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Abstract
This is the first half of a two-part paper dealing with the geometry of color perception.
Here we analyze in detail the seminal 1974 work by H.L. Resnikoff, who showed that
there are only two possible geometric structures and Riemannian metrics on the
perceived color space P compatible with the set of Schrödinger’s axioms completed
with the hypothesis of homogeneity. We recast Resnikoff’s model into a more modern
colorimetric setting, provide a much simpler proof of the main result of the original
paper, and motivate the need of psychophysical experiments to confute or confirm
the linearity of background transformations, which act transitively on P . Finally, we
show that the Riemannian metrics singled out by Resnikoff through an axiom on
invariance under background transformations are not compatible with the crispening
effect, thus motivating the need of further research about perceptual color metrics.
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1 Introduction and state of the art
This first half of a two-part paper provides a thorough review and a critical analysis of the
pioneering work of H.L. Resnikoff on color perception developed within the papers [1–3]
and the book [4]. These works are amongst the major inspirations for a modern program
of re-foundation of colorimetry that will be discussed in the second part, in which it will
be shown how to recast Resnikoff’s model in a quantum-like theory via the framework of
Jordan algebras.

Even if it may be surprising at first glance, Resnikoff belongs to a vast ensemble of math-
ematicians, physicists, biologists, philosophers, and even poets fascinated by the concept
of color. The list is impressive, ranging from Plato to Wittgenstein, passing through Aristo-
tle, Descartes, Hook, Newton, Euler, Young, Helmholtz, Maxwell, Grassmann, Riemann,
Goethe, Schopenhauer, Locke, Weber, Fechner, Dalton, Hering and, last but not least,
Schrödinger (see e.g. [5] for a modern translation of Schrödinger’s work on color).

In fact, it is the research about the mathematical analogies between optics and color
on one side and the oscillating behavior of quantum particles on the other that led
Schrödinger to propose the famous equation which bears his name in quantum mechan-
ics [6]. As it will be recalled in Sect. 2, Schrödinger performed a synthesis of the most
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important findings about the mathematical theory of color perception in a coherent set of
axioms, introducing one of his own. This can be thought of as a psycho-physical counter-
part of what Maxwell did for electromagnetism.

The experiments of Wright and Guild, see e.g. [7], could have paved the way for further
development in the mathematical understanding of color perception; however, the then
recently founded Commission Intérnational de l’Éclairage (CIE) took a more practical path
by building up geometrically flat color spaces which had the advantage to be easier to han-
dle for engineering purposes. While the XYZ space still stands today as a handy color space
for colorimetry, its developments until recent years, see e.g. [8], lacked mathematical rigor
and introduced ad-hoc parameters to adapt newly discovered phenomena to the existing
color space structures instead of modifying their geometry to fit the new observations.

Resnikoff’s papers and book, instead, put in question the flat geometry of the color space.
They were written in the middle of the 70s of the twentieth century, about the same pe-
riod when researchers in relativistic quantum field theory developed the standard model
of fundamental physical interactions and when some first attempts to fuse quantum me-
chanics and general relativity into a single theory were proposed. This zeitgeist could ex-
plain the reason why Resnikoff decided to use techniques which are quite common in
theoretical physics (as Riemannian geometry, homogeneous spaces, Lie groups and alge-
bras) to study color perception. In this sense, his achievements could be considered a very
elegant example of ‘theoretical psycho-physics’.

In spite of its extreme originality and deepness, Resnikoff’s work remained practically
unnoticed until today, probably due to the fact that the mathematical knowledge needed
to understand the meaning of his findings is quite vast and does not belong to the typical
mathematical background of scientists working on colorimetry.

One of the aims of this paper is to rewrite Resnikoff’s results in more modern and peda-
gogical terms, thus making them accessible to a wider range of researchers in colorimetry,
vision science, and image processing.

We will discuss in particular detail the homogeneity axiom for the space of perceived
colorsP , which led Resnikoff to show that, if we accept the homogeneity hypothesis,P can
only be the canonical Helmoltz–Stiles space well-known to colorimetrists, or a completely
new space of hyperbolic nature. We will provide an alternative and much simpler proof of
this result, underlining also an error in the original demonstration proposed by Resnikoff
in [1].

Differently from the standard colorimetric setting, Resnikoff established his theory in
what we call today color in context i.e. a color stimulus embedded in a uniform back-
ground. This aspect appears to be crucial for the development of his theory, because the
group of transformations acting transitively on P are identified with background changes.
However, we remark that a major issue remains open: background transformations must
be linear to fit in Resnikoff’s theory, but no experimental data is available yet to confirm
or confute this hypothesis. For this reason, we will discuss a psycho-physical experiment
that can be used to verify the linearity of background transformations.

Finally, we will show that the crispening effect contradicts Resnikoff’s hypothesis that
background changes are isometries with respect to the perceptual color metric. Thus un-
derlying the need of further research about perceptual color metrics.
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2 Review of Schrödinger’s axioms for the space of perceived colors
Schrödinger’s axioms for the space of perceived colors can be resumed with the following
statement: the space of perceived colors is a regular convex cone embedded in a real vector
space of dimension less or equal to 3.

The validity of this sentence, however, is bounded within the limits of the standard ob-
servational conditions of colorimetry, which, as we are going to discuss, are very restrictive
and far from those of a natural visual scene.

We start with the notation and nomenclature that we need for the rest of the paper.
• Λ = [λmin,λmax] denotes the visual spectrum, the extrema of Λ are left unspecified

because their numerical values are not important and because there is no agreement
about them. Typically, one chooses λmin = 380 nm (extreme violet) and λmax = 780 nm
(extreme red).

• x : Λ →R
+: is the light function representing the electromagnetic radiation

associated with the color stimulus or physical light. A spectral color stimulus xλ0 (λ)
relative to the wavelength λ0 is a narrow-band visible radiation, generally modeled by
a Gaussian centered in λ0 and with a small standard deviation (typically of the order
of 1 nm), or a piece-wise constant function everywhere null in Λ apart from a small
interval of wavelengths containing λ0.

