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Abstract
Inspired by the pioneer work of H.L. Resnikoff, which is described in full detail in the
first part of this two-part paper, we give a quantum description of the space P of
perceived colors. We show that P is the effect space of a rebit, a real quantum qubit,
whose state space is isometric to Klein’s hyperbolic disk. This chromatic state space of
perceived colors can be represented as a Bloch disk of real dimension 2 that coincides
with Hering’s disk given by the color opponency mechanism. Attributes of perceived
colors, hue and saturation, are defined in terms of Von Neumann entropy.
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1 Introduction
“The structure of our scientific cognition of the world is decisively determined by
the fact that this world does not exist in itself, but is merely encountered by us as an
object in the correlative variance of subject and object” [1].

1.1 On the mathematics of color perception
The mathematical description of human color perception mechanisms is a longstanding
problem addressed by many of the most influential figures of the mathematical physics
[1–4]. The reader will find an overview of the main historical contributions at the be-
ginning of [5] where H.L. Resnikoff points out that the space, which we denote by P , of
perceived colors is one of the very first examples of abstract manifold mentioned by B.
Riemann in his habilitation [6], “a pregnant remark”. As suggested by H. Weyl [1], it is
actually very tempting to characterize the individual color perception as a specific correl-
ative interaction between an abstract space of perceived colors and an embedding space of
physical colors. This raises the question of defining intrinsically, in the sense of Rieman-
nian geometry, the space of perceived colors from basic largely accepted axioms. These
axioms, which date back to the works of H.G. Grassmann and H. Von Helmholtz [2, 7],
state that P is a regular convex cone of dimension 3. It is worth noting that convexity re-
flects the property that one must be able to perform mixtures of perceived colors or, in
other words, of color states [8]. What makes the work of H.L. Resnikoff [5] particularly
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enticing is the remarkable conclusions that he derives by adding the sole axiom that P is
homogeneous under the action of the linear group of background illumination changes [9].
We will discuss in Sect. 6 the relevance of this statement. To the best of our knowledge,
this axiom, which involves an external context, has never been verified by psychophys-
ical experiments. It endows P with the rich structure of a symmetric cone [10]. With
this additional axiom, and the hypothesis that the distance on P is given by a Rieman-
nian metric invariant under background illumination changes, H.L. Resnikoff shows that
P can only be isomorphic to one of the two following Riemannian spaces: the product
P1 = R

+ ×R
+ ×R

+ equipped with a flat metric, namely the Helmholtz–Stiles metric [11],
and P2 = R

+ × SL(2,R)/ SO(2,R) equipped with the Rao–Siegel metric of constant nega-
tive curvature [12, 13]. Let us recall that the quotient SL(2,R)/ SO(2,R) is isomorphic to
the Poincaré hyperbolic disk D. The first space is the usual metric space of the colorime-
try, while the second one seems to be relevant to explain psychophysical phenomena such
as the ones described by H. Yilmaz in [14] and [15] or physiological mechanisms such as
the neural coding of colors of R. and K. de Valois [16, 17]. In the sequel, we focus on the
latter.

1.2 A quantum glance at color perception
The starting point of this work originates from the second part of [5] dedicated to Jor-
dan algebras. Contrary to H.L. Resnikoff we suppose at first that the perceived color space
P can be described from the state space of a quantum system characterized by a Jordan
algebra A of real dimension 3 [18–21]. This is our only axiom, see Sect. 2.1 for motiva-
tions. Jordan algebras are non-associative commutative algebras that have been classified
by P. Jordan, J. Von Neumann, and E. Wigner [22] under the assumptions that they are
of finite dimension and formally real. They are considered as a fitting alternative to the
usual associative noncommutative algebraic framework for the geometrization of quan-
tum mechanics [23–25]. Not so surprisingly in view of what precedes, A is necessarily
isomorphic to one of the two following Jordan algebras: the algebra R⊕R⊕R or the al-
gebra H(2,R) of symmetric real 2 by 2 matrices. It appears that the two geometric models
of H.L. Resnikoff can be recovered from this fact by simply taking the positive cone of A.
The Jordan algebra H(2,R) carries a very special structure being isomorphic to the spin
factor R ⊕ R

2. It can be seen as the non-associative algebra linearly spanned by the unit
1 and a spin system of the Clifford algebra of R2 [21, 26]. The main topic of this work is
to exploit these structures to highlight the quantum nature of the space P of perceived
colors. Actually, the quantum description that we propose gives a precise meaning to the
relevant remark of [27], p. 539: “This underlying mathematical structurea is reminiscent
of the structure of states (i.e., density matrices) in quantum mechanics. The space of all
states is also convex-linear, the boundary consists of pure states, and any mixed state can
be obtained by a statistical ensemble of pure states. In the present case, the spectral colors
are the analogs of pure states”.

Although the geometry of the second model P2 of H.L. Resnikoff is much richer than
the geometry of the first model P1, very few works are devoted to the possible implica-
tions of hyperbolicity in color perception. One of the main objectives of this contribution
is to show that the model P2 is perfectly adapted to explain the coherence between the
trichromatic and color opponency theories. We show that the space P is the effect space
of a so-called rebit, a real quantum qubit, whose state space S is isometric to the hyper-
bolic Klein disk K. Actually, K is isometric to the Poincaré disk D, but its geodesics are
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visually very different, being the straight chords of the unit disk. Klein geometry appears
naturally when considering the spin factor R⊕R

2 and the 3-dimensional Minkowski fu-
ture lightcone L+ whose closure is the state cone of the rebit. We show that the chromatic
state space S can be represented as a Bloch disk of real dimension 2 that coincides with
the Hering disk given by the color opponency mechanism. This Bloch disk is an analog,
in our real context, of the Bloch ball that describes the state space of a two-level quantum
system of a spin- 1

2 particle. The dynamics of this quantum system can be related to the
color information processing that results from the activity rates of the four types of spec-
trally opponent cells [17], see Sect. 7.1. The spectrally opponent interactions in primates
are usually considered to be performed by ganglion and lateral geniculate nucleus cells
which are very similar with regards to color processing [17, 28].

Following this quantum interpretation, we give precise definitions of the two chromatic
attributes of a perceived color, hue and saturation, in terms of Von Neumann entropy.

As explained by P.A.M. Dirac in [29], p. 18, physical phenomena justify the need for con-
sidering complex Hilbert spaces in quantum mechanics. Alternatively, the structures we
deal with in the sequel are real, and we may consider the space P as a nontrivial concrete
example of an effect space of a real quantum system. The reader will find more information
on real-vector-space quantum theory and its consistency regarding optimal information
transfer in [30].

Finally, since the spin factors and the corresponding Clifford algebras share the same
representations (and the same squares), one may envisage to adapt to the present context
the tools developed in [31] for the harmonic analysis of color images.

