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Abstract
Neural populations with strong excitatory recurrent connections can support bistable
states in their mean firing rates. Multiple fixed points in a network of such bistable
units can be used to model memory retrieval and pattern separation. The stability of
fixed points may change on a slower timescale than that of the dynamics due to
short-term synaptic depression, leading to transitions between quasi-stable point
attractor states in a sequence that depends on the history of stimuli. To better
understand these behaviors, we study a minimal model, which characterizes multiple
fixed points and transitions between them in response to stimuli with diverse time-
and amplitude-dependencies. The interplay between the fast dynamics of firing rate
and synaptic responses and the slower timescale of synaptic depression makes the
neural activity sensitive to the amplitude and duration of square-pulse stimuli in a
nontrivial, history-dependent manner. Weak cross-couplings further deform the
basins of attraction for different fixed points into intricate shapes. We find that while
short-term synaptic depression can reduce the total number of stable fixed points in
a network, it tends to strongly increase the number of fixed points visited upon
repetitions of fixed stimuli. Our analysis provides a natural explanation for the system’s
rich responses to stimuli of different durations and amplitudes while demonstrating
the encoding capability of bistable neural populations for dynamical features of
incoming stimuli.
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1 Introduction
Mounting evidence suggests that neural ensembles can give rise to states of activity that are
stable and attractor-like over a short period [1–8]. However, given the range of timescales
of neural processes, either slower processes or intrinsic noise typically ensures that an
activity state does not remain stable for more than a few hundred milliseconds, even when
a stimulus is constant. For example, when viewing images that can give rise to bistable
percepts, a switching between the distinct perceived images arises [2, 4, 6, 7]. A similar
switching can arise with auditory stimuli [1]. Analysis via hidden Markov modeling [9–
15] or change-point methods [16, 17] has suggested such state-switching in neural activity
in sensory and decision-related tasks. Modeling work has shown how discrete attractor
states can arise, and how either noise [18–22], or slow adaptation-like processes such as
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synaptic depression [23, 24], or a combination of the two [25, 26], can lead to transitions
between these states, which we refer to as quasi-stable attractor states [8].

In this article we focus on how short-term synaptic depression [27–29] can lead to the
instability of one quasi-stable attractor state, inducing a transition to a new state, which
itself may be stable or quasi-stable. Neuronal populations with short-term synaptic de-
pression have been studied extensively. Spontaneous activity in the auditory cortex can be
model by a spatial firing rate model as a result of dynamical synapse [30]. Holcman and
Tsodyks [31] considered a single rate model with slow synaptic depression. With vary-
ing synaptic coupling weights, the UP and DOWN states are interpreted as fixed points.
State transitions can be triggered by noisy fluctuations. The population exhibits a state-
dependent response to a constant stimulus. Barak and Tsodyks [32] performed a fast-slow
analysis on a rate model with both short-term facilitation and depression. They obtained
a bifurcation diagram for the synaptic strength vs facilitation index. They found that fa-
cilitation enables a slow and reversible transition to persistent firing. Depression, on the
other hand, leads to a rapid and transient increase in activity, which was referred to as
“population spikes”. Melamed et al. [33] examined slow oscillations (below 5 Hz) induced
in an E-I rate model with facilitating E to I couplings. They focused on oscillations be-
tween UP and DOWN states. It was shown that the oscillation frequency depends on the
synaptic time constant and the coupling strength in a pair of E-I populations. Moreover,
a thorough bifurcation analysis done in Ref. [34] links the stability of UP state to the rich
pattern-formation in a two-dimensional neural field with synaptic depression. Here we
focus on the history dependence of the response of circuits with many such states (arising
from multiple bistable units) in response to a simple input. However, to provide some in-
sight into the mechanism, we begin with a description of the behavior of a single unit and
two coupled units in places reiterating the results of others.