• Since light stimuli have finite energy i.e.
∫
Λ

x(λ)2 dλ < +∞, a physical light can be
considered as an element of L2(Λ) ⊂ L1(Λ), where the inclusion holds because the
Lebesgue measure of Λ is finite. Light stimuli are real valued, so L2(Λ) will be
considered as a real vector space, and we will write

L2
+(Λ) =

{
x : Λ → [0, +∞), x ∈ L2(Λ)

}
(1)

for the space of color stimuli.
• Standard colorimetric observational conditions: in the conventional tests, a physical

light x is presented in a dim room to an observer with an aperture angle of either 2
degrees (foveal vision) or 10 degrees (extra-foveal vision). As we will see in Sect. 3.2,
Resnikoff does not consider this standard observational conditions since, in his model,
x is presented as a small central area seen against a uniformly illuminated background.
In this latter case we talk about color in (uniform) context. Experiments about color in
non-uniform context are still quite rare, see e.g. [9, 10], and confined to a very simple
geometric configuration, far from the complexity of natural scenes. In this section,
only the standard colorimetric observational conditions will be considered.

• Color matching: the typical way to compare the perception of two physical lights
x, y ∈ L2

+(Λ) is to divide the field of view into two (creating a bipartite field) and
putting the two color stimuli side-by-side. x and y are said to match if no edge is
perceived between them. We stress that this is not the only way to perceptually
compare color stimuli, but it is by far the more common for the standard colorimetric
observational conditions described above.

• For any x, y ∈ L2
+(Λ), we write x ∼ y to mean that x and y are perceived as identicala in

a color matching experiment. We stress that, when we write the expression x ∼ y, the
color stimulus x is shown on one side of the bipartite field and y on the other side. The
symbol is well posed since ∼ is indeed an equivalence relation [11].
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• The space of perceived colors in the standard colorimetric observational condition is
defined as the set of equivalence classes of equally perceived lights i.e. the quotient
space

P = L2
+(Λ)/∼. (2)

The equivalence class of x will be simply denoted by x:

x = [x]∼. (3)

Given x, y ∈P , x = y means [x]∼ = [y]∼ i.e. x ∼ y, so that equality in P means
perceptual match of color stimuli. The 0 of P is the equivalent class of all physical
lights that are so dim to be perceived as black.

• We can endow P with the operations of sum and multiplication by a positive real
scalar. For any x, y ∈ L2

+(Λ) and any positive scalar λ ∈R
+, x + y is interpreted as

superposition of light beams and λx as the intensity modulation of x by the factor λ.
These operations defined on L2

+(Λ) can be passed to the quotient space P simply by
defining

λ1x + λ2y = [λ1x + λ2y]∼, ∀λ1,λ2 ∈ R
+,∀x, y ∈ L2

+(Λ), (4)

so z = [z]∼ can be written as z = λ1x + λ2y if and only if z ∼ λ1x + λ2y. Dubois proved
in [11] that, if we consider the standard observational conditions of colorimetry, these
operations are well defined in the sense that they do not depend on the choice of the
representative in the perceptual equivalence class. To resume, in P it is possible to
operate conical combinations of perceived colors i.e. linear combinations with positive
real coefficients. In particular, convex combinations of elements of P i.e. conical
combinations with coefficients summing to 1, are well defined.

• The smallest vector space containing P is

V = P – P = {x – y, x, y ∈P}, (5)

see e.g. [12]. The elements of V written as –y, with y ∈P , will be called virtual colors.
To understand the role of virtual colors in colorimetry, it is worthwhile recalling the
famous Wright and Guild experiments, see e.g. [7] or [8], which have shown that, for a
fixed color stimulus z ∈ L2

+(Λ), there are three spectral color stimuli x, y, w ∈ L2
+(Λ)

and three real positive coefficients a, b, c ∈R
+ such that either ax + by + cw ∼ z or

ax + by ∼ z + cw. In this last case, by recalling the convention above, we must
superpose z with cw on one side of a bipartite field to color match the superposition
ax + by on the other side. This is where virtual colors enter into play: given
x, y, w, z ∈P , a, b ∈R

+, and c < 0, z = ax + by + cw belongs to V but not to P , because
c is negative. The colorimetric interpretation is the following: the color stimulus
ax + by shown to an observer on one side of a bipartite field matches z + (–c)w shown
on the other side i.e. ax + by ∈ [z + (–c)w]∼.

With this notation, Schrödinger’s axioms, see [13], can be stated like this.
• Axiom 1 (Newton 1704, [14]) If x ∈P and α ∈R

+, then αx ∈P .



Provenzi Journal of Mathematical Neuroscience            (2020) 10:7 Page 5 of 19

• Axiom 2 (Schrödinger 1920, [13]) If x ∈P , x �= 0, then it does not exist any y ∈P ,
y �= 0 such that x + y = 0.

• Axiom 3 (Grassmann 1853, [15] & Helmholtz 1866 [16]) For every x, y ∈P and for
every α ∈ [0, 1], αx + (1 – α)y ∈P .

• Axiom 4 (Grassmann 1853, [15]) For all quadruple of perceived lights xk ∈P ,
k = 1, . . . , 4, there are coefficients αk ∈R, not all simultaneously null, such that
∑4

k=1 αkxk = 0.
Let us now discuss the colorimetric and mathematical meaning of the axioms. A finer

version of Axiom 4 will be obtained mixing Axioms 1, 2, and 4; furthermore, an important
property of P will be underlined as a consequence of Axioms 1 and 3.

Mathematically speaking, the meaning of Axiom 1 is simple: P is an infinite cone em-
bedded in V . However, notice that this is an idealization: when α gets very large, photore-
ceptors saturate until the glare limit is reached and we lose sight abilities. Instead, as α

gets small, we pass to the mesopic or to the scotopic conditions, in which both cones and
rods or only the rods, respectively, are activated. If α approaches 0, then we lose our ability
to see. Thus, the cone P is truncated both from above and below, with the shift from the
photopic to the scotopic condition (the so-called Purkinje effect [7]) still representing a
major challenge from both a mathematical and a colorimetric point of view. The discus-
sion of these important issues deserves a paper by its own and here we will just consider
the idealized model of P as an infinite cone.

Axiom 2 means that no superposition of perceived colors different from 0 is perceived
as the absence of light.b Mathematically speaking, this implies that the cone P is regular
(also said proper).

Axiom 3 means that the line segment that joins the perceived colors x and y consists
entirely of perceived colors, thus Axioms 1, 2, and 3 altogether imply that P is a regular
convex cone. Axiom 3 is well known to be equivalent to be closed under conical convex
combinations i.e. linear combinations with positive coefficients between 0 and 1 whose
sum is 1.

