(
–

∫ F̂1(y)
D̂

dy
)

, (25)

where K is a normalization constant and where, again, we assume that PY = PX . This first
preliminary estimate is necessarily flatter than the true F , as the presence of jumps makes
PX wider than it would be if there were no jumps. Successive iterations gradually rectify
this by incorporating estimates of λ and QB in Eq. (24).

3 Results
Here we present three applications of the method developed above. First, we validate the
calculation of ΓA and QA for the case of a purely diffusive process. Then we apply the full
iterative scheme to two simulated jump-diffusion processes with different characteristics.
Finally, we apply our inference method to electrophysiological recordings in pyramidal
cells of electric fish.

3.1 Validation of the FP statistics calculations
To confirm that the calculations of QA and ΓA are accurate, we start with a simple test
case where we consider a time series {Xdiff (t)} obtained from a simulated pure diffusion
process. As there are no jumps here, the distribution of increments does not possess the
necessary asymmetry to properly identify a threshold. For this test case only, we thus opt
for a specific value, θ∗ = 0.1, that showcases the ability of our method to handle FPs of
various durations. The results presented here, however, remain valid for a range of values
of θ∗. For the parameters used in this pure diffusion validation case (Table 1), this range
extends from 0.025 up to 0.2. The upper limit is set by the fact that, beyond it, too few FPs
are detected, which precludes any statistical calculations from being achieved. The lower
limit, on the other hand, arises because too many FPs are detected, such that, for instance,
they occur every other time step. In such a case, �t is too large and the estimation of λ

becomes imprecise due to the statistical fluctuations in the number of detected FPs.
Applying the threshold in this case leads to a detected jump pool comprised entirely of

FPs. The goal now is to compare the measured QC and ΓC with the calculated QA and ΓA.
If we obtain that ΓC ≈ ΓA and that QC ≈ QA, then we will effectively have shown that the
true jump rate is zero, λ = 0, and that our method correctly calculates the FP amplitude
distribution. In this pure diffusion test case, these calculations rely on the knowledge of
the correct noise intensity D and the correct drift function F , but this will not be the case
in subsequent sections.

With the particular values of D and F used here to simulate {Xdiff (t)} (Table 1), we find
that FPs are either singlets, doublets, or triplets, which contribute differently to the mea-
sured amplitude distribution QC . Indeed, the fact that longer FPs tend to have larger am-
plitudes and that FP durations are always multiples of �t creates distinct modes in the
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Figure 6 For a pure diffusion process,we correctly calculate the FP amplitude distribution QA and FP detection
probabilityΓA . (A) After applying a threshold to �Xdiff (t), we obtain a pool of FPs with a range of durations
and amplitudes. From the latter we measure QC (blue histogram). We correctly calculate this distribution as∑

i Qi , where Qi is defined in Eq. (26). (B) Probability of detecting an FP as a function of y, calculated (yellow
curve) and Monte Carlo simulated (blue dots)

measured amplitude distribution (Fig. 6(A), blue histogram). By taking the sum out of the
integral in Eq. (9), we can write QA(a) =

∑∞
i=1 Qi(a), where

Qi(a) =
∫ ∞

–∞
PA|τ ,Y0 (a|i�t, y)Pτ |Y0 (i�t|y)PY0 (y) dy (26)

are the individual distributions associated with FPs of duration i�t (Fig. 6(A), yellow
curves). These distributions are then summed to obtain QA, which is a precise match with
QC for this purely diffusive example (Fig. 6(A), black curve).

Furthermore, by applying Eq. (5) we calculate the y-dependent detection probability,
α(y) (Fig. 6(B), yellow curve). As expected, this function depends non-trivially on y and
reflects the nonlinearity of the specific drift function used in this example. If multiplicative
noise had been used, the noise intensity D(y) would also have influenced the shape of
α(y). To validate this calculation of α(y), we run Monte Carlo simulations of the diffusion
process

dY diff (t) = F
(
Y diff (t)

)
dt +

√
2D dW (t), (27)

over a duration �t, but with a time step of �t/1000 and with various initial conditions
along the y-axis. For each initial condition, we evaluate the FP detection probability as the
ratio between the number of Monte Carlo runs, where Y diff (�t) > Y diff (0) + θ∗, and the
total number of Monte Carlo runs (Fig. 6(B), blue dots), the result of which precisely fits
with the calculated α(y). Finally, we obtain the overall FP detection probability ΓA from
Eq. (6), which, in this pure diffusion test case, differs from ΓC by only 0.06%.