1.3 Outline of the paper
We introduce in Sect. 2 the mathematical notions that are used to recast the description
of the perceived color space geometry into the quantum framework. We begin by explain-
ing the motivations and meaning of the trichromacy axiom which is the cornerstone of
our approach. Section 3 is devoted to quantum recalls. It mainly contains the material
needed to describe the state space of the so-called rebit, i.e., the two-level real quantum
system. Section 4 contains results on Riemannian geometry. The objective of this section
is to show that Klein’s geometry, or equivalently Hilbert’s geometry, is well adapted to
quantum states, contrary to the Poincaré geometry used by H.L. Resnikoff. We propose in
Sect. 5 to interpret perceived colors as quantum measurement operators. This allows us
in particular to give mathematically sound colorimetric definitions. Section 6 is devoted
to some results on group actions and homogeneity in relation with the supplementary ax-
iom of H.L. Resnikoff. Finally, in Sect. 7, we discuss some consequences of our work in
relation with the neural color coding and relativistic models of respectively R. and K. de
Valois, and H. Yilmaz. We also point out some perspectives regarding the links between
MacAdam ellipses and Hilbert’s metric.

2 Mathematical preliminaries
We introduce in this section the mathematical notions needed in the sequel. They mainly
concern the properties of Jordan algebras. The reader will find more detailed information
on this subject in [18, 20, 21, 32] or in the seminal work of P. Jordan [33].
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2.1 The trichromacy axiom
Before going into detail, we give some explanations in order to justify the mathematical
approach adopted. Following the axioms of H.G. Grassmann and H. Von Helmholtz [2, 7],
the space of perceived colors is a regular convex cone of real dimension 3. Such a geomet-
rical structure does not carry enough information to allow relevant developments. The
main idea of Resnikoff’s work is to enrich this structure by requiring that the cone of per-
ceived colors be homogeneous [9]. It appears that if we add one more property, namely
self-duality, this cone becomes a symmetric cone [10]. The fundamental remark is that
being symmetric the cone of perceived colors can be considered as the set of positive ob-
servables of a formally real Jordan algebra A. This is precisely the statement of the famous
Koecher–Vinberg theorem [32]. Since the cone is of real dimension 3, the algebra is also
of real dimension 3. Using the classification theorem of P. Jordan, J. Von Neumann, and
E. Wigner [22], one can check that the algebra A is necessarily isomorphic either to the
Jordan algebra R⊕R⊕R or to the Jordan algebra H(2,R) of symmetric real 2 by 2 matri-
ces. In consequence, adding the self-duality property, Resnikoff’s classification stems from
the classification theorem of P. Jordan, J. Von Neumann, and E. Wigner.

The point of view that we wish to put forward is that perceived colors must be described
by measurements through some state-observable correspondence. This is formalized in
Sect. 5.1 with the notion of quantum effects. In order to emphasize this point of view, we
formulate our starting trichromacy axiom as follows: the Grassmann–Von Helmholtz cone
of perceived colors is the positive cone of a formally real Jordan algebra of real dimension 3.

2.2 Jordan algebras and symmetric cones
A Jordan algebra A is a real vector space equipped with a commutative bilinear product
A×A−→A, (a, b) �−→ a ◦ b, satisfying the following Jordan identity:

(
a2 ◦ b

) ◦ a = a2 ◦ (b ◦ a). (1)

This Jordan identity ensures that the power of any element a of A is well defined (A is
power associative in the sense that the subalgebra generated by any of its elements is as-
sociative). Since a sum of squared observables never vanishes, one logically requires that
if a1, a2, . . . , an are elements of A such that

a2
1 + a2

2 + · · · + a2
n = 0, (2)

then a1 = a2 = · · · = an = 0. The algebra A is then said to be formally real. This property
endows A with a partial ordering: a ≤ b if and only if b – a is a sum of squares, and there-
fore the squares of A are positive. Formally real Jordan algebras of finite dimension are
classified [22]: every such algebra is the direct sum of so-called simple Jordan algebras.
Simple Jordan algebras are of the following types: the algebras H(n,K) of hermitian ma-
trices with entries in the division algebra K with K = R, C, H (the algebra of quaternions),
the algebra H(3,O) of hermitian matrices with entries in the division algebra O (the alge-
bra of octonions), and the spin factors R⊕R

n, with n ≥ 0. The Jordan product on H(n,K)
and H(3,O) is defined by

a ◦ b =
1
2

(ab + ba). (3)
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Note that contrary to the usual matrix product, this product is effectively commutative.
The spin factors form “the most mysterious of the four infinite series of [simple] Jordan
algebras” [34]. They were introduced for the first time under this name by D.M. Topping
[35] and are defined as follows. The spin factor J(V ) of a given n-dimensional real inner
product space V is the direct sum R⊕ V endowed with the Jordan product

(α + v) ◦ (β + w) =
(
αβ + 〈v, w〉 + αw + βv

)
, (4)

where α and β are reals, and v and w are vectors of V . The following result is well known
[34].

Proposition 1 Let K be the division algebra R, C, H, or O. The spin factor J(K ⊕ R) is
isomorphic to the Jordan algebra H(2,K).

Proof An explicit isomorphism is given by the map

φ : H(2,K) −→ J(K⊕R), (5)
(

α + β x
x∗ α – β

)

�−→ (α + x + β), (6)

with x in K and x∗ the conjugate of x. �

Now, we focus on the algebra H(2,R) and the spin factor J(R⊕R), both being isomor-
phic to R⊕R

2. The latter is equipped with the Minkowski metric [36]

(α + v) · (β + w) = αβ – 〈v, w〉, (7)

where α and β are reals, and v and w are vectors of R2. It turns out that Proposition 1 has
a fascinating reformulation: the algebra of observables of a 2-dimensional real quantum
system is isomorphic to the 3-dimensional Minkowski spacetime. Let us recall that the
lightcone L of R⊕R

2 is the set of elements a = (α + v) that satisfy

a · a = 0, (8)

and that a light ray is a 1-dimensional subspace of R ⊕ R
2 spanned by an element of L.

Every such light ray is spanned by a unique element of the form (1 + v)/2 with v a unit
vector of R2. Actually, the space of light rays coincides with the projective space P1(R). In
other words, we have the following result.

Proposition 2 There is a one-to-one correspondence between the light rays of the spin fac-
tor R⊕R

2 and the rank one projections of the Jordan algebra H(2,R).

Proof The correspondence is given by

(1 + v)/2 �−→ 1
2

(
1 + v1 v2

v2 1 – v1

)

, (9)

where v = v1e1 + v2e2 is a unit vector of R2. �



Berthier Journal of Mathematical Neuroscience           (2020) 10:14 Page 6 of 25

We will see in the next section that this result has a meaningful interpretation: there is a
one-to-one correspondence between the light rays of the spin factor R⊕R

2 and the pure
state density matrices of the algebra H(2,R).

The positive cone C of the Jordan algebra A is the set of its positive elements, namely

C = {a ∈A, a > 0}. (10)

It can be shown that C is the interior of the positive domain of A defined as the set of
squares of A. The convex cone C is symmetric: it is regular, homogeneous, and self-dual
[10]. The positive cone H+(2,R) of the algebra H(2,R) is the set of positive-definite sym-
metric matrices.