Mathematically, if one fixes the amount of synaptic depression by setting a slow, synaptic
depression variable to a constant, groups of neurons with strong self-feedback can possess
multiple stable discrete attractor states. The system can resemble a relaxation oscillator
with sufficiently strong depression and feedback [35] as the depression variable slowly de-
creases for an active group of neurons, reducing the within-group effective excitatory cou-
pling until the activity can no longer be maintained. Once inactive, the depression variable
slowly recovers, allowing for connections to re-strengthen and activity to recommence. In
other ranges of parameters, the remnant of such potential oscillatory behavior leads to a
rich repertoire of states and state transitions in response to simple stimuli when the stable
states of such systems are fixed points.

We characterize such systems with small numbers of potentially bistable groups of neu-
rons via the number of stable fixed points and their basins of attraction. The stable steady
states can be used to encode information arriving at the circuit via stimuli with varying
duration and amplitude [36]. So the number of discrete attractor states and the state-
transition sequence in response to stimuli provide measures of a network’s ability to store
dynamical features of stimuli. Therefore, we assess how different fixed points are reached
as a function of the amplitude or duration of stimuli, as well as the system’s state before
stimulus onset. In particular, we use an extended Wilson–Cowan model [37] and incorpo-
rate synaptic depression to show how weak coupling between distinct bistable populations
impacts the states’ basins of attraction, which can be deformed into complex shapes. In
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so doing, we offer an initial explanation of the rich information processing capabilities of
high-dimensional networks with multiple attractor states and slow synaptic dynamics.

The rest of this paper is organized as follows: We introduce the rate model with synaptic
depression in Sect. 2 and derive the dimensionless form that will be used for later anal-
ysis. In Sect. 3, we numerically explore the dynamics of small networks whose responses
to constant inputs exhibit history dependence. As system size increases, the synaptic de-
pression enables the network to traverse more states and form longer transition sequences
under repetitive stimulations. We summarize in Sect. 4 and discuss some open questions
for future research.

2 Model
We consider a network of N neural populations, each of which can be characterized by
its mean firing rate ri. The dynamics of the population rate ri in response to time-varying
current Ii(t) is given by a generic form:

τr ṙi = –ri +
rmax

i
1 + exp[–(Ii(t) – �i)/�i]

,

Ii(t) =
N∑

j=1

Wijsj + Iapp
i (t).

(1)

Here rmax
i is the maximum firing rate, �i is the input threshold for the half-maximum

firing rate, and �i is inversely proportional to the slope of the input-output curve. The
input current Ii(t) consists of two parts: (1) synaptic currents from the network with a
connectivity Wij which quantifies the coupling strength from population j to population
i; (2) an applied current Iapp

i (t).
The time-varying effective synaptic input si, arising from a population i, is given as a frac-

tion of the maximum possible (so si ∈ [0, 1]). We assume spikes are emitted from the popu-
lation via a Poisson process and include a short-term synaptic depression factor di ∈ [0, 1],
with 0 indicating a fully depressed synapse. With these assumptions, the mean dynamics
of si and di take the following form [24]:

τsṡi = –si + ρp0ridiτs(1 – si), (2)

τdḋi = 1 – di – p0ridiτd. (3)

The parameter p0 gives the fraction of docked vesicles released per spike. ρ is the fraction
of open receptors bound by maximal vesicle release such that ρp0di is the fraction of closed
synaptic receptors that open, so it is proportional to the increase in the synaptic current
for a given presynaptic spike.

The time constants for the mean firing rate, the synaptic current, and the depression
variable are denoted respectively as τr , τs, and τd . Since these dynamical variables vary
over distinct time scales, it is convenient to rescale the time and to normalize the rate:
t/τr → t, ri/rmax

i → ri ∈ [0, 1], as well as to scale the input and threshold by �i: Iapp
i /�i → Ii,

Wij/�i → wij, and �i/�i → θi. The dimensionless equations then become

ṙi = –ri + f

( N∑

j=1

wijsj – θi + Ii(t)

)
, (4)
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ṡi = α
(
–si + bridi(1 – si)

)
, (5)

ḋi = β(1 – di – aridi), (6)

where f (x) = (1 + e–x)–1 is the logistic function, θi is the activation threshold. The weight
matrix wij determines the coupling strengths within a unit and between units. Two re-
maining time-scales are characterized by α = τr/τs and β = τr/τd . In this paper, we assume
that the short-term depression varies over a slow time scale compared with the firing rate
and the synaptic current. This situation arises when the timescale for recovery from de-
pression is significantly longer than other time constants, such that τd � τs > τr . For ex-
ample, we set τd = 250 ms, τs = 50 ms, and τr = 10 ms in simulations, and p0 = 0.5. The
dimensionless parameters

a = p0rmax
i τd, b = ρp0rmax

i τs (7)

quantify the degree of synaptic depression and the amplitude of synaptic currents, respec-
tively. With slow depression, a > b.