3.2 Validation of the iterative scheme
Before applying the iterative procedure (Fig. 4) to real data, we first validate it against time
series generated by numerically integrating Eq. (1) (using the Euler–Maruyama scheme).
We consider two validation cases: in Case 1 the amplitude of the jumps is comparable to
the diffusive fluctuations and jumps are sparser in time (i.e., occur at a lower rate) than in
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Figure 7 Our inference method successfully fits a stochastic model to the original data. (A) Realizations of the
jump-diffusion processes for the two different validation cases. (B) Simulation results from the jump-diffusion
SDE inferred by our method. (C) Comparison between the PDF of the original validation data (black dots) and
that of the last iteration of the fitted SDE (yellow curve). The PDF associated with the first iteration is also
shown (blue curve). (D) Similar comparison between the original and estimated ACF

Case 2, where jumps are much larger than the background noise and their rate is double
that of Case 1 (Fig. 7(A)). The specific functions and parameters used to generate and
analyze these validation data are shown in Table 1, which can be summarized as follows:
low rate, low amplitude, high noise for Case 1, and high rate, high amplitude, low noise
for Case 2. Preliminary tests with a linear drift function showed a successful fit between
the fitted SDE and the numerical data. We now opt for a more general and arbitrary shape
where the drift function is nonlinear and non-monotonic. The only restrictions are that
it yields a single stable fixed point and that the resulting stochastic process is stationary.
We thus restrict our analyses to drift functions that are mostly decreasing. Although the
parameters and functions used for the simulations are known, they are not used in the
inference procedure, only {X(t)} is. To assess the performance of the proposed method,
we compare the estimated D̂, λ̂, F̂ , and Q̂B with their true values.

We choose these two specific cases because they challenge both the sensitivity and the
robustness of our method. In Case 1, the statistics of {X(t)} are not too different from those
of a pure diffusion process, which makes it easier to estimate F , but difficult to extract QB



Melanson and Longtin Journal of Mathematical Neuroscience             (2019) 9:6 Page 19 of 30

Table 1 Parameters and functions for the validation cases

Case 1 Case 2 Pure diffusion

λ 0.1 0.2 0
D 0.13 0.05 0.15
θ∗ 0.125 0.07 0.1
μ –1.2 1 N/A
σ 0.2 0.5 N/A

QB Lognormal(μ,σ 2) N/A

a 0.2 0.2 0.2

F –(a(y – 0.5)3 + 0.5a(y – 0.7)2 + 0.1)

�t (s) 10–2 10–2 10–2

amidst the FPs. In contrast, the jumps in Case 2 are well separated from the diffusive
fluctuations, which allows for a more direct estimation of QB. The presence of large jumps
in this case, however, significantly alters {X(t)} and its PDF, making it harder to estimate F .
In both cases, however, we find that the original SDEs can be precisely recovered by our
method. For instance, simulating Eq. (1) with D̂, λ̂, F̂ , and Q̂B of the last iteration not only
produces time series that resemble the originals (Figs. 7(A) and 7(B)), but also yields an
excellent fit between the reconstructed and original PDFs (Fig. 7(C))), with an O(10–4)
root-mean-square error (normalized by the range of {X(t)}) and ACFs (Fig. 7(D)).

Inspecting the results from the last iteration, we indeed see that the correct drift func-
tion is recovered (Fig. 8(A)). This is done through the use of the so-called differential
Chapman–Kolmogorov equation. This is then used to calculate the next QA and ΓA

(Fig. 8(B)), which allows the correct QB to be demixed from the measured QC (Fig. 8(C)).
We also obtain low relative errors when comparing our estimates and the correct values of
D and λ (Table 2). Note also that, although not shown here, we obtain the same fit quality
between original and reconstructed when we apply our method to hybrid cases, where,
for instance, the small jump amplitudes are paired with a higher rate instead of a lower
one and vice-versa.

3.3 Application to experimental data
We now proceed with an application of our inference method to electrophysiological data
published in Ref. [44]. These data consist of in vitro, intracellular recordings of mem-
brane voltage fluctuations in pyramidal neurons of the weakly electric fish Apteronotus
leptorhynchus. These fish are endowed with an active sensing mechanism whereby they
generate a high frequency (∼700 to 1000 Hz) oscillatory electric field around their body.
This electric signal, along with any distortions caused by objects, preys, and conspecifics,
is sensed by electroreceptors located on the fish’s body. This information is then sent to
the hindbrain, where it reaches the first stage of electrosensory processing, called the elec-
trosensory lateral line lobe (ELL). The recordings in Ref. [44] were taken from neurons of
the ELL, specifically in the centrolateral and centromedial segments (CLS and CMS, re-
spectively). In order to isolate the impact of voltage-gated ion channels on membrane po-
tential fluctuations, the ELL was treated with pharmacological agents (CNQX and APV)
that block synaptic transmission onto the pyramidal cells. The resulting fluctuations are
thus fully attributed to cell-intrinsic sources, which we refer to as membrane noise. The
main source of this type of noise is often assumed to be the stochastic opening and clos-
ing of ion channels, i.e., channel noise [45]. In this case, we cannot rule out other potential
contributions, as non-trivial soma-dendrite interactions have been observed in these cells
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Figure 8 Our inference procedure recovers the correct parameters and functions from Eq. (1). (A) The correct drift
function (black dots) is recovered in the last iteration (yellow curve). First iteration results are shown for
comparison (blue curves). (B) We see that the measured amplitude distribution QC is in fact a mixture of QA

(yellow curve) and Ξ̃ ∗ QB (black dots, see Eq. (19)). (C) After deconvolving the latter, we do recover the
correct QB (yellow curve). Note that in Case 2, the first and last iterations are confounded, as the true jump
amplitudes are almost directly separable from those of FPs

Table 2 Comparison between estimated and correct parameters

Case 1

Correct Estimated Relative error (%)

D 0.13000 0.13003 0.023
λ 0.1000 0.0978 2.2

Case 2

Correct Estimated Relative error (%)

D 0.05000 0.05005 0.1
λ 0.2000 0.1960 2.13

[46]. Note also that, by imposing different holding currents on the cells, Ref. [44] recorded
ongoing membrane noise at various levels of hyperpolarization relative to spike threshold.