3 Quantum preliminaries
This section is devoted to describing the state space of the real analog of the usual complex
qubit. The so-called rebit is a two-level real quantum system whose Hilbert’s space is R2.

3.1 Recalls on state spaces
The positive cone C is the set of positive observables. A state of A is a linear functional

〈·〉 : A−→R (11)

that is nonnegative: 〈a〉 ≥ 0, ∀a ≥ 0, and normalized: 〈1〉 = 1. Given an element a of A, we
denote by L(a) the endomorphism of A defined by L(a)(b) = a ◦ b and Trace(a) its trace,
i.e., Trace(a) := Trace(L(a)). Since A is formally real, the pairing

〈a, b〉 = Trace
(
L(a)(b)

)
= Trace(a ◦ b) (12)

is a real-valued inner product and one can identify any state with a unique element ρ of
A by setting

〈a〉 = Trace(ρ ◦ a), (13)

where ρ ≥ 0 and Trace(ρ) = 1. Such ρ , for A = H(2,R), is a so-called state density matrix
[8]. Formula (13) gives the expectation value of the observable a in the state with density
matrix ρ .

Regarding Proposition 1, the positive state density matrices of the algebra H(2,R) are in
one-to-one correspondence with the elements of the future lightcone

L+ =
{

a = (α + v),α > 0, a · a > 0
}

(14)

that are of the form a = (1 + v)/2, with ‖v‖ ≤ 1. One way to qualify states is to introduce
the Von Neumann entropy [8, 37]. It is given by

S(ρ) = – Trace(ρ logρ). (15)

It appears that S(ρ) = 0 if and only if ρ satisfies ρ ◦ ρ = ρ . The zero entropy state density
matrices characterize pure states that afford a maximum of information. Among the other
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state density matrices, one is of particular interest. It is given by ρ0 = Id2/2 or ρ0 = (1 + 0)/2
(Id2 is the identity matrix) and is characterized by

ρ0 = argmax
ρ

S(ρ). (16)

The mixed state with density matrix ρ0 is called the state of maximum entropy, S(ρ0) being
equal to log 2. It provides the minimum of information. Using (13), we have

〈a〉0 =
Trace(a)

2
. (17)

Now, given an observable a, a acts on the state 〈·〉0 by the formula

a : 〈·〉0 �−→ 〈a ◦ ·〉 = 〈·〉0,a. (18)

Since for any state ρ the element 2ρ is an observable, we get

〈a〉0,2ρ = 〈2ρ ◦ a〉0 = Trace(ρ ◦ a) = 〈a〉 (19)

for all observable a. This means that any state with density matrix ρ can be obtained from
the state of maximal entropy with density matrix ρ0 using the action of the observable 2ρ .

3.2 The two-level real quantum system
The pure state density matrices of the algebra A = H(2,R) are of the form

1
2

(
1 + v1 v2

v2 1 – v1

)

, (20)

where v = v1e1 + v2e2 is a unit vector of R2. They are in one-to-one correspondence with
the light rays of the 3-dimensional Minkowski spacetime, see Proposition 2.

A classical representation of quantum states is the Bloch body [38]. An element ρ of
H(2,R) is a state density matrix if and only if it can be written as follows:

ρ(v1, v2) =
1
2

(Id2 + v · σ ) =
1
2

(Id2 + v1σ1 + v2σ2), (21)

where σ = (σ1,σ2) with

σ1 =

(
1 0
0 –1

)

, σ2 =

(
0 1
1 0

)

, (22)

and v = v1e1 + v2e2 is a vector of R2 with ‖v‖ ≤ 1. The matrices σ1 and σ2 are Pauli-like
matrices. In the usual framework of quantum mechanics, that is, when the observable
algebra is the algebra H(2,C) of 2 by 2 hermitian matrices with complex entries, the Bloch
body is the unit Bloch ball inR

3. It represents the states of the two-level quantum system of
a spin- 1

2 particle, also called a qubit. In the present context, the Bloch body is the unit disk
of R2 associated with a rebit. We give now more details on this system using the classical
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Dirac notations [29], bra, ket, etc. Let us denote by |u1〉, |d1〉, |u2〉, and |d2〉 the four state
vectors defined by

|u1〉 =

(
1
0

)

, |d1〉 =

(
0
1

)

, |u2〉 =
1√
2

(
1
1

)

, |d2〉 =
1√
2

(
–1
1

)

. (23)

We have

σ1 = |u1〉〈u1| – |d1〉〈d1|, σ2 = |u2〉〈u2| – |d2〉〈d2|. (24)

The state vectors |u1〉 and |d1〉, resp. |u2〉 and |d2〉, are eigenstates of σ1, resp. σ2, with
eigenvalues 1 and –1.

Using polar coordinates v1 = r cos θ , v2 = r sin θ , we can write ρ(v1, v2) as follows:

ρ(r, θ ) =
1
2

(
1 + r cos θ r sin θ

r sin θ 1 – r cos θ

)

(25)

=
1
2
{

(1 + r cos θ )|u1〉〈u1| + (1 – r cos θ )|d1〉〈d1| + (r sin θ )|u2〉〈u2| (26)

– (r sin θ )|d2〉〈d2|
}

. (27)

This gives, for instance,

ρ(1, 0) = |u1〉〈u1| =

(
1 0
0 0

)

, (28)

ρ(1,π ) = |d1〉〈d1| =

(
0 0
0 1

)

, (29)

ρ(1,π/2) = |u2〉〈u2| =
1
2

(
1 1
1 1

)

, (30)

ρ(1, 3π/2) = |d2〉〈d2| =
1
2

(
1 –1

–1 1

)

. (31)

More generally

ρ(1, θ ) =
∣∣(1, θ )

〉〈
(1, θ )

∣∣, (32)

with

∣
∣(1, θ )

〉
= cos(θ/2)|u1〉 + sin(θ/2)|d1〉. (33)

This means that we can identify the pure state density matrices ρ(1, θ ) with the state vec-
tors |(1, θ )〉 and also with the points of the unit disk boundary with coordinate θ . The state
of maximal entropy, given by the state density matrix

ρ0 =
1
2

(
1 0
0 1

)

, (34)
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is the mixture

ρ0 =
1
4
|u1〉〈u1| +

1
4
|d1〉〈d1| +

1
4
|u2〉〈u2| +

1
4
|d2〉〈d2| (35)

=
1
4
ρ(1, 0) +

1
4
ρ(1,π ) +

1
4
ρ(1,π/2) +

1
4
ρ(1, 3π/2), (36)

with equal probabilities. Using (25), we can write every state density matrix as follows:

ρ(r, θ ) = ρ0 +
r cos θ

2
(
ρ(1, 0) – ρ(1,π )

)
+

r sin θ

2
(
ρ(1,π/2) – ρ(1, 3π/2)

)
. (37)

Such a state density matrix is given by the point of the unit disk with polar coordinates
(r, θ ). It is important to notice that the four state density matrices ρ(1, 0), ρ(1,π ), ρ(1,π/2),
and ρ(1, 3π/2) correspond to two pairs of state vectors (|u1〉, |d1〉), (|u2〉, |d2〉), the state
vectors |ui〉 and |di〉, for i = 1, 2, being linked by the “up and down” Pauli-like matrix σi.