Finally, all cell groups are assumed to be comprised of neurons with identical param-
eters. For most simulations we choose the standard parameter set: a = 6.25, b = 1.25,
wii = 40, and θi = 5, unless noted otherwise. In a control scenario [for example, Fig. 2(b1)–
(b4)], to demonstrate the importance of synaptic depression, we produce a network with-
out depression by setting τd → 0 thus a → 0 and di → 1. Then the firing rate is solely
driven by the synaptic current within a time window of τs.

3 Dynamics
The fixed point solution of N coupled units satisfies

g(ri) –
N∑

j=1

wijs(rj) = Ii – θi, (8)

where g(r) = f –1(r) = ln[r/(1–r)] and s(r) = br
1+(a+b)r is the steady synaptic current. At a fixed

point r = (r1, . . . , rN )T , the steady values of s and d are given by Eqs. (5) and (6). Lineariza-
tion at the fixed point leads to a blocked Jacobian matrix

Jij =

⎡

⎢⎣
–δij wijri(1 – ri) 0

δij
αb

1+(a+b)ri
–δij

α(1+(a+b)ri)
1+ari

δij
αbri(1+ari)
1+(a+b)ri

–δij
βa

1+ari
0 –δijβ(1 + ari)

⎤

⎥⎦ . (9)

Here, δij is the Kronecker delta, i, j = 1, . . . , N .
A hyperbolic fixed point is a saddle with degree k (k = 0, 1, . . . , N ) if there are k eigenval-

ues of the Jacobian with positive real parts (Reλi > 0, ∀i). Strong self-excitation can make
a single unit bistable (coexistence of two stable nodes and a saddle). For N non-interacting
bistable units, the number of saddles with degree k is nk =

(N
k
)
2N–k , which is choosing k

positive real eigenvalues out of N eigenvalues and multiplying the number of remaining
(N – k) bistable states. The total number of fixed points is then

∑N
k=0 nk = 3N . Since our

focus is on the number of stable states reached in response to successive stimuli, we are
primarily concerned with the stability of each fixed point. While the imaginary parts of
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the eigenvalues of the Jacobian indicate whether a fixed point is approached as a spiral (in
an oscillatory manner), such transient behavior does not impact its stability. Therefore,
when counting the number of steady states, it suffices to consider only the real parts of the
eigenvalues.

For N weakly-coupled bistable populations, the number of saddles grows quickly as N
increases, and it outnumbers the stable nodes. The large number of saddles can give rise
to heteroclinic sequences or orbits, and therefore more oscillatory firing-rate behavior.
When N is large, the competition between intra- and inter-population couplings leads to
chaotic behaviors [38]. The rich structure of attractors defines a dynamical “landscape”
of the neural activity. It is worth mentioning that we consider small networks with weak
recurrent connections, which correspond to the multi-stable region in Ref. [38]. Strong
cross-connections inevitably cause stable fixed points to destabilize or to disappear via
merging with unstable fixed points. Therefore, there is a tradeoff between the richness
gained with random cross-connections and the reduction in the number of stable states
that can result.

In this section, we examine the network’s response to constant and repetitive stimuli. We
show that short-term synaptic depression and weak inter-population couplings facilitate
transitions among multiple fixed points.

3.1 History-dependent responses to stimuli
The rich dynamical response of a single population has been first observed and system-
atically discussed in earlier works [31, 32]. Here we revisit the problem focusing on the
history dependence under a stimulus

I(t) = Iapp
[
H(t – t0) – H(t – t0 – τdur)

]
, (10)

where H is the Heaviside step function, Iapp is the amplitude, τdur is the duration, and t0 is
the onset time.