Of interest here is the presence of large, jump-like events, called blips, that abruptly de-
polarize the cells (Fig. 9(A), asterisks). Although Ref. [44] puts forth a hypothesis as to the
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Figure 9 Membrane noise in CLS cells can bemodeled with an jump-diffusion SDE. (A) An exemplar recording of
membrane voltage fluctuations in a CLS pyramidal neuron (top). A holding current is used to maintain the cell
at 20 mV below its spike threshold. Asterisks show the four largest blips found in this trace. Under the
assumptions listed in Sect. 2.1, simulations of the fitted SDE (bottom) are qualitatively similar to the original
data (here �t = 1.2 ms). (B) This similarity is confirmed by the close match between the data and simulation
PDFs (yellow curve and black dots, respectively). (C) Despite having no role to play in the inference procedure,
the power spectrum of the data (black) also fits with that of the simulations (yellow). The notches in the
power spectrum of the data result from the removal of experimental artifacts

functional role for these blips, the mechanism underlying their occurrence is unknown.
This, along with the limited amount of data, hinders the development of any meaningful
mechanistic model of this phenomenon. The jump-diffusion inference approach devel-
oped here, however, is particularly well suited to circumvent this knowledge gap. Indeed,
the resulting phenomenological models provide a useful tool for dynamically interpreting
the available data without relying on poorly constrained biophysical mechanisms. For in-
stance, we can address questions such as: Do certain parameters or functions of the model
change as a function of the mean membrane potential?

Here we analyze recordings from two CMS and two CLS cells, each with five or six lev-
els of hyperpolarization: from –25 to 0 mV below threshold, with 5 mV steps between
levels. Using these relative levels with respect to spike threshold is required to compare
cells that might have different thresholds (e.g., –67 to –63 mV for CMS cells [44]). After
removing experimental artifacts (see Sect. 3.4), we obtain a total of 23 traces, each last-
ing approximately 10 s. Applying our inference method to these traces yields a good fit
between the resulting simulations and the original data (Fig. 9(A)): the PDFs differ only
by O(10–2) normalized root-mean-square errors, and the power spectra fall within 95%
confidence intervals of each other (Figs. 9(B) and 9(C)).

Further insight can be gained by comparing the estimated SDE parameters and func-
tions D̂, λ̂, Q̂B, and F̂ across all traces. We thus see, for instance, that CLS cells increase
their jump rate (Fig. 10(A)), but not jump amplitudes (Fig. 10(B)), as they approach thresh-
old. Note also that we could not measure any significant jump component for CMS cells.
Instead, fluctuations in these cells are well described by pure diffusion. Furthermore, all
cells show an increase in their diffusive noise intensity with depolarization, and this is
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Figure 10 CLS cells increase their rate and noise intensity, but not jump amplitudes,when they approach
threshold, and all cells maintain a steady drift function across levels. (A) Jump rate of CLS cells. Error bars show
one standard deviation, assuming that the number of detected blips is Poisson. (B) Mean amplitudes of the
blips. Error bars show one standard deviation, calculated from 1000 bootstrap samples of the original
amplitude values. We observe a similar lack of systematic trend in the variance of the amplitudes (not shown).
(C) Noise intensity for all cells. Error bars show one standard deviation, calculated from 1000 bootstrap
samples of the original data increments. (D) Local slope of the drift function, as determined from a linear fit
over a ±2 mV range around the stable fixed point. Error bars are too small to see on this scale, but are
calculated as 95% confidence interval of the slope parameter of the linear least square fit

more prominent in CMS cells (Fig. 10(C)). Lastly, to compare the different drift functions
with a scalar measure, we apply a linear fit to F (estimated as in the previous section) in
the vicinity (±0.2 mV) of the stable fixed point. The slope parameter resulting from this
fit can be interpreted as a measure of how wide or narrow the potential function is around
the resting membrane voltage. Using this measure, we find no systematic intra-cell trend,
but we do observe large differences between cell types: CLS cells have a wider potential
function than CMS ones (Fig. 10(D)).

3.4 Data processing
For each cell, the raw data consist of a continuous, 60 to 70 second staircase-like trace,
sampled at 20 kHz. Each step lasts ∼10 s and corresponds to a different holding current,
which was applied such as to create 5 mV hyperpolarization from the previous level. In
order to segment the recordings into different traces for each level, we first identify the
transition times between different holding currents. This is done visually, as the transitions
are unambiguous, and we omit ±0.5 seconds around those times. At the –5 and 0 mV level,
a few spikes (1 to 4) occur in the recordings. They are manually removed from the traces
along with the ensuing refractory period.