3.3 Remarks
In the usual framework, that is, when A is H(2,C), the three Pauli matrices are associated
with the three directions of rotations in R

3. In our case, there are only two Pauli-like ma-
trices. The interpretation in terms of rotations ceases to be relevant since there is no space
with a rotation group of dimension 2. This makes rebits somewhat strange. We explain in
Sect. 7.1 that this real quantum system seems to be well adapted to provide a mathematical
model of the opponency color mechanism of E. Hering.

The pure and mixed states play a crucial role in the measurements: “. . . that is, after the
interaction with the apparatus, the system-plus-apparatus behaves like a mixture. . . It is
in this sense, and in this sense alone, that a measurement is said to change a pure state
into a mixture” [39] (see also the cited reference [40]). It seems actually that the problem
of measurements in quantum mechanics was one of the main motivations of P. Jordan for
the introduction of his new kind of algebras: “Observations not only disturb what has to
be measured, they produce it. . . We ourselves produce the results of measurements” [39],
p. 161, [41, 42].

4 The Riemannian geometry of C and L+

Now, we give further information on the underlying geometry of the Jordan algebra A
from both the points of view discussed above, that is, A as the algebra H(2,R) and A as
the spin factor R ⊕ R

2. We first recall how to endow the positive cone C of the algebra
H(2,R) with a metric that makes C foliated by leaves isometric to the Poincaré disk. This
is essentially the way followed by H.L. Resnikoff in [5] to obtain the geometric model P2. It
appears that this geometric structure is not well adapted to our quantum viewpoint since
it does not take into account the specific role of the density matrices. Instead, we propose
to equip the positive coneL+ of the spin factorR⊕R

2 with a metric that makesL+ foliated
by leaves isometric to the Klein disk. This geometric structure is more appropriate to our
approach since the state space considered before is naturally embedded in L+ as a leaf, see
(76).

4.1 The Poincaré geometry of C
We consider the level set

C1 =
{

X ∈H+(2,R), Det(X) = 1
}

. (38)
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Every X in C1 can be written as follows:

X =

(
α + v1 v2

v2 α – v1

)

, (39)

with v = v1e1 + v2e2 a vector of R2 satisfying α2 – ‖v‖2 = 1 and α > 0. Using the one-to-one
correspondence

X =

(
α + v1 v2

v2 α – v1

)

�−→ (α + v), (40)

the level set C1 is sent to the level set

L1 =
{

a = (α + v) ∈L+, a · a = 1
}

(41)

of the future lightcone L+. It is well known that the projection

π1 : L1 −→ {α = 0}, (42)

defined by

π1(α + v) = (0 + w), (43)

with w = w1e1 + w2e2 and

wi =
vi

1 + α
, (44)

for i = 1, 2, is an isometry between the level set L1 and the Poincaré disk D [43]. Simple
computations show that the matrix X can be written as follows:

X =

⎛

⎝
1+2w1+(w2

1+w2
2)

1–(w2
1+w2

2)
2w2

1–(w2
1+w2

2)
2w2

1–(w2
1+w2

2)
1–2w1+(w2

1+w2
2)

1–(w2
1+w2

2)

⎞

⎠ (45)

in the w-parametrization.

Proposition 3 Let X be an element of C1 written under the form (45), we have

Trace[(X–1 dX)2]
2

= 4
(

(dw1)2 + (dw2)2

(1 – (w2
1 + w2

2))2

)
= ds2

D . (46)

Proof Cayley–Hamilton theorem implies the following equality, where A denotes a 2 by 2
matrix:

(
Trace(A)

)2 = Trace
(
A2) + 2 Det(A). (47)

We apply this equality to the matrix A = X–1 dX. The matrix X can be written as follows:

X =
(

1 + |z|2
1 – |z|2

)
I2 +

X1

1 – |z|2 , (48)
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where

X1 =

(
2w1 2w2

2w2 –2w1

)

(49)

and z = w1 + iw2. We have

X–1 =
(

1 + |z|2
1 – |z|2

)
I2 –

X1

1 – |z|2 (50)

and

dX = d
(

1 + |z|2
1 – |z|2

)
I2 +

dX1

1 – |z|2 +
d(|z|2)

(1 – |z2|)2 X1. (51)

Consequently,

X–1 dX =
2 d(|z|2)

(1 – |z|2)2 I2 –
d(|z|2)

(1 – |z|2)2 X1 +
(1 + |z|2) dX1

(1 – |z|2)2 –
X1 dX1

(1 – |z|2)2 . (52)

Since Trace(X1) = Trace(dX1) = 0 and Trace(X1 dX1) = 4d(|z|2), then

[
Trace

(
X–1 dX

)]2 = 0 (53)

and

Trace
[(

X–1 dX
)2] = –2 Det

(
X–1 dX

)
= –2 Det(dX). (54)

We have also

dX =
d(|z|2)

(1 – |z|2)2

(
1 + |z|2 + 2w1 2w2

2w2 1 + |z|2 – 2w1

)

(55)

+
1

(1 – |z|2)

(
d(|z|2) + 2 dw1 2 dw2

2 dw2 d(|z|2) – 2 dw1

)

. (56)

Simple computations lead to

Det(dX) = –4
(

(dw1)2 + (dw2)2

(1 – |z|2)2

)
(57)

and end the proof. �

This proposition means that C1 equipped with the normalized Rao–Siegel metric, i.e.,
Trace[(X–1 dX)2]/2, is isometric to the Poincaré disk D of constant negative curvature
equal to –1. Actually, C is foliated by the level sets of the determinant with leaves that
are isometric to D. This description, which is analogous to the one considered by H.L.
Resnikoff in [5], does not take into account the specific role of the state density matrices
of the algebra H(2,R).
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4.2 The Klein geometry of L+

Another classical result of hyperbolic geometry asserts that the projection

	1 : L1 −→ {α = 1}, (58)

defined by

	1(α + v) = (1 + x), (59)

with x = x1e1 + x2e2 and

xi =
vi

α
, (60)

for i = 1, 2, is an isometry between the level set L1 and the Klein disk K, the Riemannian
metric of which is given by

ds2
K =

(dx1)2 + (dx2)2

1 – (x2
1 + x2

2)
+

(x1 dx1 + x2 dx2)2

(1 – (x2
1 + x2

2))2 , (61)

see [43]. An isometry between K and D is defined by

xi =
2wi

1 + (w2
1 + w2

2)
, (62)

wi =
xi

1 +
√

1 – (x2
1 + x2

2)
(63)

for i = 1, 2. In other words, we have the following commutative diagram of isometries:

L1

	1

L1

π1

C1

K D D

(64)