In the presence of synaptic depression, the final state not only depends on the stimulus
duration and amplitude, but also on the initial state; for instance, in Fig. 1, a constant
stimulus is given at t0 = 500. The initial state of the bistable unit can be either OFF (marked
by “–”) or ON (marked by “+”). The unit approaches different final states after the stimulus,
exhibiting four types of responses: OFF-to-OFF (“–/–”), OFF-to-ON (“–/+”), ON-to-OFF
(“+/–”), and ON-to-ON (“+/+”).

Upon receiving a second stimulus, it should be noted that only one combination, OFF-
to-ON (a2) and ON-to-OFF (b2), which are marked by stars in Fig. 1, is maximally history-
dependent in the manner we are interested in, since the same stimulus can induce two dif-
ferent types of switch. Such state-dependent and hence history-dependent switches will
lead to itinerancy in a larger system. Meanwhile, OFF-to-ON (a3) and ON-to-ON (b3)
transitions indicate the system is bistable, a fact that also leads to a trivial history depen-
dence in that a small stimulus does not cause a state transition (a4)–(b4).

Figure 2(a1) shows the final state as a function of the duration τdur and amplitude Iapp

of the applied stimulus. The top row indicates a unit with synaptic depression, while the
bottom row indicates a unit without synaptic depression. The final state reached from a
single pulse when the system starts in the OFF state (column 1) can be different from the
final state when we start with an ON state (column 2). [Fig. 2(a2)]. For some values of
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Figure 1 The firing rate of a bistable unit evolves under constant stimuli (red bars) with different durations
and amplitudes. The final states depend on initial states, amplitudes, and durations, with symbol “+” standing
for the ON state and “–” for the OFF state. Panels (a1)–(b1), marked by a down-triangle, show no history
dependence. Panels (a2)–(b2), marked by a star, show maximal history dependence. Panels (a3)–(b3), marked
by an up-triangle, again show no history dependence as the final state is independent of the initial state.
Panels (a4)–(b4), marked by a circle, show the trivial history dependence of a bistable system, as with the
amplitude halved from that used in (a3) and (b3) the stimulus causes no change in state. These markers
correspond to different regions in the phase diagram [see Fig. 2(a3)–(a4)]

Figure 2 Final states of a single unit show history dependence for certain durations τdur and amplitudes Iapp
of an applied stimulus. Rows compare the effects with (row a) and without (row b) short-term synaptic
depression. Columns differ by whether the initial state of the system is the ON state (columns 1 and 3) or the
OFF state (columns 2 and 4). Columns 1 and 2 depict the results of a single stimulus presentation, while
columns 3 and 4 depict the results of a sequence of two stimulus presentations. In columns 1 and 2, the final
state is color-coded as red=ON and blue=OFF. In columns 3 and 4 the red region and blue region indicate the
final state is ON (red) or OFF (blue) while the yellow regions marked by a white star show maximal history
dependence where the input repeatedly switches the state back and forth. Markers correspond to simulations
in Fig. 1. No such repeated switching is observed without synaptic depression in panels (b3) and (b4)
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τdur and Iapp [yellow regions in Fig. 2(a3) and (a4)], the state of unit switches twice when
applying two identical stimulations. Note that there is also a second yellow region around
(τdur ≈ 60, Iapp ≈ 1). As mentioned in the above, this switching behavior implies that the
system’s responses to constant stimuli are history-dependent. The key ingredient here is
the synaptic depression. If there is no depression, as shown in Fig. 2(b3) and (b4), there
is either only a single transition possible between the ON and the OFF states, or only a
single stable state. The unit never switches back and forth under repetitive stimulations.

3.2 Basins of attraction deformed by cross-couplings
Even weak inter-population couplings may deform the attracting basins of fixed points by
creating new attractors and annihilating old ones. Shapes and sizes of basins defines the
landscape in the state space, which affects how the system traverses through attractor-
states before settling to a final state. When a stimulus is applied, the whole landscape
shifts. The system’s state at the onset time (the history), the stimulus, and the geometry of
basins (due to depression and couplings) jointly determine the evolution. This geometric
perspective provides a natural explanation of the history-dependent responses.