This fact, along with Axiom 1, implies that P is actually closed under conical combina-
tions, in fact, for all α1,α2 ∈R

+ and x1, x2 ∈P , 1
α1+α2

(α1x1 +α2x2) ≡ z is a convex combina-
tion of elements ofP , so z ∈P thanks to Axiom 3, but then also (α1 +α2)z = α1x1 +α2x2 ∈P
thanks to Axiom 1. By iterating this argument, we have that

∑n
k=1 αkxk ∈ P ∀αk ∈ R

+,
xk ∈P , k = 1, . . . , n.

Axioms 1 and 3 imply that P is a connected and contractible cone i.e. idP is homotopic
to a constant map [17]. Intuitively, this means that P can be continuously contracted to a
single point. This simple remark will turn out to be crucial for the analysis of P .

Axiom 4 means that every collection of more than three perceived colors is a linearly
dependent family in V .

A finer version of Axiom 4 can be obtained with the following argument. First of all,
notice that Axioms 1–3 prevent the αks from having all the same sign. In fact, let us imag-
ine that all the coefficients α1, . . . ,α4 are positive, then x̄ =

∑3
k=1 αkxk ∈P (thanks to what

has just been proven) and ȳ = α4x4 ∈ P (thanks to Axiom 1), then
∑4

k=1 αkxk = 0 implies
x̄ + ȳ = 0, which is prevented by Axiom 2. A similar argument can be used when all the
coefficients α1, . . . ,α4 are negative.

To resume, Axioms 1–4 imply this stronger version of Axiom 4.
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• Axiom 4’ For all quadruple of perceived lights xk ∈P , k = 1, . . . , 4, there are
coefficients αk ∈R, not all with the same sign, such that

∑4
k=1 αkxk = 0.

There are only two options coherent with Axiom 4’. The first option is that three coeffi-
cients have the same sign and the remaining one has an opposite sign. Since equality in V
is color matching and a negative coefficient means that the corresponding light stimulus
must be shown on the other side of the bipartite field, this means that one light stimulus
color matches the superposition of other three light stimuli.

In the second option, two coefficients are positive and two are negative: this means
that the superposition of two lights stimuli color match the superposition of other two
lights stimuli. We thus see that Schrödinger’s axioms are coherent with the experiments
of Wright and Guild [8].

Another direct consequence of Axiom 4 is that the dimension of V is either 1, 2, or 3. In
particular, we call an observer for which:

• dim(V ) = 3: trichromate;
• dim(V ) = 2: dichromate;
• dim(V ) = 1: monochromate;
• dim(V ) = 0: blind.
Following [18], we observe that the projection map

π : L2
+(Λ) −→P

x 
−→ x
(6)

implies that infinitely many spectrally different lights coincide perceptually.
In what follows, we will fix our attention only on the trichromatic case i.e. dim(V ) = 3,

so that, from now on, P will be interpreted as a regular convex cone embedded in a three-
dimensional real vector space.

3 Resnikoff’s homogeneity axiom for P
As stated in the introduction, in [1] Resnikoff used the theory of homogeneous spaces to
study the geometry and the metrics of the perceived color space P . This is far from being a
trivial task, since the equivalence classes that make up P are very difficult to characterize
from a mathematical point of view. Thus, a theory of P , which bypasses the use of these
equivalent classes, is highly desirable.

Understanding why Resnikoff considered homogeneity a paramount property in the
analysis of P is a key point. For this reason, it is worth recapping the basic information
about homogeneous spaces.

If X is a nonempty set and G is a group, then a map η : G×X → X, (x, g) 
→ g(x) is said to
be a left action of G on X if e(x) = x, e being the neutral element of G, and if (gh)(x) = g(h(x))
for all g, h ∈ G and x ∈ X. In this case, X is called a G-space. If we fix any g , then the map ηg :
X → X, x 
→ g(x) is bijective, its inverse being ηg–1 , because g(x) 
→ g–1(g(x)) = e(x) = x. So,
a left G action on X can equivalently be defined as a group homomorphism G → Aut(X),
where Aut(X) is the group of all automorphisms (one-to-one functions) on X. Any element
g ∈ G is called a symmetry for X.

Since P is not merely a set but a convex cone embedded in a vector space, we are more
interested in G-spaces with an intrinsic structure. In this case, we call X a G-space if the
elements of G preserve the structure of X i.e. if Aut(X) is the group of the automorphisms
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of the category in which X belongs e.g. homeomorphisms for topological spaces, diffeo-
morphisms for smooth manifolds, invertible linear maps for vector spaces, and so on.

Fixed arbitrary x ∈ X, the set G · x = {g(x) ∈ X : g ∈ G} is called the G-orbit of x. X is
said to be a G-homogeneous space if G · x = X for every x ∈ X i.e. if the action of G on X is
transitive. In this case, for every couple of elements x, y ∈ X, there exists a transformation
g ∈ G such that g(x) = y, which explains why the concept of homogeneity is said to translate
into mathematical terms the fact that no point of the space is special. If Y ⊂ X, then we
define the group Aut(Y ) = {ϕ ∈ Aut(X) : ϕ(Y ) = Y } of automorphisms of X that restricted
to Y become automorphisms of Y , then Y is G-homogeneous if the action defined by the
group homomorphisms G → Aut(Y ) is transitive on Y .

Let us apply this to the case of interest for us i.e. that of a general cone C embedded
in a real vector space V of finite dimension n. In this case, if we define GL(C) = {T ∈
GL(V ), T(C) = C}, then C is said to be a homogeneous cone in V if, for any two points
a, b ∈ C , there exists T ∈ GL(C) such that b = T(a). We will also need a localized version
of this property: C is a locally homogeneous cone in V if, for every a ∈ C, there is an open
neighborhood Ua of a such that, for every b ∈ Ua, there exists T ∈ GL(C) such that b =
T(a), where open is referred to the Euclidean topology of C inherited by V .