Let us recall that the state density matrices of the quantum system we consider can be
identified with the elements

a = (1 + v)/2 (65)

of the spin factor R⊕R
2 with ‖v‖ ≤ 1. Let us denote by

	1/2 : L1/2 =
{

a = (α + v)/2,α > 0, a · a = 1/4
} −→ {α = 1/2} (66)

the projection given by

	1/2
(
(α + v)/2

)
= (1 + v/α)/2. (67)
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We have

	1/2
(
(α + v)/2

)
= 	1(α + v)/2. (68)

This means that the map

ϕ : K �−→K1/2, (69)

defined by

ϕ(x1, x2) = (x1, x2)/2, (70)

is an isometry between K and

K1/2 =
{

x/2 ∈R
2,‖x‖2 < 1

}
, (71)

the Riemannian metric on the latter being given by

ds2
K1/2

=
(
ϕ–1)∗ ds2

K =
(dx1)2 + (dx2)2

1/4 – (x2
1 + x2

2)
+

(x1 dx1 + x2 dx2)2

(1/4 – (x2
1 + x2

2))2 . (72)

One can verify that L+ is foliated by the level sets α = constant with leaves that are
isometric to the Klein disk K. This description is more appropriate than the above one to
characterize perceived colors from real quantum states since the state space S is naturally
embedded in L+, see (76) below.

4.3 Klein and Hilbert metrics
As an introduction to the discussions of Sects. 7.2 and 7.3, let us recall some basic facts
about the geometry of the Klein disk. Contrary to the Poincaré disk, the geodesics of K
are straight lines and more precisely the chords of the unit disk. An important feature of
the Klein metric is that it coincides with the Hilbert metric defined as follows. Let p and q
be two interior points of the disk, and let r and s be the two points of the boundary of the
disk such that the segment [r, s] contains the segment [p, q]. The Hilbert distance between
p and q is defined by

dH (p, q) =
1
2

log[r, p, q, s], (73)

where

[r, p, q, s] =
‖q – r‖
‖p – r‖ × ‖p – s‖

‖q – s‖ (74)

is the cross-ratio of the four points r, p, q, and s [44] (in (74), ‖ · ‖ is the Euclidean norm).

5 Perceived colors and chromatic states
We describe the space P of perceived colors under the only hypothesis that P can be
described from the state space of a quantum system characterized by the Jordan algebra
H(2,R). As explained before, we exploit the fact that H(2,R) is isomorphic to the spin
factor R⊕R

2. Let us recall that this description does not involve any reference to physical
colors or to an observer.
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5.1 Perceived colors as quantum measurements
The state space S is the unit disk embedded in the space of state density matrices by

s = (v1, v2) �−→ ρ(v1, v2) =
1
2

(
1 + v1 v2

v2 1 – v1

)

(75)

and in the Klein disk K1/2 of the closure L+ of the future lightcone L+ by

s = (v1, v2) �−→ 1
2

(1 + v) = 1/2 + (v1/2, v2/2). (76)

In order to describe perceived colors, i.e., measured colors, it is necessary to characterize
all the possible measurements that can be performed on the states. We adopt here the
viewpoint of the generalized probability theory [45]. The reader may refer for instance to
[46, 47], and [48] for more information on related topics.

We denote by C(S) the state cone defined by

C(S) =

⎧
⎪⎨

⎪⎩
α

⎛

⎜
⎝

v1

v2

1

⎞

⎟
⎠ ,α ≥ 0, s = (v1, v2) ∈ S

⎫
⎪⎬

⎪⎭
. (77)

This cone is self-dual, that is,

C(S) = C∗(S) =
{

a ∈A,∀b ∈ C(S), 〈a, b〉 ≥ 0
}

, (78)

where 〈·, ·〉 denotes the inner product of A given by (12). By definition, an effect is an
element e of C∗(S) such that e(s) ≤ 1 for all s in S . Such an effect e can be seen as an affine
function e : S −→ [0, 1] with 0 ≤ e(s) ≤ 1 for all s. It is the most general way of assigning
a probability to all states. Effects correspond to positive operator-valued measures. They
also correspond to nonnegative symmetric matrices. In fact, the cone C(S) is the positive
domain of the algebra A. Considering A as the algebra H(2,R), this means that an effect e
is a symmetric matrix such that 〈e, f 〉 = Trace(ef ) ≥ 0 for all nonnegative symmetric matrix
f . In order to verify that e is nonnegative, let us suppose that this is not the case and thus
that one of the eigenvalues of e is negative, the corresponding eigenvector being denoted
by w. One can then check that the trace of the product ewwt is negative. This gives a
contradiction since the matrix f = wwt is symmetric and nonnegative.

In the present settings, every effect is given by a vector e = (a1, a2, a3) such that

0 ≤ e ·
⎛

⎜
⎝

v1

v2

1

⎞

⎟
⎠ ≤ 1 (79)

for all s = (v1, v2) in S . The measurement effect associated with e is the operator

E = a3 Id2 + a1σ1 + a2σ2 (80)

that must satisfy 0 ≤ E ≤ Id2. This last condition implies that 0 ≤ a3 ≤ 1, with a2
1 + a2

2 ≤ a2
3

and a2
1 + a2

2 ≤ (1 – a3)2. We denote by E(S) the effect space of S , that is, the set of all
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effects on S . As explained in Sect. 7.1, this space appears to coincide with the “double
cone” depicted in Fig. 4.11 of [17], p. 123. Note that the so-called unit effect, e1 = (0, 0, 1),
satisfies e1(s) = 1 for all s in S .

5.2 Colorimetric definitions
A perceived color c = (a1, a2, a3) is by definition an effect on S , that is, an element of
the effect space E(S). Since C(S) = C∗(S), a perceived color c is an element of the state
cone of S , this one being the closure L+ of the future lightcone L+. The element c/(2a3) =
(a1/2a3, a2/2a3, 1/2), a3 �= 0, belongs to the Klein disk K1/2 of L+. This suggests to define
the colorimetric attributes of c as follows:

– The real a3, with 0 ≤ a3 ≤ 1, is the magnitude of the perceived color c.
– The element sc = (a1/a3, a2/a3) ∈ S is the chromatic state of c.
– A perceived color with a unit chromatic state is a pure perceived color.
– The saturation of a perceived color c is given by the Von Neumann entropy of its

chromatic state.
– A perceived color whose chromatic state is the state of maximal entropy is

achromatic.
Given a state (v1, v2) ∈ S , the perceived colors which have this state as chromatic state

form the intersection

cs = E(S) ∩

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

a3v1

a3v2

a3

⎞

⎟
⎠ , 0 ≤ a3 ≤ 1

⎫
⎪⎬

⎪⎭
. (81)

The maximum value of a perceived color c = (a1, a2, a3) is

⎛

⎜
⎝

a1

a2

a3

⎞

⎟
⎠ ·

⎛

⎜
⎝

a1/a3

a2/a3

1

⎞

⎟
⎠ =

a2
1 + a2

2
a3

+ a3 = a3
(
1 + r2), (82)

with r2 = (a2
1 + a2

2)/a2
3. We must have

0 ≤ r2 ≤ 1 – a3

a3
≤ 1. (83)

If 0 < a3 < 1/2, the measure of a perceived color c = (a1, a2, a3) on its chromatic state
(a1/a3, a2/a3) gives the probability a3(1 + r2), this one being well defined for all 0 < r ≤ 1.
In particular, pure perceived colors are measured with the maximum probability 2a3. In
this case, the magnitude is not high enough to allow measurements with probability 1, and
the perceived colors are under-estimated.