Take a two-unit system as an example, when the cross-coupling is zero (wij = 0), there
are four stable fixed points: both units are OFF, (0, 0); both are ON, (1, 1); one is OFF and
the other is ON, (0, 1) and (1, 0). Any initial condition converges to one of the four states
as its final stable state. Weak coupling (wij � wii) may both change the number of fixed
points and their stability. The number and sizes of basins also change.

Figure 3 shows fixed points of two symmetrically coupled units (w12 = w21) with zero
input and projected basins in the r1-r2 plane.a While cross excitations are enlarging the

Figure 3 Fixed points and projected basins of attraction for two symmetrically coupled units (w12 = w21).
(a1)–(a4): Axes indicate the initial state of the system, with colors indicating the final state to which the
system converges. Stable nodes (saddles) are labeled as filled circles (crosses) and surrounded by color-coded
basins. The self-coupling is fixed at w11 = w22 = 40 and cross-couplings are chosen as (a1) w12 = 0, (a2)
w12 = 0.5, (a3)–(a4) w12 = –1. (a4) Zoom-in details reveal fine structures near the (1, 1) state that is enclosed
by a dashed square in (a3). (b) Normalized basin areas of stable attractors as a function of symmetric
cross-coupling strength. Dashed vertical lines correspond to cases (a2) and (a3). (c1)–(c2): Labels are same as
(a1)–(a4) except for the absence of depression
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basin of the (1, 1) state (purple region), cross inhibitions quickly shrink it. When w12 =
w21 = –0.5, the (1, 1) state turns into a saddle, around which the remaining basins deform
into a complex structure. The final state thus would depend sensitively on the initial state,
as well as and the duration and amplitude of a stimulus. Clearly, weak coupling can desta-
bilize fixed points and thus reduce the number of stable nodes. For example, in Fig. 3(a3),
under weak mutual inhibition, the (1, 1) state turns into a saddle with an intricate basin.
Also from Fig. 3(b), the areas of basins change as a function of the cross-coupling strength.
It can be anticipated that with greater excitatory cross-connection strength the (0, 0) state
will shrink and disappear in a saddle-node bifurcation. For large wij, the (1, 1) state will be
the only stable state left.

Subplots in Fig. 3(c1)–(c2) illustrate that without depression, stable fixed points have
regular-shaped basins of attraction. Note that (c1) has the same coupling weights as in (a3)
and (a4), except for the depression variable d = 1. In (c2), even strong mutual inhibition
(wij = –20) does not distort the attracting basins.

3.3 More reachable states due to depression
We have seen that weak cross-couplings may reduce the number of stable fixed points
from the 2N available in the non-interacting system, suggesting they may decrease the
information capacity of a network. However, our results suggest that the cross-couplings
could lead to nontrivial dynamics, allowing for an increase in the network’s capacity to
represent temporal features of stimuli. Here we explore the responses of a network to a
sequence of constant stimuli, by measuring the number of final stable states reached after
uniform perturbations applied to all units. This number reflects the network’s capacity to
encode and maintain information about the number of stimuli it has received.

Figure 4 shows how the final stable state reached by a circuit of five weakly-coupled
units can vary according to the amplitude and duration of uniform input provided to all

Figure 4 An example set of simulations of a single network of five weakly-coupled units receiving the same
uniform stimulus. The duration τ and amplitude I of the stimulus differs across simulations as indicated,
leading to distinct final stable states. Random coupling weights are drawn from a Gaussian distribution with a
zero mean and a standard deviation of 0.1. (a1)–(a10): Evolution of five units under different stimuli starting
with initial state (01001). Black (white) bars represent high (low) firing rates. Red dashed lines indicate
constant stimuli received by all units
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units. Within the circuit, the cross coupling weights wij are drawn from a Gaussian distri-
bution with 〈wij〉 = 0 and std(wij) = 0.1. Other parameters are chosen such that each unit is
bistable when isolated. Ranging from sharp pulses to sustained currents [Fig. 4(a1)–(a10)],
different combinations of durations and amplitudes drive the same initial stateb (01001)
into ten final states: (01101), (11110), (10110), (00100), (00000), (01000), (11100), (11111),
(01101), and (11101).