A conspicuous aspect of the resulting traces is the presence of slow, large amplitude
(1 Hz, ∼1 mV) quasi-oscillations overlaid with the faster, stochastic fluctuations. The ex-
act source of this slow component is unknown, but is possibly related to persistent sodium
channels, which have been shown to populate the soma and proximal apical dendrites of
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ELL cells [44] and to produce slow perithreshold oscillations in entorhinal stellate neu-
rons [47]. In any case, these slow oscillations are outside the scope of the method pre-
sented here. A moving average filter (0.05 s window size) is thus applied to remove this
low frequency content from the signal.

Line noise is removed at all 60 Hz multiples with a notch filter, but the data are also
contaminated with artifacts in other frequency bands, potentially from interference with
other sources. This is most prominent in the 900–3000 Hz, but also carries around lower
frequencies, e.g., 100, 270, and 550 Hz. To account for this artifact, we opt for the combi-
nation of a low-pass filter with a 900 Hz cut-off, and 20 Hz wide band-stop filters centered
on the other problematic frequencies. Electrophysiological recordings can be dominated
by measurement noise at high frequencies [48]. In our case this is seen as a flattening out
of the PSD above 1000 Hz, so the 900 Hz cut-off used here does not lead to the loss of
important biological signals.

The end result of this processing chain are time series that exhibit fluctuations typical of
jump-diffusion processes. We do observe, however, significant higher-order correlations
on the smallest timescales (O(�t), �t = 50 μs). To quantify these correlations, we use
the notion of the Einstein–Markov timescale [5]. This is a measure of the timescale below
which the Markov property no longer holds. Stochastic time series often show a departure
from the Markov property on small timescales, possibly due to noise source correlation,
the presence of an inertial component in the dynamics, or measurement noise [5]. Follow-
ing [5] and [49], we estimate this Einstein–Markov timescale by finding the value of τ that
minimizes

χ2 =
∫∫∫ [P(x1, x2, x3) – P(x3|x2)P(x2, x1)]2

σ 2 dx1 dx2 dx3, (28)

where x1 = x(t), x2 = x(t +τ ), x3 = x(t +2τ ), and σ 2 is the sum of the traces of the covariance
matrices associated with the distributions in the numerator. For a proper Markov process,
χ2 = 0, ∀τ . In this case, we find the minimum of χ2 at 1.2 ms, indicating that the Einstein–
Markov timescale of the data is over one order of magnitude larger than the sampling
interval �t. This means that, on the time scale of individual observations, the data evolve
with a history dependence that is incompatible with a Markovian description. If, however,
we look at the data on a coarser time scale, e.g., the Markov–Einstein time scale of 1.2 ms,
then the Markov property is approximately satisfied. In that case only can we hope to use
Eq. (1) as a valid model for these data. To account for this problem, we resample the data at
a 1.2 ms interval (∼830 Hz sampling rate) and obtain the final time series on which to apply
our method (Fig. 9(A), top), with the time step equal to the Markov–Einstein time scale.
Note that this situation is conceptually similar to how the Langevin model of diffusion
(where the position of a particle is, by itself, not Markovian) reduces to the Einstein model
(where the position is Markovian) only above a certain time scale [43].

4 Discussion
In this study, we develop an iterative procedure that recovers the parameters and func-
tions of a jump-diffusion SDE, based solely on a realization of the associated stochastic
process. This approach is validated when the jumps are comparable in size to the diffu-
sive fluctuations (Case 1), as well as when they are much larger than diffusive fluctuations
(Case 2). We apply this method to membrane voltage fluctuations recorded in pyramidal
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neurons of electric fish. Our analysis reveals that these data can indeed be represented as
jump-diffusion processes. We find that pyramidal neurons increase their jump rate and
noise intensity as they approach spike threshold, while their jump amplitudes and drift
function remain unchanged.

Our approach relies on five main components: the use of the differential Chapman–
Kolmogorov equation to estimate the drift function, the use of quadratic variation on
jump-free segments to estimate the diffusive noise intensity, the detection of jumps via
threshold-crossing of the increments, the modeling of detected jumps as a mixture of true
jumps and FPs, and the calculation of FP statistics used to extract true jump statistics from
the detected jump pool.

Although we estimate the drift function and the true jump amplitude distribution non-
parametrically, we do limit our study to the case of additive diffusive noise, of constant
jump rate, and of Poisson jumps. Relaxing the additive noise assumption would require
an estimation scheme for the diffusion function D(y). For purely diffusive processes, this
function can be obtained directly through the estimation of the second Kramers–Moyal
coefficient, which is defined in terms of the second conditional moment of the increments.
Evaluating this moment simply requires the knowledge of the conditional PDF across time
steps. For a Poisson jump-diffusion process, however, Ref. [31] has shown that the dif-
fusion function can in fact be expressed in terms of the second conditional moment of
the increments, the jump rate, and the second moment of the jump amplitudes. It should
thus be possible to include the estimation of D(y) into the iterative portion of our method
(Fig. 4). Indeed, estimates of the jump rate and of the amplitude distributions could be
used at each pass to estimate the diffusion function. Furthermore, we have limited our
analysis to noise intensities for which jump amplitudes are on average an order of mag-
nitude or more larger than diffusive fluctuations. When diffusive fluctuations and jumps
are of similar average magnitude, the number of detected FPs becomes too large and es-
timates of λ and QA become imprecise due to increased statistical fluctuations. A much
finer temporal resolution would be necessary to address this particular case.