If a3 = 1/2, the measure of a perceived color c = (a1, a2, 1/2) on its chromatic state
(2a1, 2a2) gives the probability (1 + r2)/2. This probability is well defined for all 0 < r ≤ 1. It
is maximal, equal to 1, if and only if c is a pure perceived color. In this case, the perceived
colors are ideally-estimated.

If 1/2 < a3 < 1, the measure of a perceived color c = (a1, a2, a3) on its chromatic state
(a1/a3, a2/a3) gives the probability a3(1 + r2). This probability is well defined if and only
if equation (83) is satisfied. In particular, pure perceived colors cannot be measured on
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their chromatic states. For instance, if a3 = 2/3, then r should be less than or equal to√
2/2 and perceived colors with chromatic states of norm equal to

√
2/2 are measured

with probability 1. In this case, the perceived colors are over-estimated.
An achromatic perceived color c = (0, 0, a3) measured on a chromatic state gives the

probability a3 and this independently of the considered chromatic state. Such a perceived
color does not take into account chromaticity. The unit perceived color c = e1 is the satu-
rated achromatic perceived color.

6 Group actions and homogeneity
As already mentioned, Resnikoff’s work is based on the fact that there should exist a linear
group acting transitively on the space of perceived colors [5, 9]. The elements of this group
are supposed to be background illuminant changes. Up to now, we have not taken into
account such an action to obtain the description that we propose for the space of perceived
colors. This section is mainly devoted to showing that one can characterize illumination
changes by Lorentz boost maps starting from the quantum dynamics described above. We
will see in Sect. 7.2 how to relate our results with those of H. Yilmaz [14, 15].

6.1 Recalls on the special Lorentz group
Let us first recall that the special Lorentz group SO+(1, 2) is the identity component of the
group O(1, 2), this latter being the matrix Lie group that preserves the quadratic form

∥
∥(α + v)

∥
∥
M = α2 – ‖v‖2, (84)

where (α + v) belongs to the spin factor R⊕R
2. The fact that SO+(1, 2) acts linearly on L+

means that it acts projectively on the set of lines of L+ and consequently on the points of
the Klein disk K1/2 [49]. Moreover, this projective action gives the isometries of K1/2.

The subgroup of SO+(1, 2) that fixes (1 + 0) may be identified with the group of rotations
SO(2), and in fact every element g of SO+(1, 2) can be decomposed in a unique way as
follows [50]:

g = bζ rξ , (85)

where bζ is a boost map and rξ is a proper rotation. More precisely, if we consider the
coordinates (α, v1, v2) in L+, the matrix associated with bζ is given by

M(bζ ) =

⎛

⎜
⎝

cosh(ζ0) ζx sinh(ζ0) ζy sinh(ζ0)
ζx sinh(ζ0) 1 + ζ 2

x (cosh(ζ0) – 1) ζxζy(cosh(ζ0) – 1)
ζy sinh(ζ0) ζxζy(cosh(ζ0) – 1) 1 + ζ 2

y (cosh(ζ0) – 1)

⎞

⎟
⎠ , (86)

where (ζx, ζy) is a unit vector of R2 and ζ0 is the rapidity of the boost. It should be noted
that the set of boosts is not a subgroup of the special Lorentz group. The matrix associated
with rξ is given by

M(rξ ) =

⎛

⎜
⎝

1 0 0
0 cos ξ – sin ξ

0 sin ξ cos ξ

⎞

⎟
⎠ . (87)
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In order to illustrate the projective action of the boost bζ on the Klein disk K1/2, let us
consider a simple example (quite more complicated computations give similar results in
the general case). We choose ζx = 1, ζy = 0, and denote ζ = tanh(ζ0). The image (α, w1, w2)
of a vector (1/2, cos θ/2, sin θ/2) is given by

⎧
⎪⎪⎨

⎪⎪⎩

2α = cosh(ζ0) + sinh(ζ0) cos θ ,

2w1 = sinh(ζ0) + cosh(ζ0) cos θ ,

2w2 = sin θ .

(88)

This means that the image of the boundary point (cos θ/2, sin θ/2) is the boundary point
(v1, v2) with

⎧
⎨

⎩
2v1 = ζ+cos θ

1+ζ cos θ
,

2v2 = (1–ζ
2)1/2 sin θ

1+ζ cos θ
.

(89)

One may notice that the map sending the point (cos θ/2, sin θ/2) to the point (v1, v2) is an
element of the group PSL(2,R). Transformation (89) will be used in Sect. 7.2 to interpret
Yilmaz third experiment as a colorimetric analog of the relativistic aberration effect.

6.2 Pure states and one parameter subgroups of Lorentz boosts
The fact that boost maps act on pure states with PSL(2,R) transformations is not surpris-
ing in view on the following result.b

Proposition 4 Every pure state generates a one-parameter subgroup of boosts.

Proof As seen before, the state density matrix of a pure state is given by

ρ(v1, v2) =
1
2

(Id2 + v · σ ), (90)

where v = (v1, v2) is a unit vector and σ = (σ1,σ2). The matrices σ1 and σ2 are symmetric
traceless matrices that are usually chosen to be the two first generators of the Lie algebra
sl(2,R) of the group SL(2,R). Note that they do not generate a sub-Lie algebra of sl(2,R).
The matrix

A(ρ, ζ0) = exp

(
ζ0

v · σ
2

)
(91)

is a symmetric element of PSL(2,R), ζ0 being a real parameter. Let us recall that the
PSL(2,R) action on H(2,R) is defined by

X �−→ AXAt . (92)

We have clearly Det(AXAt) = Det(X). Since σ1 and σ2 are elements of H(2,R), we can con-
sider the matrices given by

σi �−→ A(ρ, ζ0)σiA(ρ, ζ0) (93)
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for i = 0, 1, 2, with σ0 = Id2. It can be shown that the 3 × 3 matrix with coefficients

M(ρ, ζ0)ij =
1
2

Trace
(
σiA(ρ, ζ0)σjA(ρ, ζ0)

)
(94)

is a boost bζ with ζ = tanh(ζ0)(v1, v2). Let us verify it on a simple example where v1 = 1 and
v2 = 0. In this case,

A(ρ, ζ0) = exp

(
ζ0

v1σ1

2

)
= exp

(
ζ0

σ1

2

)
=

(
eζ0/2 0

0 e–ζ0/2

)

. (95)

We only need to compute the coefficient B(σ , ζ0)i,j for i ≤ j. We have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(σ , ζ0)00 = 1
2 Trace(A2(ρ, ζ0)) = cosh(ζ0),

M(σ , ζ0)01 = 1
2 Trace(A(ρ, ζ0)σ1A(ρ, ζ0)) = sinh(ζ0),

M(σ , ζ0)02 = 1
2 Trace(A(ρ, ζ0)σ2A(ρ, ζ0)) = 0,

M(σ , ζ0)11 = 1
2 Trace(σ1A(ρ, ζ0)σ1A(ρ, ζ0)) = cosh(ζ0),

M(σ , ζ0)12 = 1
2 Trace(σ1A(ρ, ζ0)σ2A(ρ, ζ0)) = 0,

M(σ , ζ0)22 = 1
2 Trace(σ2A(ρ, ζ0)σ2A(ρ, ζ0)) = 1.