We next wished to assess how the number of final states reachable by application of a
uniform stimulus (a box-car stimulus applied equally to all units) depended on the param-
eters used to produce small networks. To this end, we produced multiple instantiations of
networks using random weight matrices. For each network (wij fixed), the total number of
stable fixed points can be calculated. We perturb an initial state (01001) by applying con-
stant inputs equally to all units of the network and count the number of distinct steady
states after the simulation (i.e., the number of reachable final states) when we vary du-
ration and amplitude of the stimulus. We average across networks to obtain expectation
values of the total fixed point number and the number of reachable states as functions of
the mean μ and the standard deviation σ of the cross-connections wij. Moreover, we go
on to assess how these results depend on the inclusion of short-term synaptic depression
in our simulations. Specifically, we consider three cases: (1) strong self-coupling (wii = 40)
with depression, (2) strong self-coupling (wii = 40) without depression, and (3) medium
self-coupling (wii = 20) without depression.

As shown in Fig. 5, the circuits with strong self-coupling plus depression (case 1) out-
perform the other two cases in the number of reachable final states (open squares) across a
broad range of parametric variation of the random cross coupling matrix. Networks with-
out synaptic depression and medium self-coupling (case 3, Fig. 5, red open circles) have the
same number of total fixed points in circuits with the relatively weak cross-connections

Figure 5 Total number of attractors (open circles) of a five-population network and the number of final states
(open squares) reachable after perturbing an initial state (01001) with single square-pulse stimuli, applied
equally to all units. Panel (a) shows bistable regions in the wself-θ plane with and without depression,
enclosed by solid black lines and dashed blue lines, respectively. The blue and red dots indicate parameters
(wself ,θ ) used to perform the simulations. The table below panel (a) lists the color codes for the three cases:
(1) wself = 40 with depression (blue), (2) wself = 20 without depression (red), and (3) wself = 40 without
depression (black). Panels (b) and (c) show trial-averages of total attractor numbers and the number of
reachable states as functions of the mean μ = 〈wij〉 and the standard deviation σ = std(wij)
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tested here. Indeed, since depression can destabilize active states, the total number of sta-
ble fixed points can be greater in networks without depression in many other parameter
ranges (data not shown). However, the networks without depression have a far smaller
repertoire of final states reachable by presentation of uniform stimuli. The networks with
strong self-coupling without depression (case 2) have the poorest performance in both
measures, primarily because the networks are near the edge of their bistable region.

Intuitively, by reducing the effective synaptic strength of recurrent synapses of active
units, synaptic depression makes it much easier for a stimulus which has activated a unit to
subsequently inactivate the same unit (Figs. 1 and 2). Such non-monotonic responsiveness
to stimuli at the single-unit level also revealed that the intricate structure of the basins
of attraction of two coupled units (Fig. 3) enhances the repertoire of states reached by
repeated stimuli when synaptic depression is included. Adaptation currents would have a
very similar impact.

These results indicate that strong self-coupling combined with synaptic depression pro-
vides an underlying mechanism for attractor itinerancy, because extension of the duration
of a stimulus more often causes transitions of the network’s activity to a new basin of at-
traction, leading to a new final stable state. That is, the duration-dependence of the final
state, most evident in networks with synaptic depression, is an indication of attractor-state
itinerancy.

3.4 Repeated stimuli cause transitions through sequences of distinct states
In this section, to highlight the history dependence of the attractor-state itinerancy ob-
served in these networks, we examine the networks response to a series of repeated stim-
uli. As an illustration, let us consider a randomly connected network of ten units receiving
such a train of identical inputs. The network’s stable fixed points, as well as its basins of
attraction, provide key information for estimating the sequences of states. Thanks to the
relatively small size of the system, it is feasible to find all of its stable fixed points. The
frequency of occurrence of a given fixed point can be viewed as the probability of find-
ing it in the state space, which is inversely proportional to the size of its attracting basin.
Figure 6(a) lists all 38 stable fixed points in a particular ten-unit network with 〈wij〉 = –0.2
and std(wij) = 1, sorted according to their frequency of occurrence.