3.1 The one-dimensional motivation to study P as a homogeneous space
Resnikoff declares that the motivation to study P as a homogeneous space comes from
the analysis of Weber–Fechner’s law [7] in metric terms. Weber–Fechner’s law, often de-
scribed as the first psycho-physical law ever determined, describes the perceptual re-
sponse of humans with respect to changes of achromatic stimuli i.e. visual inputs that
depend only on their intensity (typically obtained by activating only the retinal rods with
dim lights). Experiments showed that the perceptual counterpart of an achromatic stim-
ulus of intensity x ∈R

+ = (0, +∞), called brightness and denoted with b(x), is proportional
to log x (for a wide range of intensities). Thus, the relative brightness b(x1) – b(x2) between
two visual stimuli of intensity x1 and x2 is proportional to log(x1)– log(x2) = log x1

x2
= log λx1

λx2
for all positive coefficients λ belonging to the range of values for which Weber–Fechner’s
law is valid. This explains why the relative brightness is invariant under the simultaneous
modification of light intensity expressed by

x1 
→ λx1, x2 
→ λx2, λ > 0. (7)

R
+ = (0, +∞), interpreted as the set of all possible visible light intensities, is both a cone

embedded in the real one-dimensional vector space R and a group with respect to the
ordinary multiplication of positive real numbers. The very simple observation that

∀x, y ∈R
+, y =

y
x

x ≡ λx, (8)

shows that R+ is an R
+-homogeneous cone. Weber–Fechner’s law implies that the relative

brightness between two perceived lights is an R
+-invariant function defined on R

+. What
is crucial here is that, up to a selection of unit of measurement, the brightness difference
expressed by Weber–Fechner’s law coincides with the unique R

+-invariant Riemannian
distancec on R

+ i.e.

d(x1, x2) =
∣
∣log(x1) – log(x2)

∣
∣ =

∣
∣
∣
∣log

x1

x2

∣
∣
∣
∣, x1, x2 ∈R

+. (9)
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Figure 1 Observational configuration assumed by Resnikoff.
In Resnikoff’s model a color is always associated with a couple
given by a physical light and a uniform background
illumination in which it is embedded

This consideration represented a major inspiration for Resnikoff, who extended these
ideas to the three-dimensional color space P .

3.2 P as a homogeneous space
Resnikoff’s model for a homogeneous perceived color space is intimately connected with
the nonstandard observational configuration that he assumed, which is depicted in Fig. 1.

In this setting, a color is always associated with a light stimulus embedded in a uniform
context. It follows that, in this context, the definition of P given in (2) must be modified
as follows:

P =
(
L2

+(Λ) × L2
+(Λ)

)
/∼ (10)

i.e. a perceived color x ∈ P here is defined as a perceptual equivalence class of couples
(x, b) ∈ L2

+(Λ) × L2
+(Λ), where x is the central light stimulus and b is the light uniformly

distributed on the background. Two distinct couples (x1, b1) and (x2, b2), x1 �= x2, b1 �= b2,
belong to the same equivalence class if, for i = 1, 2, the central light stimuli xi embedded in
the corresponding background bi induce the same perceived color x ∈ P . Resnikoff does
not comment if, in this nonstandard observational configuration, P conserves the proper-
ties of a regular convex cone; this is a paramount important issue that will be discussed in
Sect. 3.3. For the moment, we assume that P is a regular convex cone also in this setting.

As in Sect. 2, we define the smallest vector space containing P as V = P – P . The only
difference is that in Resnikoff’s setting color match will be done for color stimuli embedded
in a uniform background and not for stand-alone physical lights. This requires a novel
specification of color matching that Resnikoff did not discuss.

Once established the model framework, we can begin with the mathematical construc-
tion that leads to the homogeneity axiom. First of all, sinceP is a (positive) cone embedded
in a three-dimensional real vector space V , Aut(P) will be given by orientation-preserving
linear transformations of V which preserve P i.e.

GL+(P) :=
{

B ∈ GL(3,R), det(B) > 0 and B(x) ∈P∀x ∈P
}

, (11)

where GL(3,R) is identified with the group of invertible real 3 × 3 matrices with deter-
minant different from zero i.e. the complementary set in M(3,R) ∼= R

9 of det–1{0}, the
inverse-image of 0 by the determinant function, which is continuous in the Euclidean
topology, thus det–1{0} is closed and so GL(3,R) is an open subset of R9. The request
of positive determinant is introduced to respect the direction of each generatrix of the
cone P .
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Figure 2 An example of effect of background change. The inner disks appearing in the center of the two
images are exactly the same physical color stimuli. However, the one in the left image is perceived, with
respect to its background illumination, as a very saturated green, instead, after the change of background
illumination shown by the image on the right, the color stimulus is perceived as yellowish. Due to the small
size of the color stimuli on this document, they are surrounded by a thin black circle to enhance their visibility

Resnikoff claimed that if we interpret B ∈ GL+(P) as a ‘change of background illumina-
tion’, or background transformations for short, then the action of GL+(P) on P is tran-
sitive, thus making P a homogeneous cone. The argument that he used follows this line
of reasoning. First of all, it is generally accepted that any perceived color x ∈ P can be
transformed into any ‘sufficiently near’ one y ∈P by an appropriate change of background
illumination, see Fig. 2 for a graphical representation of this phenomenon.

For this reason, P can be considered as a local homogeneous space with respect to the
group GL+(P). Notice that this is not a physical property of color, but a perceptual feature
of human vision, usually referred to as chromatic induction, see e.g. [9, 10, 19] for more
details about how induction can be measured.

We now need some topological considerations. P inherits the structure of metric space
from V , thought of as a three-dimensional Euclidean space. Local homogeneity implies
that, for every x ∈P , there exists an open neighborhood Ux ⊂P such that each y ∈ Ux can
be expressed as y = B(x) ∈ P for some B ∈ GL+(P), so every element of P is an interior
point. To resume: P is open in V .

Let us now consider local homogeneity in conjunction with Axiom 3 i.e. with the con-
vexity of P : for every couple of perceived colors x, y ∈ P , the line segment L that joins x
to y lies entirely in P . Local homogeneity assures that, for any z ∈ L, there exists an open
neighborhood Uz ⊂P that is a homogeneous space with respect to the group GL+(P). As
z varies in L, we obtain the open covering

⋃
z∈L Uz of L, and, since L is a compact subset of

P , we can extract a finite open covering of L from it i.e. there exist x1, . . . , xn ∈ L, n < +∞,
such that

⋃n
k=1 Uxk is an open covering of L.