(96)

This means that M(ρ, ζ0) = M(bζ ) with ζ = tanh(ζ0)(1, 0), see equation (86). �

One can easily verify that the image of the vector (1/2, 0, 0) of L+ by the boost bζ =
tanh(ζ0)(1, 0) is the vector (cosh(ζ0)/2, sinh(ζ0)/2, 0). In consequence, the state of maximal
entropy ρ0 = (0, 0) is sent to the state (tanh(ζ0)/2, 0). This extends to general boosts.

We can summarize these computations in the following way. As before, we consider the
state space S as the Klein disk K1/2 of the closure L+ of the future lightcone L+ by using
the map

s = (v1, v2) �−→ 1
2

(1 + v) = 1/2 + (v1/2, v2/2). (97)

Every pure state ρ generates a one-parameter subgroup of boosts, the parameter ζ0 being
the rapidity. Actually, every boost can be obtained in this way. Boost maps act on the Klein
diskK1/2 by isometries. If we considerS as embedded in the space of state density matrices
by

s = (v1, v2) �−→ ρ(v1, v2) =
1
2

(
1 + v1 v2

v2 1 – v1

)

, (98)

the one-parameter subgroup of boosts is obtained by considering the action of PSL(2,R)
on H(2,R). It is important to notice that we use only the matrices σ0, σ1, and σ2, i.e., only
information from S . Since every state can be obtained from the state of maximal entropy,
boosts, or equivalently pure states, act transitively on S. However, one has to pay attention
to the fact that boost maps do not form a subgroup of the special Lorentz group, which is
reflected by the fact that σ1 and σ2 do not form a sub-Lie algebra of the Lie algebra sl(2,R).
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6.3 About homogeneity
This point of view is quite different from the approach adopted in [5]. As mentioned in
the introduction and explained in [9], one of the key arguments of H.L. Resnikoff is the
existence of a transitive action of the group denoted GL(P) on the space P of perceived
colors. This group is supposed to be composed of all linear changes of background illumi-
nation. In what precedes, we make use of the action of PSL(2,R) on H(2,R), see (92). But
the matrices A(ρ, ζ0) of PSL(2,R) that are used are also symmetric, due to the fact that σ1

and σ2 are symmetric. Actually, the action (92) can be also viewed as the action

X �−→ AXA (99)

of the Jordan algebra H(2,R) on itself. This is precisely the action

Q(A) : X �−→ (
2L(A)2 – L

(
A2))X (100)

of the quadratic representation of A on X [10]. But once again, the matrices X that we
consider are σ0, σ1, and σ2. The matrices σ1 and σ2 are not elements of the positive cone
H+(2,R). It appears in consequence that the homogeneity of H+(2,R) is not so important
in our approach. Instead of postulating the existence of a group of linear changes of back-
ground illumination, we have shown that the quantum description that we propose natu-
rally leads to considering boost maps as illumination changes. These illumination changes
are isometries of the Klein disk K1/2.

7 Consequences and perspectives
We discuss now some consequences and perspectives of our results regarding color per-
ception.

7.1 Neural coding of colors and Hering’s rebit
D.H. Krantz describes in [51] Hering’s color opponency mechanism [52] as follows: “E.
Hering noted that colors can be classified as reddish or greenish or neither, but that
redness and greenness are not simultaneously attributes of a color. If we add increasing
amounts of a green light to a reddish light, the redness of the mixture decreases, disap-
pears, and gives way to greenness. At the point where redness is gone and greenness is not
yet present, the color may be yellowish, bluish, or achromatic. We speak of a partial chro-
matic equilibrium, with respect to red/green. . . Similarly, yellow and blue are identified as
opponent hues. . . ”

Let us rename |g〉 = |u1〉, |r〉 = |d1〉, |b〉 = |u2〉, and |y〉 = |d2〉 as the four state vectors
characterizing the rebit. The opponency mechanism is given by the two matrices σ1 and
σ2. More precisely, the state vector

∣∣(1, θ )
〉

= cos(θ/2)|g〉 + sin(θ/2)|r〉 (101)

satisfies

〈
(1, θ )

∣∣σ1
∣∣(1, θ )

〉
= cos θ ,

〈
(1, θ )

∣∣σ2
∣∣(1, θ )

〉
= sin θ . (102)
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This means that if cos θ > 0, then the pure chromatic state s(θ ) of the Bloch disk with
coordinate θ is greenish, and if cos θ < 0, then s(θ ) is reddish. For θ = π/2, or θ = 3π/2,
s(θ ) is achromatic in the opposition green/red. In the same way, if sin θ is positive, then
s(θ ) is bluish, and if sin θ is negative, then s(θ ) is yellowish. For θ = 0, or θ = π , s(θ ) is
achromatic in the blue/yellow opposition. The phenomenon “that redness and greenness
are not simultaneously attributes of a color”, for instance, is a trivial consequence of the
fact that 〈(1, θ )|σ1|(1, θ )〉 cannot be simultaneously positive and negative.

The mathematical description of the opponency that we propose seems to be relevant
regarding the physiological mechanisms of the neural coding of colors [16] and [17]. These
mechanisms involve both three separate receptor types (the L, M, and S cones) and spec-
trally opponent and nonopponent interactions. These latter, which take place at a higher
level in the processing pipeline, result essentially from the activity rates of ganglion and
lateral geniculate nucleus cells [53, 54]. Roughly speaking, color information is obtained
by detecting and magnifying the differences between the various receptor type outputs.

Ganglion cells take their inputs from the bipolar and amacrine cells and relay the in-
formation to the lateral geniculate nucleus through ganglion axons. Most of the ganglion
cells are on-center and off-surround, which means that they are activated if light falls in
the center of their receptive fields and inhibited if light falls in the surround of their recep-
tive fields. There exist also off-center and on-surround ganglion cells. One distinguishes
two types of spectrally opponent interactions. The first one is given by the activity rate of
midget ganglion cells located in the fovea. These cells fire when the difference of the spec-
tral sensitivities of the L and M cones is greatest. This mechanism produces the L-M and
M-L spectral opposition [53]. The second type is given by the activity rate of bistratified
ganglion cells [54]. These cells fire when the difference between the spectral sensitivity of
the S cone and both the spectral sensitivities of the L and M cones is greatest. This second
mechanism produces the S-(L+M) and (L+M)-S spectral opposition. Besides the spec-
trally opponent interactions, there exists one type of spectrally nonopponent interaction
given by the activity rate of parasol ganglion cells. These cells carry essentially the L+M
and -(L+M) information.