As for the assumption of constant jump rate, it should be possible to extract a rate func-
tion λ(y) as long as a y-dependent version of Eq. (17) can be written. This would require
a long enough data time series such as to produce an estimate of ΓC(y). Relaxing the as-
sumption of Poisson jumps, however, would be more difficult to do. The detection proba-
bility of true jumps, ΓB = λ�t, would obviously need to be modified with the appropriate
expression. Moreover, the specific form of the differential Chapman–Kolmogorov used
here, Eq. (24), relies on the assumption of Poisson jumps (see the Appendix) and would
thus need to be extended in a manner that depends on the precise non-Poissonian nature
of the jump process. More specifically, the last two terms in Eq. (24), which are originally
defined based on the transition rates of the Poisson jump process, would now be derived
from the modified ΓB. Note that, for the special case of true jumps with zero-mean am-
plitudes, the drift function can be estimated directly from the first conditional moment of
the increments, without relying on Eq. (24) [31].

4.1 Membrane noise
The unusual characteristics of membrane noise observed in CLS neuron, initially reported
in Ref. [44] and represented here as jump-diffusion SDEs, might be implicated in novel
ways in electrosensory processing. The analysis we perform here is a first step toward
investigating this possibility computationally.
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The positive impact of noise on information processing in neural systems is widely rec-
ognized [50]. Although channel noise was initially thought to be too weak compared to
synaptic noise to influence a neuron’s output statistics [51, 52], it has since been shown
to significantly impact neuronal reliability and action potential timing [47, 53–57]. Be-
cause it arises from the stochastic opening of voltage-gated ion channels, channel noise
has been successfully modeled by populations of Markov chains with voltage-dependent
transition rates [45]. In the quest for more computationally efficient models, however, var-
ious approximations have been used to model the collective behavior of these Markov
chains as simple diffusion SDEs [57–60] (sometimes called the diffusion approximation
for channel noise [61, 62], in reference to the diffusion approximationc for synaptic bom-
bardment). One of these approaches, for instance, introduces a current noise term directly
in the membrane equation [57, 63], effectively modeling the subthreshold voltage locally
as an Ornstein–Uhlenbeck process. It is perhaps not surprising then that we obtain a good
match between the observed CMS membrane noise (at various holding potential) and a
pure diffusion SDE. In cases where membrane noise is more accurately described by mul-
tiplicative conductance noise [57], however, we might expect deviation from the simple
SDE used here, similar as to how the diffusion approximation can misrepresent the sub-
threshold voltage distribution for certain types of synaptic drive [64].

We cannot completely exclude the possibility that small, hard to detect blips occur
in CMS cells. Although our method proves capable of handling this type of situation
(Sect. 3.2), the limited amount of available experimental data in this case precludes us
from conclusively ruling out the existence of a jump component in models of CMS mem-
brane noise. In addition, in both types of cells we find a positive correlation between the
noise intensity and the holding potential (Fig. 10). This is consistent with how membrane
potential variance has been observed to increase with depolarization in these same cells
[44], as well as in rat neocortical pyramidal neurons [65]. Simple Markov models involving
only Na+ and K+ channels are able to reproduce this correlation [66].

The presence of blips in CLS neurons suggests that ion channels co-activate to produce
abrupt depolarizing currents. It was shown in [67] that sodium channels appear in clusters,
or hot spots, in ELL pyramidal cells. This might allow local depolarization of the mem-
brane to sufficiently couple channels within a cluster. Alternatively, perhaps channels are
physically and functionally coupled through scaffolding protein complexes, as observed in
[68]. Regardless of the exact coupling mechanism, the commonly used assumption of inde-
pendence between channels [45, 57] is likely violated by these blips. The fact that we have
successfully fitted a jump-diffusion SDE to CLS membrane noise suggests that a diffusion-
like approximation could be applied in this case as well. Such a deductive approach would,
however, require tentative descriptions of local channel coupling to be included in the ki-
netic schemes.

Given the unknown biophysical mechanism underlying the blips, our fitted jump-
diffusion model is uniquely positioned to address questions related to their functional
role. Future work will thus aim to incorporate our fitted jump-diffusion model as a mem-
brane noise term in a more complete model of CLS cells [69]. By accounting for the synap-
tic input associated with electrosensory input, the resulting model could investigate the
possibility that blips assist or influence spiking, perhaps through a stochastic resonance-
like phenomenon. Stochastic resonance, and more generally stochastic facilitation, has
been shown to be mediated by channel noise in models of auditory brain stem neurons
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[51] and in modeled neuronal arrays [70], as well as to be mediated by synaptic noise
in models of neocortical pyramidal neurons [71]. Since blips share a similar shape and
amplitude as AMPA-driven excitatory post-synaptic potential, this begs the question of
whether stochastic resonance is at play in the detection of weak electrosensory signals,
such as small prey. This was indeed hypothesized, but not explicitly shown, in Ref. [44]:
the voltage-dependence of membrane noise makes it impossible to vary the noise level,
the rate of occurrence, or the amplitude of blips independently of the membrane poten-
tial. The value of this hypothesis, however, could be assessed by performing a numerical
experiment with our fitted SDE representation of blip-laden membrane noise.