To explore this non-autonomous system, we start with each one of the fixed points and
apply a train of constant stimuli with fixed duration (τdur = 20) and amplitude (Iapp = 1).
Subsequent stimuli are separated by τ = 1000 time steps to make sure transients are com-
pletely settled. We then follow every trajectory in the state space and perform statistics on
the number of unique states along trajectories.

Figure 6(b) and (c) illustrates that such trajectories originated from state 13 (marked by
a black triangle in (a1)) in two scenarios:

In (b1) and (b2), all ten units receive the same stimuli in circuits with depression (b1)
and without depression (b2). In response to the periodic perturbation, the network with
depression (b1) falls into a stable cycle, 13 → 8 → (3 → 4 → 2 → 1 → 31) with a length
of five, whereas the network without depression (b2) quickly converges to a steady state
(state 6).

In (c1) and (c2), only five randomly chosen units (1, 2, 4, 7, 8) out of the ten units receive
the inputs. The randomness induces a period-4 sequence in the network with depression
(c1): 13 → 10 → (23 → 7 → 11 → 21). But in (c2) when the depression is absent, the net-
work settles down to a steady state (state 20) after one stimulus. Notice that in both cases,
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Figure 6 An example simulation of a randomly connected network of ten units (〈wij〉 = –0.2, std(wij) = 1)
responding to a series of repeated identical stimuli. Panel (a): Firing rate profiles (left) of 38 stable fixed points
sorted according to occurrence frequency (probability bar chart, right). Panels (b1) and (b2): Sequences of
states reached following repeated identical stimuli (τdur = 20, Iapp = 0.8) with depression (b1) and without
depression (b2) when the initial state is #13 (marked by a black triangle in (a1)). Red open circles indicate
cycles (b1) or steady state (b2). Insets include a visualization of the steady firing rate pattern and a directional
graph depicting the transition sequence. Panels (c1) and (c2): Same as panels (b1) and (b2) with only 5
randomly chosen units (marked by red triangles), instead of all of them, receiving the series of identical stimuli

some targeted units get suppressed by weak cross inhibitions. For other random subsets
(data not shown here), non-targeted units can be excited due to reciprocal connections in
the network.

To assess the generality of such behavior, we count the average length 〈�〉 as well as the
maximum length 〈�max〉 of state-transition sequences as a function of the amplitude Iapp of
repeated stimuli of fixed duration τdur = 20. The results are summarized in Fig. 7, where we
compare two stimulus protocols: either five randomly chosen units receiving inputs (a1,
a2) or all ten units receiving inputs (b1, b2). As before, we compare circuits with synaptic
depression (blue circles) and without synaptic depression (black circles). In all cases, the
network with synaptic depression achieves longer sequences of distinct states.

3.5 Trends with increasing network size
We have seen that synaptic depression leads to more state transitions and longer se-
quences for small random networks. It is tempting to explore the scaling behavior as the
network size N increases. In Fig. 8, we estimate the average length 〈�〉 and the maximum
length 〈�max〉 of the sequences of distinct states produced by repeated identical stimuli in
networks of different sizes. In (a1, b1), a fixed random half of all units receive identical
inputs. In (a2, b2), all units receive identical inputs. In (a3, b3), all units receive random
inputs that are drawn from an exponential distribution with the same mean (equal to the
constant value in a2, b2). The results are qualitatively similar in all three of these condi-
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Figure 7 The average length 〈�〉 and the maximum length 〈�max〉 of state-transition sequences of ten
randomly connected units (〈wij〉 = –0.2, std(wij) = 1) under repetitive stimuli with fixed duration τdur = 20 and
varying amplitudes Iapp. Panels (a1) and (a2): The average length (open circle) and the max length (open
diamond) of sequence in networks with (blue symbols) and without (black symbols) depression. Five (n = 5)
randomly chosen units receive the stimuli. Panels (b1) and (b2): Same as (a1) and (a2) except for all ten
(n = 10) units receiving inputs

tions of fixed input per stimulus. In all cases the inclusion of synaptic depression (blue
circles) leads to longer sequences of distinct states.