As summarized in [17], the two main types of neural interactions seen in the precortical
visual system are thus due to four spectrally opponent cells,c R-G, G-R, B-Y, and Y-B, and
to two spectrally nonopponent cells Bl and Wh. The hue of a perceived color is determined
by the activity rates among the four spectrally opponent cell types, the lightness by the two
activity rates of the spectrally nonopponent cells, and the saturation by the relative rates of
the opponent and nonopponent cells. This description is clearly coherent with our results.
As already mentioned, the “double cone” depicted in [17], Fig. 4.11, p. 123, is nothing else
than the effect space of the real quantum system of Sect. 3.2. This justifies the terminology
Hering’s rebit. This also shows that rebits, with only two opposition directions, can be
relevant to model nonphysical phenomena related to perception.

It appears in consequence that the quantum model that we propose allows to recover
axiomatically, starting from the sole trichromacy axiom, that a chromatic pure state, that
is, a hue, is given by a pair of splittings similar to the two spin up and down inversions
of a rebit. Following L.E.J. Brouwer, “Newton’s theory of color analyzed light rays in their
medium, but Goethe and Schopenhauer, more sensitive to the truth, considered color to
be the polar splitting by the human eye” [55] (see also [56] and [57]).
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7.2 Yilmaz’s relativity of color perception from the trichromacy axiom
Yilmaz contributions [14] and [15] are devoted to deriving colorimetric analogs of the
relativistic Lorentz transformations from three basic experiments. The first experiment
is supposed to show that color perception is a relativistic phenomenon; the second one
to show that there exists a limiting saturation invariant under illumination changes; and
the third one to show that there exists a colorimetric analog of the relativistic aberration
effect [58]. These experiments involve observers located in two different rooms and who
perform color matching according to illuminant changes. In particular, the interpretation
of the third experiment is crucial for the derivation of the transformations since it avoids
introducing a perceptually invariant quadratic form whose existence is very difficult to
justify experimentally.d

Our objective here is to explain how to recover the result and the interpretation of this
third experiment with the only use of the trichromacy axiom. The reader will find a more
complete and detailed exposition in the forthcoming paper [59]. We have shown in Sect. 6
how to obtain the expression of the illuminant changes as Lorentz boost maps from the
trichromacy axiom. We have also described the projective action of these transformations
on the Klein disk K1/2 in the particular case that interests us here, see (89).

Under transformation (89), the image of the point R = (1/2, 0) is the point R′ = R = (1/2, 0)
(we use the notations of [15]). So, this point remains unchanged. The image of the point
Y = (0, 1/2) is the point Y ′ = (ζ /2, (1 – ζ

2)1/2/2) and the point Y has moved on the bound-
ary, the angle φ, the one reported in [15], p. 12, being given by sinφ = ζ . When the rapidity
ζ0 increases, ζ approaches 1 and the point (ζ , (1 – ζ

2)1/2)/2 approaches the point (1, 0)/2.
At the limit ζ = 1, every point (cos θ , sin θ )/2 is sent to the point (1, 0)/2, except the point
(–1, 0)/2. This means that every pure chromatic state, except the green pure chromatic
state, can be transformed to a pure chromatic state arbitrarily close to the red pure chro-
matic state under the Lorentz boost if the rapidity ζ0 is sufficiently great. To explain the
results of Yilmaz third experiment, note that v1 in (89) is the cosine of the angle of the ray
from the achromatic state to the image of the chromatic state (cos θ , sin θ )/2 viewed under
the initial illuminant I , whereas

v1 =
–ζ + cos θ

1 – ζ cos θ
(103)

is the cosine of the angle of the ray from the achromatic state to the image of the chromatic
state (cos θ , sin θ )/2 viewed under the illuminant I ′. In consequence, under the illuminant
I ′, the expected yellow chromatic state given by θ = π/2 is in fact the greenish chromatic
state given by cos θ = – tanh(ζ0).

We have already remarked in Sect. 4.3 that the hyperbolic Klein metric on K1/2 is given
by the Hilbert metric. The relativistic viewpoint allows to better understand the relevance
of this latter. One can first show that chromatic vectors satisfy a colorimetric analog of
the Einstein–Poincaré addition law. More precisely, given to perceived colors c and d with
chromatic vectors vc = (vc, 0) and vd = (vd, 0), the chromatic vector vc

d = (vc
d, 0) that de-

scribes the perceived color c with respect to d satisfies [59]

vc =
vc

d + vd

1 + 4vc
dvd

. (104)
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Then, this addition law can be related to an invariance property of the Hilbert metric. It
is proven in [59] that

dH
(
0, vc

d
)

= dH (vd, vc) ⇐⇒ vc =
vc

d + vd

1 + 4vc
dvd

. (105)

This last equivalence expresses the constancy of the Hilbert metric regarding illumination
changes.

7.3 On MacAdam ellipses and Hilbert metric
Hilbert’s metric is in fact defined on every convex set Ω and is always a Finsler metrice

[60, 61], whose asymmetric norm is given by

‖v‖p =
1
2

(
1

‖p – p–‖ +
1

‖p – p+‖
)

‖v‖, (106)

where p ∈ Ω and p± are the intersection points with the boundary ∂Ω of the oriented
line in Ω defined by the vector v with Euclidean norm ‖v‖ based at the point p. It is well
known that this Finsler metric is Riemannian if and only if the boundary ∂Ω is an ellipse.

The perceived color space that we have described is an ideal space that does not involve
specific characteristics of a human observer. It is natural to envisage to characterize every
human observer’s capability regarding color perception by a convex subset Ω of the state
space S , or equivalently of the Klein disk K1/2, endowed with the Finsler metric given by
the Hilbert distance. This convex subset Ω is in some sense the restriction of the ideal
chromatic state space due to the limitation of the observer perception. Work in progress
is devoted to identifying, for each observer, the convex subset Ω by comparing the balls
of the Finsler metric with the MacAdam ellipses drawn by the observer [62], which seem
very similar.

Let us also mention that the problem of discernibility of perceived colors is reminiscent
of the problem of distinguishability of quantum states [63, 64].

7.4 Contexts and open quantum systems
It is important to notice that our study does not take into account so-called contextual ef-
fects, e.g., spatial context effects, that are involved in various well-known color perception
phenomena such as the Helmholtz–Kohlrausch phenomenon [7, 65]. This corresponds to
the fact that the quantum system of the rebit is closed, i.e., with no interactions with its
environment. As opposite, open quantum systems may be interacting with other quan-
tum systems as part of a larger system [66]. The resulting modification of the initial state
space, i.e., of the space of density matrices, can be described by linear, trace-preserving,
completely positive maps [67]. One may envisage explaining the phenomena mentioned
above by such mechanisms.

An alternative approach to deal with context effects, based on the nonlocal theory of
fiber bundles and connections, has been suggested by E. Provenzi in [68].

Finally, our work can be recasted in a much broader emerging field of research whose
goal is to model general perceptual and cognitive phenomena from quantum theory, see
for instance [69] or [70].
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