Lastly, although we apply our method here to recordings where synaptic input is com-
pletely blocked, it might be applicable to certain type of synaptic input patterns, such as
correlated bombardment. We also hope to apply this method to fluctuations of the active-
sensing rate of pulse-type electric fish, where jump-like events also occur [72].

Appendix
The particular form of the differential Chapman–Kolmogorov equation that we use here,
Eq. (24), relies on the assumption of Poisson jumps. For completeness, and to make ex-
plicit the dependence of this equation on Poisson statistics, we provide the following short
derivation:

Let X(t) be a continuous-time Markov process, possibly with discontinuous sample
paths, in one dimension and with transition probability p(x, t|x0, t0). The Chapman–
Kolmogorov equation then has the following differential form [42]:

∂p(x, t|x0, t0)
∂t

= –
∂

∂x
[
F(x, t)p(x, t|x0, t0)

]
+

∂2

∂x2

[
D(x, t)p(x, t|x0, t0)

]

+
∫ [

W (x|x̃, t)p(x̃, t|x0, t0) – W (x̃|x, t)p(x, t|x0, t0)
]

dx̃, (29)

where

W (x|x̃, t) ≡ lim
�t→0

p(x, t + �t|x̃, t)
�t

. (30)

The first and second term of Eq. (29) are associated with the continuous part of X(t) and
are often referred to as the advective and diffusive terms in the parlance of partial differen-
tial equations [38]. The last term in Eq. (29), on the other hand, represents how probability
mass is transferred through discontinuities in X(t), as the function W is the instantaneous
transition rate between different values of x. Indeed, sample path continuity is expressed
as W (x|x̃, t) = 0 [42], and in that case, Eq. (29) reduces to the Fokker–Planck equation.
Note that, in the case where both the drift and diffusion functions vanish, Eq. (29) reduces
to the so-called Master equation in statistical mechanics [36, 73].

In order to evaluate Eq. (30), we first introduce three mutually exclusive and collectively
exhaustive events: E0 = {no jumps in [t, t + �t]}, E1 = {exactly one jump in [t, t + �t]}, and
E2 = {two or more jumps in [t, t + �t]}, such that Ei ∩ Ej = ∅, for i �= j, and Prob(

⋃
i Ei) = 1.

From the law of total probability, we get

p(x, t + �t|x̃, t) =
3∑

i=1

p(x, t + �t|x̃, t; Ei) · Prob(Ei). (31)
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Assuming that discontinuities occur through a Poisson process with parameter λ, we can
use the well-known results [74, 75]:

Prob(E0) = 1 – λ�t + o(�t),

Prob(E1) = λ�t + o(�t),

Prob(E2) = o(�t),

(32)

where o(�t) goes to zero faster than �t:

lim
�t→0

o(�t)
�t

= 0. (33)

Inserting the sum in Eq. (31) into the limit of Eq. (30) results in the sum of three limits,
associated with E0, E1, and E2:

W (x|x̃, t) ≡ lim
�t→0

3∑

i=0

p(x, t + �t|x̃, t; Ei) · Prob(Ei)
�t

, (34)

where the first term vanishes because of sample path continuity between jump events
lim�t→0 p(x, t + �t|x̃, t; E0)/�t = 0, while the third one vanishes as per Eq. (33)
lim�t→0 Prob(E2)/�t = 0. If jump amplitudes are distributed according to QB, then this
distribution can be defined as QB ≡ lim�t→0 p(x, t + �t|x̃, t; E1), which results in

W (x|x̃, t) = lim
�t→0

p(x, t + �t|x̃, t, E1) · Prob(E1)
�t

= lim
�t→0

p(x, t + �t|x̃, t, E1) · (λ�t + o(�t))
�t

= λQB(x – x̃). (35)

When inserted into Eq. (29), this yields

∂p(x, t|x0, t0)
∂t

= –
∂

∂x
[
F(x, t)p(x, t|x0, t0)

]
+

∂2

∂x2

[
D(x, t)p(x, t|x0, t0)

]

– λp(x, t|x0, t0) + λ

∫
QB(x – x̃)p(x̃, t|x0, t0) dx̃. (36)

If we assume a time-homogeneous drift function, additive noise, and a positive support
for QB, we recover Eq. (24).
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14. Petelczyc M, Żebrowski JJ, Orłowska-Baranowska E. A fixed mass method for the Kramers–Moyal

expansion—application to time series with outliers. Chaos. 2015;25(3):033115.
15. Ragwitz M, Kantz H. Indispensable finite time corrections for Fokker–Planck equations from time series data. Phys Rev

Lett. 2001;87(25):254501.
16. Tutkun M, Mydlarski L. Markovian properties of passive scalar increments in grid-generated turbulence. New J Phys.