Let Bk ∈ GL+(P) be the change of background illumination which carries xk to xk+1,
where k = 1, . . . , n – 1, x0 ≡ x, and xn ≡ y, then, since GL+(P) is a group, the transformation
B ≡ Bn ◦ Bn–1 ◦ · · · ◦ B1 carries x to y i.e. y = B(x), for every couple of perceived colors
x, y ∈P . As a consequence, P is a GL+(P)-homogeneous space.

One might object that, operationally speaking, transforming any color sensation x ∈ P
to any other one y ∈P via a single change of background illumination would be illusory if
x and y are very far apart in terms of chromatic attributes. The following considerations
will clarify how to correctly interpret the composition of background transformations. Let
us consider again Fig. 2 and search for a transformation B such that the green sensation
x ∈ P , x = [(x0, b0)]∼ of the color stimulus in the center of the image on the left is trans-
formed into an arbitrarily different color y ∈P . The first transformation B1 that we could
use is, for example, the one shown on the right-hand side of Fig. 2. The key observation
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Figure 3 Composition of background transformations. From left to right: the effect of composing four
background transformations with the procedure explained in the text

is that, thanks to what was stated at the beginning of this section, the yellowish perceived
color x1 ∈P , x1 = [(x0, b1)]∼, b1 �= b0, can be characterized by another couple (x1, b̃1) that
matches x1. Then, by performing a wisely chosen background change B2 on this alternative
characterization of x1, we can transform it into a color x2 ∈ P , x2 = [(x1, b2)]∼, perceptu-
ally closer to y than x1. As done before, x2 can be characterized by another couple (x2, b̃2),
and a third background transformation B3 can be operated on this last configuration, ob-
taining a color x3 ∈ P perceptually closer to y than x2. By iterating the previous steps, we
arrive at the match with the desired color y. Of course, the experimental process has to be
performed painstakingly and it is likely to be very time-consuming, but the mathematical
argument discussed above guarantees that the procedure can be performed within a finite
number of steps.

In Fig. 3 we report the perceived colors x1, . . . , x5 obtained with the process described
above, which shows how a color sensation can be gradually moved toward another one via
composition of background transformations.

All the considerations discussed so far justify why Resnikoff was led to postulate his own
fifth axiom on the structure of the color space.

• Axiom 5 (Resnikoff 1974, [1]) P is a GL+(P)-homogeneous space.
Axioms 1 to 5 imply that P is an open convex regular homogeneous cone (and, as such,

also connected and contractible) embedded in a three-dimensional vector space V .
Such objects have been classified and this is what will allow us to explicitly determine the

only possible geometrical structures of P . However, we postpone this analysis to Sect. 4
after an interlude in which we discuss an important issue related to the linearity of back-
ground transformations.

3.3 The issue of linearity in Resnikoff’s model
The transitive action of the changes of background illuminations on P has been exten-
sively analyzed above. Here we concentrate on the remaining properties that they must
fulfill.

Of course every B preserves P because a perceived color is still such after a background
change; moreover, all transformations B are clearly invertible since we can perform the
reverse change and turn back to the original color sensation.

However, there is a crucial issue that Resnikoff failed to analyze: it is not clear why back-
ground changes should be linear. Actually, Resnikoff himself, in the paper [2] published a
little after [1], declared this issue to be ‘the least verified aspect’ of the group of transfor-
mations that he considered.
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Figure 4 A psycho-physical experiment to check the additivity of background transformations. The
experimental setup outlined in the picture can be used to check the additivity of background
transformations, see the text for a detailed description

Mathematically, linear background transformations B ∈ GL(V ) should behave like this
on elements of P :

B(αx + βy) = αB(x) + βB(y), α,β ∈R
+, x, y ∈P . (12)

In Fig. 4 we outline a psycho-physical experiment to check the additivity of background
transformations. A similar procedure can be used to verify if B behaves linearly with re-
spect to scaling.

Consider two physical lights x, y and their superposition x + y, all three embedded in
a background b. They induce color sensations x, y and, assuming Eq. (4), x + y. After the
change of background B from b to b′, the color sensations induced by x, y and x + y will
become B(x) = [(x, b′)]∼, B(y) = [(y, b′)]∼ and B(x + y) = [(x + y, b′)]∼, respectively.

Then consider an auxiliary background b′′ and search for the physical lights x̃ and ỹ that,
embedded in b′′, are perceived as B(x) and B(y) i.e. B(x) = [(x̃, b′′)]∼ and B(y) = [(ỹ, b′′)]∼,
respectively. Thus, the superposition of x̃ and ỹ will give B(x) + B(y) = [(x̃ + ỹ, b′′)]∼. If
B(x + y) = [(x + y, b′)]∼ matches B(x) + B(y) = [(x̃ + ỹ, b′′)]∼, then B is additive with respect
to the auxiliary background b′′. By repeating the test with a sufficiently diversified set of
auxiliary background, the additivity of B with respect to x, y and b, b′ is tested. Finally, by
varying also x, y and b, b′, the additivity of B tout court is tested.

Until the linearity hypothesis about the changes of background is experimentally con-
firmed, it remains a conjecture that lies at the core of Resnikoff’s model.

If these transformations turned out to be nonlinear, this would not invalidate Resnikoff’s
results that we will discuss in the following section, it would just mean that the group
GL+(P), which is supposed to act transitively on P , cannot be represented by changes of
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background illuminations. On the other hand, the hypothesis of homogeneity of P seems
very reasonable and nothing prevents other (at the moment unknown) transformations to
be identifiable with the elements of a group acting transitively on P .

4 Consequences of the homogeneity axiom on the geometrical structure of P
In this section we make use of the standard results of homogeneous spaces theory to prove
the most important outcome of [1]. Classical references are e.g. [20, 21], and [12].

An element B ∈ GL+(V ) belongs to GL+(P) if and only if g(P) = P (the topological
closure of P), thus GL+(P) is a closed subgroup of GL+(V ) and hence it is a Lie group
itself. Moreover, for every fixed x ∈ P , the subgroup of GL+(P) defined by Kx = {B ∈
GL+(P), B(x) = x} is called the stabilizer, or isotropy subgroup, of GL+(P) at x. In terms
of color perception, for a fixed perceived color x ∈ P , generated by a light stimulus in a
given background, Kx represents the subgroup of changes of background that leave the
color sensation x unaltered.