2004;6(1):49.
17. Mousavi SM, Reihani SNS, Anvari G, Anvari M, Alinezhad HG, Tabar MRR. Stochastic analysis of time series for the

spatial positions of particles trapped in optical tweezers. Sci Rep. 2017;7(1):4832.
18. Musila M, Generalized LP. Stein’s model for anatomically complex neurons. Biosystems. 1991;25(3):179–91.
19. Giraudo MT, Sacerdote L. Jump-diffusion processes as models for neuronal activity. Biosystems. 1997;40(1):75–82.
20. Giraudo MT, Sacerdote L, Sirovich R. Effects of random jumps on a very simple neuronal diffusion model. Biosystems.

2002;67(1):75–83.
21. Sirovich R, Sacerdote L. Noise induced phenomena in jump diffusion models for single neuron spike activity. In: 2004

IEEE international joint conference on neural networks (IEEE cat. no. 04CH37541). vol. 4. 2004. p. 3025–8.



Melanson and Longtin Journal of Mathematical Neuroscience             (2019) 9:6 Page 29 of 30

22. Sirovich R, Sacerdote L, Villa AEP. Cooperative behavior in a jump diffusion model for a simple network of spiking
neurons. Math Biosci Eng. 2014;11(2):385–401.

23. Luczka J, Bartussek R, Hänggi P. White-noise-induced transport in periodic structures. Europhys Lett. 1995;31(8):431.
24. Łuczka J, Czernik T, Hanggi P. Symmetric white noise can induce directed current in ratchets. Phys Rev E.

1997;56:3968–75.
25. Czernik T, Kula J, Łuczka J, Hanggi P. Thermal ratchets driven by Poissonian white shot noise. Phys Rev E.

1997;55:4057–66.
26. Kou SG. Jump-diffusion models for asset pricing in financial engineering. In: Birge JR, Linetsky V, editors. Financial

engineering. Handbooks in operations research and management science. vol. 15. Amsterdam: Elsevier; 2007.
p. 73–116.

27. Tankov P, Voltchkova E. Jump-diffusion models: a practitioner’s guide. Banque et Marchés. 2009.
28. Daly E, Porporato A. Probabilistic dynamics of some jump-diffusion systems. Phys Rev E. 2006;73(2):026108.
29. Bandi FM, Nguyen TH. On the functional estimation of jump-diffusion models. J Econom. 2003;116(1):293–328.
30. Johannes M. The statistical and economic role of jumps in continuous-time interest rate models. J Finance.

2004;59(1):227–60.
31. Anvari M, Tabar MRR, Peinke J, Lehnertz K. Disentangling the stochastic behavior of complex time series. Sci Rep.

2016;6:35435.
32. Lee SS, Hannig J. Detecting jumps from Lévy jump diffusion processes. J Financ Econ. 2010;96(2):271–90.
33. Figueroa-López JE, Nisen J. Optimally thresholded realized power variations for Lévy jump diffusion models. Stoch

Process Appl. 2013;123(7):2648–77.
34. Pawula RF. Approximation of the linear Boltzmann equation by the Fokker–Planck equation. Phys Rev.

1967;162:186–8.
35. Jun JJ, Longtin A, Maler L. Active sensing associated with spatial learning reveals memory-based attention in an

electric fish. J Neurophysiol. 2016;115(5):2577–92.
36. Gillespie DT. Markov processes: an introduction for physical scientists. 1st ed. Boston: Academic Press; 1991.
37. Risken H, Frank T. The Fokker–Planck equation: methods of solution and applications. 2nd ed. Springer series in

synergetics. Berlin: Springer; 1996.
38. Patankar SV. Numerical heat transfer and fluid flow. Series in computational methods in mechanics and thermal

sciences. New York: Hemisphere; 1980. OCLC: 31743097.
39. Katsaggelos AK. Iterative image restoration algorithms. Opt Eng. 1989;28(7):287735.
40. Aït-Sahalia Y, Mancini L. Out of sample forecasts of quadratic variation. J Econom. 2008;147(1):17–33.
41. Hansen P, Lunde A. A realized variance for the whole day based on intermittent high-frequency data. J Financ Econ.

2005;3:525–54.
42. Gardiner CW. Stochastic methods: a handbook for the natural and social sciences. 4th ed. Springer series in

synergetics. Berlin: Springer; 2009.
43. Gillespie DT, Simple SE. Brownian diffusion: an introduction to the standard theoretical models. 1st ed. Oxford: Oxford

University Press; 2013.
44. Marcoux CM, Clarke SE, Nesse WH, Longtin A, Maler L. Balanced ionotropic receptor dynamics support signal

estimation via voltage-dependent membrane noise. J Neurophysiol. 2016;115(1):530–45.
45. White JA, Rubinstein JT, Kay AR. Channel noise in neurons. Trends Neurosci. 2000;23(3):131–7.
46. Noonan L, Doiron B, Laing C, Longtin A, Turner RW. A dynamic dendritic refractory period regulates burst discharge

in the electrosensory lobe of weakly electric fish. J Neurosci. 2003;23(4):1524–34.
47. Dorval AD, White JA. Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci.

2005;25(43):10025–8.
48. Diba K, Lester HA, Intrinsic KC. Noise in cultured hippocampal neurons: experiment and modeling. J Neurosci.

2004;24(43):9723–33.
49. Bahraminasab A, Ghasemi F, Stefanovska A, McClintock PVE, Friedrich R. Physics of brain dynamics: Fokker–Planck

analysis reveals changes in EEG δ–θ interactions in anaesthesia. New J Phys. 2009;11(10):103051.
50. McDonnell MD, Ward LM. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci.

2011;12(7):415–26.
51. Schmerl BA, McDonnell MD. Channel-noise-induced stochastic facilitation in an auditory brainstem neuron model.

Phys Rev E. 2013;88(5):052722.
52. Burkitt AN. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern.

2006;95(1):1–19.
53. Faisal AA, Laughlin SB. Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS

Comput Biol. 2007;3(5):e79.
54. Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and

precision of spike timing. Neural Comput. 1998;10(7):1679–703.
55. Faisal AA, Selen LPJ, Wolpert DM. Noise in the nervous system. Nat Rev Neurosci. 2008;9(4):292–303.
56. Chow C, Spontaneous WJA. Action potentials due to channel fluctuations. Biophys J. 1997;71:3013–21.
57. Goldwyn JH, Shea-Brown E. The what and where of adding channel noise to the Hodgkin–Huxley equations. PLoS

Comput Biol. 2011;7(11):e1002247.
58. Fox RF, Lu Y. Emergent collective behavior in large numbers of globally coupled independently stochastic ion

channels. Phys Rev E. 1994;49(4):3421–31.
59. Fox RF. Stochastic versions of the Hodgkin–Huxley equations. Biophys J. 1997;72(5):2068–74.
60. Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E. Stochastic differential equation models for ion channel noise

in Hodgkin–Huxley neurons. Phys Rev E. 2011; 83(4 Pt 1):041908.
61. Linaro D, Storace M, Giugliano M. Accurate and fast simulation of channel noise in conductance-based model

neurons by diffusion approximation. PLoS Comput Biol. 2011;7(3):e1001102.
62. Orio P, Soudry D. Simple fast and accurate implementation of the diffusion approximation algorithm for stochastic

ion channels with multiple states. PLoS ONE. 2012;7(5):e36670.
63. Rowat P. Interspike interval statistics in the stochastic Hodgkin–Huxley model: coexistence of gamma frequency

bursts and highly irregular firing. Neural Comput. 2007;19(5):1215–50.



Melanson and Longtin Journal of Mathematical Neuroscience             (2019) 9:6 Page 30 of 30

64. Richardson MJE, Gerstner W. Statistics of subthreshold neuronal voltage fluctuations due to conductance-based
synaptic shot noise. Chaos. 2006;16(2):026106.

65. Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, et al Subthreshold voltage noise of rat neocortical
pyramidal neurones. J Physiol. 2005;564(Pt 1):145–60.

66. Steinmetz PN, Manwani A, Koch C, London M, Segev I. Subthreshold voltage noise due to channel fluctuations in
active neuronal membranes. J Comput Neurosci. 2000;9(2):133–48.

67. Turner RW, Maler L, Deerinck T, Levinson SR, Ellisman MH. TTX-sensitive dendritic sodium channels underlie
oscillatory discharge in a vertebrate sensory neuron. J Neurosci. 1994;14(11):6453–71.

68. Zhang J, Carver CM, Choveau FS, Shapiro MS. Clustering and functional coupling of diverse ion channels and
signaling proteins revealed by super-resolution STORMmicroscopy in neurons. Neuron. 2016;92(2):461–78.

69. Bol K, Marsat G, Harvey-Girard E, Longtin A, Maler L. Frequency-tuned cerebellar channels and burst-induced LTD
lead to the cancellation of redundant sensory inputs. J Neurosci. 2011;31(30):11028–38.

70. Ashida G, Kubo M. Suprathreshold stochastic resonance induced by ion channel fluctuation. Physica D.
2010;239(6):327–34.

71. Rudolph M, Destexhe A. Correlation detection and resonance in neural systems with distributed noise sources. Phys
Rev Lett. 2001;86(16):3662–5.

72. Jun JJ, Longtin A, Maler L. Active sensing associated with spatial learning reveals memory-based attention in an
electric fish. J Neurophysiol. 2016;115(5):2577–92.

73. Pathria RK, Beale PD. Statistical mechanics. 3rd ed. Amsterdam: Elsevier/Boston: Academic Press; 2011.
74. Papoulis A, Probability PSU. Random variables and stochastic processes with errata sheet. 4th ed. Boston:

McGraw-Hill; 2002.
75. Hsu HP. Schaum’s outline of probability, random variables, and random processes. 3rd ed. New York: McGraw-Hill;

2014.


	Data-driven inference for stationary jump-diffusion processes with application to membrane voltage ﬂuctuations in pyramidal neurons
	Abstract
	Keywords

	Introduction
	Methods
	Deﬁnitions and overview
	Choice of threshold
	Jump detection
	FP and true jump statistics
	FP detection probability
	FP amplitude distribution
	True jump rate
	True jump amplitude distribution

	Iterative procedure, noise intensity, and drift function
	Noise intensity
	Drift function


	Results
	Validation of the FP statistics calculations
	Validation of the iterative scheme
	Application to experimental data
	Data processing

	Discussion
	Membrane noise

	Appendix
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Endnotes
	Publisher's Note
	References