Since P is a homogeneous convex cone, the Kxs coincide with the maximal compact
subgroups of GL+(P) and all the isotropy subgroups are isomorphic to each other since
they are conjugated i.e. ∀x, y ∈P ∃B̃ ∈ GL+(P) such that Ky = B̃KxB̃–1. For this reason, they
can be identified, and we can write simply K instead of Kx.

The following result will be fundamental: if a differential manifold X is a G-homogeneous
space w.r.t the action η : G × X → X of a Lie group G and K is the stabilizer at any fixed
x ∈ X, then the mapd β : G/K → X defined by β(gK) = η(g, x) is a diffeomorphism.

We have all the information that we need in order to give an alternative, simpler, proof
of the main result of [1].

Theorem 1 Axioms 1–5 imply that P is diffeomorphic to either

P1 ∼= R
+ ×R

+ ×R
+ (13)

or

P2 ∼= R
+ × SL(2,R)/ SO(2). (14)

The first characterization embodies the well-known color spaces with three separated
chromatic coordinates e.g. LMS, RGB, XYZ, and so on, see e.g. [22]. The second char-
acterization obtained by Resnikoff is novel with respect to the classical flat color spaces.
and it introduces the Poincaré–Lobachevsky 2-D space of constant negative curvature
SL(2,R)/ SO(2) in color theory.

Proof of Theorem 1 Applying the results recalled above to the homogeneous color space
P , we get the diffeomorphic identification

P ∼= GL+(P)/K . (15)

Let us rewrite every B ∈ GL+(P) in the form B = det(B) B
det(B) , where det(B) ∈R

+ and B
det(B) ∈

SL(P), where SL(P) is the subgroup of GL+(P) given by the matrices of this group with
determinant 1.
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It follows that GL+(P) = R
+ × SL(P) and, since the isotropy subgroup of R+ is evidently

{1} and R
+/{1} ∼= R

+, the only nontrivial part of the quotient operation is on a closed
subgroup K of SL(P), thus

P ∼= R
+ × SL(P)/K , (16)

where both R
+ and SL(P)/K are homogeneous spaces.

As differential manifolds, P has dimension 3 and R
+ has dimension 1, so SL(P)/K has

dimension 2. Plus, P and R
+ are connected and contractible, thus expression (16) implies

that also SL(P)/K is connected and contractible. Such type of spaces has been classified by
Sophus Lie [23], see also [24] and [25] for a more modern treatise. It turns out that the only
bidimensional connected contractible homogeneous spaces are either R2, diffeomorphic
to R

+ × R
+ via the map R

2 � (x, y) 
→ (exp(x), exp(y)) ∈ R
+ × R

+, or the hyperbolic plane
SL(2,R)/ SO(2) (see Sect. 4.1 for more details about hyperbolic spaces). �

The proof provided by Resnikoff in [1] is not only much longer and difficult to follow, but
it is also flawed. In fact, one of the fundamental arguments for his proof is the statement
on page 112 that, whatever the dimension of P , the contractility of P implies that the
Lie group SL(P) coincides with the exponential of its Lie algebra sl(P). This implication,
however, is not true as we show in Appendix with a counter-example.

4.1 The models of the hyperbolic space SL(2,R)/ SO(2)
With the perceived color spaceP2, Resnikoff introduced in colorimetry a hyperbolic space.
In his 1974 paper, he acknowledged the 1962 work of H. Yilmaz [26] which was, histori-
cally, the first one to consider hyperbolic structures to study color perception, even though
with much less rigor than Resnikoff.

Differently than Euclidean spaces or spheres, hyperbolic spaces can be characterized
in several equivalent ways, called models, each one useful for different purposes. For a
general discussion about hyperbolic models, see e.g. [27]. Here, we just report the models
of the hyperbolic space of interest for us i.e. SL(2,R)/ SO(2):

• the hyperboloid I2 = {v ∈R
3 : 〈v, v〉L = –1, v3 > 0}, where 〈v, v〉L = v2

1 + v2
2 – v2

3 is the
Lorentz scalar product in R

3. The equation 〈v, v〉L = –1 defines the two-sheet
hyperboloid in R

3 so that I2 is the connected component with v3 > 0, also called the
upper hyperboloid sheet;

• the upper half plane H = {(x, y) ∈R
2 : y > 0} ∼= {z ∈C : Im(z) > 0};

• the Poincaré disk D = {(x, y) ∈R
2 : x2 + y2 < 1} ∼= {z ∈C : |z| < 1};

• Sym+
1 (2,R), the set of 2 × 2 real symmetric positive-definite matrices M with unitary

determinant i.e. Mt = M, det(M) = 1 and utMu > 0 for all u ∈R
2.

This last characterization will be particularly important for the following. In fact, it will
give us the possibility to interpret the elements of P2 as matrices. To see how, let us define
Sym+(2,R) to be the set of 2 × 2 real symmetric positive-definite matrices, any matrix
M ∈ Sym+(2,R) can be written as M = det(M) M

det(M) with det(M) ∈ R
+ since M is positive-

definite and N = M
det(M) ∈ Sym+

1 (2,R). This simple consideration implies that

P2 ∼= Sym+(2,R). (17)
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5 Selection of invariant Riemannian metrics for the color spaces P1 and P2

Once Resnikoff established the only possible geometrical structure of P compatible with
Axioms 1–5, he searched for Riemannian metrics on P to measure color dissimilarity.
As for the geometry of P , he uniquely singled out the metrics thanks to an invariance
principle.

We recall that a Riemannian metric g on a differentiable manifold X of dimension n is
a symmetric positive-definite tensor field of type (0, 2) on X i.e. a correspondence which
assigns, smoothly with respect to each point x ∈ X, a scalar product gx : TxX × TxX →R,
(v, w) 
→ gx(v, w) for all v, w ∈ TxX, the tangent space to X in x. A differentiable manifold
X endowed with a Riemannian metric g is called a Riemannian manifold (X, g).

Let us also recall the local coordinate expression of g : we fix a local chart (U ,ϕ) of x,
we write with (x1, . . . , xn) the local coordinates of x and with (∂1, . . . , ∂n) the corresponding
local basis of the tangent space TxX. The smooth functions gμν ∈ C∞(U), μ,ν = 1, . . . , n, de-
fined by gμν = g(∂μ, ∂ν) verify g = gμν dxμ ⊗dxν , where Einstein’s summation over repeated
indices above and below is implicitly used. The component of gμν can be organized in a
symmetric matrix, and the previous expression for g is often written as ds2 = gμν dxμ dxν .

A Riemannian manifold (X, g) is also a metric space with respect to a distance canon-
ically induced by g and defined with the help of the length of piecewise regular curves
γ : [0, 1] → X. If (X, g) is a connected Riemannian manifold, then, if we define the length
of the curve γ as

L(γ ) =
∫ 1

0

∥
∥γ̇ (u)

∥
∥

γ (u) du, (18)

where ‖γ̇ (u)‖γ (u) =
√

gγ (u)(γ̇ (u), γ̇ (u)) is the norm induced by g , then the function d : X ×
X →R

+ defined by

d(x, y) = inf
{

L(γ ),γ : [0, 1] → X piecewise regular,γ (0) = x,γ (1) = y
}

(19)

is a distance on X, called the Riemannian distance on X induced by the Riemannian met-
ric g .

A piecewise regular curve γ in X that minimizes the Riemannian distance between a pair
of points x, y ∈ X is said to be a geodesic connecting the two points. Thus, the Riemannian
distance d(x, y) can be defined as the length of a geodesic connecting x to y.

Let us now consider X as the perceived color space P . Since Axioms 1–5 determine the
geometric structure of P as a homogeneous space, Resnikoff was naturally led to search
for Riemannian metrics on P coherent with these axioms.

If x, y ∈ P are the perceived colors associated with (x, b) and (y, b), respectively, then,
after a change of background illumination B from b to b′ �= b, x and y will be modified into
x′ = B(x) ∈P and y′ = B(y) ∈P .

Resnikoff wanted to analyze the consequences of the following assumption (that he
called Axiom 6): if d : P × P → [0, +∞) is the Riemannian distance on P that measures
perceptual differences between pairs of perceived colors x, y ∈P , then d satisfies

d
(
B(x), B(y)

)
= d(x, y), ∀x, y ∈P ,∀B ∈ GL+(P) (20)

i.e. the perceptual dissimilarity between x and y is the same as that between x′ and y′ or, in
mathematical terms, B is an isometry for the distance d. This assumption, however, must
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Figure 5 The crispening effect. The crispening effect (see text) used to refute Resnikoff’s Axiom 6 about the
invariance of the perceptual color metric with respect to changes of background illuminations

be refuted because it is not coherent with human color perception as clearly shown by
the crispening effect represented in Fig. 5. The same couple of color stimuli is embedded
in three different backgrounds, it is clear that the perceptual difference is not background
independent.

It is, however, very interesting to follow Resnikoff’s argument and determine the met-
rics of P that satisfy Eq. (20), because this will point out that those metrics are not fit to
represent perceptual distances for color in context.

The request of GL+(P)-invariance permits to identify in a unique way Riemannian met-
rics for P1 and P2. First of all, let us recall that all diffeomorphism f : X → Y induces a
linear isomorphism dfx : TxX → Tf (x)Y , plus, if (X, g) and (Y , h) are Riemannian manifolds
and dh, dg are the Riemannian distances associated with the Riemannian metrics h and g ,
respectively, then f is an isometry i.e. dh(f (x), f (y)) = dg(x, y) for all x, y ∈ X if and only if

hf (x)
(
dfx(v), dfx(w)

)
= gx(v, w), ∀x ∈ X,∀v, w ∈ TxX. (21)

In our case, by choosing X = Y = P and f = B, we have the possibility to reformulate the
isometric condition expressed in Eq. (20) as follows:

gB(x)
(
dBx(v), dBx(w)

)
= gx(v, w), ∀B ∈ GL+(P),∀x ∈P ,∀v, w ∈ Tx(P). (22)

Recall now that P ∼= GL+(P)/K and that, by homogeneity of P , for every couple of ele-
ments x, y ∈P , we can write y = B(x) for some B ∈ GL+(P). If we select for x the equivalent
class to which the identity transformation of GL+(P) belongs i.e. the coset K itself, then,
by definition, we get B(x) = x for all B ∈ K . By transitivity, the K-invariance is independent
of the choice of x, thus Eq. (22) implies that

gx
(
dBx(v), dBx(w)

)
= gx(v, w), ∀B ∈ K ,∀x ∈P ,∀v, w ∈ Tx(P). (23)

The quest for perceptual color metrics on P is thus reduced to the much simpler task of
searching for K-invariant Riemannian metrics for the spaces P1 and P2.

For P1, K = ∅, so K-invariance does not introduce any constraint. However, the metric
must be the sum of R+-invariant metrics on each factor and all R+-invariant metrics on
R

+ are proportional: once we have identified one such metric, all the others are positive
multiples of it.

It is clear that an R
+-invariant metric on R

+ is given by ds2 = ( dx
x )2, thus the general color

metric satisfying Eq. (20) on P1 is

ds2 = α1

(
dx1

x1

)2

+ α2

(
dx2

x2

)2

+ α3

(
dx3

x3

)2

, αk ∈R
+, k = 1, 2, 3, (24)
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which is precisely Stiles’ generalization of Helmholtz’s metric (this last one corresponds
to the particular case α1 = α2 = α3 = 1), see e.g. [7].

For P2, K = SO(2), so that the tangent space of P2 at any x ∈P2 is

TxP2 = R⊕ TK SL(2,R)/ SO(2), ∀x ∈P2. (25)

In this case, K-invariance means invariance under rotations, so that a background-
invariant color metric for this realization of P must be the sum of a one-dimensional
and two-dimensional Euclidean metrics. This implies that, also for P2, the color metric
satisfying (20) is unique up to the selection of units of measure on each Cartesian factor
R

+ and SL(2,R)/ SO(2).
An explicit characterization of such a metric on P2 can be written by recalling from

Eq. (17) of Sect. 4.1 that P2 ∼= Sym+(2,R), thus interpreting a perceived color x as a 2 × 2
positive-definite real symmetric matrix.

The action of GL(2,R) on P is given by GL(2,R) ×P2 →P2, (A, x) 
→ AxAt , thus, every
background transformation B : P2 → P2 can be parameterized by a matrix A ∈ GL(2,R)
and written as follows: BA(x) = AxAt . It turns out that every GL(2,R)-invariant Rieman-
nian metric on P2 is a scalar multiple of the so-called Rao–Siegel metric [28–30]

ds2 = Tr
(
x–1dxx–1dx

)
, (26)

Tr being the matrix trace. Let us verify the GL(2,R)-invariance: first of all notice that
BA(x)–1 = (At)–1x–1A–1 and that, by linearity, dBA(x) = A dxAt . So

Tr
(
BA(x)–1 dBA(x)BA(x)–1 dBA(x)

)
= Tr

((
At)–1x–1A–1A dxAt(At)–1x–1A–1A dxAt)

= Tr
((

At)–1x–1 dxx–1 dxAt). (27)

By using the cyclic property of the trace, we have

Tr
(
BA(x)–1 dBA(x)BA(x)–1 dBA(x)

)
= Tr

(
x–1dxx–1 dx

)
, (28)

∀BA ∈ GL(2,R), thus confirming the GL(2,R)-invariance.
To resume, the Helmholtz–Stiles metric on P1 and the Rao–Fisher metric on P2 can-

not be considered perceptual metrics for color in context since they violate the crispening
effect. By color in context we mean color stimuli perceived in a visual scene in which the
background can undergo temporal and/or spatial changes. Of course, the crispening effect
does not disqualify the metrics above when the background is fixed. However, in this case,
we cannot use anymore the argument about the invariance under background changes to
single them out.

In 1974, at the time of Resnikoff’s paper [1], only a few papers about this perceptual
phenomenon were available. This explains why, not being aware of it, he wrongly assumed
that a perceptual color metric should be background-invariant.

6 Conclusions
A detailed analysis of the Resnikoff model and his homogeneity axiom for the space of
perceived colors P led us to the following results: first of all, we have provided an alterna-
tive and much simpler proof of the main result contained in [1] i.e. the existence of only
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two geometric structures compatible with Schrödinger’s axioms together with Resnikoff’s
homogeneity one. We have also shown, via a counter-example, that the original proof is
flawed by a mathematical assumption that is not true.

Secondly, we have underlined the exigence of developing psycho-physical experiments
to check the linearity of background transformations that Resnikoff supposed to be iden-
tified with the group of symmetries acting transitively on P . A proposal for such an ex-
periment has been detailed.

Finally, we have discussed Resnikoff’s hypothesis about the isometric character of back-
ground transformations with respect to the Riemannian metrics on P that should repre-
sent perceptual color differences in his theory. The crispening effect shows that Resnikoff’s
hypothesis must be refuted; thus, both the Helmholtz–Stiles and the Fisher–Rao metrics,
singled out by using this hypothesis, cannot be perceptual color distances in context.

In the second half of this two-part paper, P will be analyzed by using a different strategy
that relies on Jordan algebras. The link between the two parts is given by the following
consideration: Schrödinger’s axioms imply that P is a regular convex cone embedded in a
real vector space of dimension three. If we accept Resnikoff’s homogeneity axiom, then P
becomes an open regular homogeneous convex cone. By adding the last hypothesis, the
so-called self-duality, P becomes a symmetric cone, and it turns out that these objects can
be identified with the positive elements of a (formally real) Jordan algebra. The rich mathe-
matical results associated with Jordan algebras will permit building a novel, quantum-like,
theory of P .

Appendix
We discuss in this appendix a counter-example which shows that it is not true, as claimed
by Resnikoff, that the contractility of P implies exp(sl(P)) = SL(P).

The argument can be discussed already for the case SL(P) = SL(2,R) and its Lie algebra
sl(2,R) given by the real 2 × 2 traceless matrices. If the exponential map exp : sl(2,R) →
SL(2,R) were onto, then the matrix

T =

(
–1 1
0 –1

)

∈ SL(2,R)

could be written as T = exp(A) for a suitable A ∈ sl(2,R). Thanks to the well-known Schur
decomposition theorem, A is similar to an upper triangular matrix U whose diagonal ele-
ments are the eigenvalues of A i.e. A = PUP–1, where P ∈ GL(2,C). However, thanks to its
cyclic property, the trace is similarity-invariant, so Tr(A) = Tr(U) and, being Tr(A) = 0, it
follows that the U must have the following form:

U =

(
α β

0 –α

)

,

α,β ∈C, so that

A = P

(
α β

0 –α

)

P–1,
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α and –α being the eigenvalues of A. Recalling that exp(A) =
∑

n∈N
An

n! , we have that

T = exp(A) =
∑

n∈N

(PUP–1)n

n!
= P

(∑

n∈N

Un

n!

)

P–1 = P exp

(
α β

0 –α

)

P–1.

We can now show the contradiction. First of all, if α �= 0, then the Schur decomposition
theorem guarantees that α and –α are two distinct eigenvalues of the 2 × 2 matrix A i.e.
A is similar to a diagonal matrix: there exists Q ∈ GL(2,C) such that A = QDQ–1 with
D = diag(α, –α). But then, T = exp(A) = Q exp(D)Q–1 with exp(D) = diag(eα , e–α), which
contradicts the fact that T is clearly not diagonalizable.

If, instead, α = 0, then

exp

(
0 β

0 0

)

=

(
1 0
0 1

)

+

(
0 β

0 0

)

+
∞∑

n=2

1
n!

(
0 0
0 0

)

=

(
1 β

0 1

)

,

which implies Tr(T) = –2 �= Tr(exp(U)|α=0) = 2, but this cannot be true because it contra-
dicts the similarity-invariance of the trace.
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Endnotes
a Resnikoff avoids using the termmetameric equivalence, which refers to the case when x and y have different

spectral radiant power distribution, but they generate the same tristimulus values [7] i.e. the weights of three fixed
primary colors that are needed to match a reference color. Following Resnikoff, we do not employ the metameric
equivalence because the primaries do not intervene in his model.

b This assumption is true for non-coherent light because, for coherent light, destructive interference can extinguish
light intensity in certain spatial positions when two light beams are superposed.

c That is to say, the only Riemannian distance for which the multiplication by a positive scalar is an isometry, see
Sect. 5 for more details about this.

d We recall that, given a topological group G, a normal subgroup H of G is a subgroup of G such that gH = Hg ∀g ∈ G,
where gH = {gh,h ∈ H} is the left coset of H in G w.r.t g and Hg = {hg,h ∈ H} is the right coset of H in G w.r.t g. Given
a normal closed subgroup H of G, the quotient (or factor) group G/H is the group of all cosets (left or right, since
they are the same because H is normal) with the following group structure: (gH)(g′H) = (gg′)H.
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