Since the number of attractor states scales exponentially with N in the limit of low cross-
coupling, one might expect the length of sequences following repeated stimuli to consis-
tently increase with further increases in N . Therefore, we simulated networks with N = 20,
N = 50, and N = 100 and assessed their properties by sampling initial conditions (it is not
feasible to test the presence of and characterize all states when they number on the order
of 250 or 2100). While our simulations did suggest an exponentially increasing number of
attractor states with increasing N , the transient chaos present in the large-N limit [38]
reduces the practical use of these states for encoding sequence information. Specifically,
the duration of transient dynamics increases with N such that, for example, with N = 100
(and 〈wij〉 = 0, std(wij) = 0.1) the majority of initial conditions did not lead to a steady state
within five seconds. Therefore, while the number of distinct vectors of network firing rate
could increase with successive stimuli (up to 100 or more) the firing rates were not stable,
so final states depended sensitively on the interval between stimuli. Such behavior was
present in networks both with and without synaptic depression, the main distinction be-
ing that larger cross-connections and larger stimuli were needed to produce dynamical
responses if depression were absent.

When we only counted state sequences for which activity reached a fixed point within
five seconds of each stimulus offset, we found that with an optimal strength of cross-
coupling, the lengths of state sequences increased as N increased from 10 to 20 to 50,
but then leveled out by N = 100. Specifically, the mean length 〈�〉 increased from 3.5
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Figure 8 The average length 〈�〉 and the maximum length 〈�max〉 of state-transition sequences of a random
network (〈wij〉 = 0, std(wij) = N–1/2) scale with the network size N. Rows 1 and 2: The average length 〈�〉 (open
circles) and the maximum length 〈�max〉 (open diamonds) vs N. Panels (a1) and (b1): Fixed random half of
units in the network (p = 0.5) receive identical inputs. Color codes indicate combinations of self-coupling
strength wself and synaptic depression. Panels (a2) and (b2): Same as (a1) and (b1) except all units in the
network receive identical input (p = 1). Panels (a3) and (b3): Same as (a2) and (b2) except that Iapp is drawn
from an exponential distribution with the same mean as (a2) and (b2). The duration and the amplitude of
stimuli are fixed (τdur = 25, Iapp = 1.5) in all cases

to 6.3, then decreased to 5.2 in the networks with depressing synapses, while the mean
length increased from 2.3 to 3.4 to 4.5 in the networks without depressing synapses, as
N increased from 20 to 50 to 100. Similarly, the across-network average of the maximum
length of state sequence 〈�max〉 increased from 7.7 to 12.5 to 13.6 in the networks with de-
pressing synapses and from 3.5 to 6.4 to 11.7 in the networks with depressing synapses as
N increased from 20 to 50 to 100. However, if we removed the restriction that steady state
should be reached between stimuli, or increased the delay between stimuli, sequences of
distinct states of many tens in length were common (following repeated identical stimuli)
by N = 100.

4 Discussion
In this paper, we consider small circuits of bistable neural populations with synaptic de-
pression, focusing on the circuit responses to uniform stimuli with different amplitudes
and durations. Because of the negative feedback generated by synaptic depression, which
operates on a slow time scale in comparison to that for changes in firing rate or synaptic
current, the system has an underlying oscillatory component. The oscillatory component
can cause an intricate deformation of the basins of attraction that separate the fixed points
where individual units are either active or inactive. The final state of the system reached
after a perturbing stimulus thus sensitively depends on the properties of the stimulus.
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In the absence of cross-coupling, the number of stable fixed points of the system is 2N ,
where N is the number of bistable units. While the number of stable fixed points is maxi-
mized in this limit, the lack of interaction between units means the responses to stimuli are
rather limited and the history dependence is trivial. Conversely, with very strong cross-
couplings, subsets of units become very highly correlated in their activity, reducing the
effective N : for example, two units with strong reciprocal cross-excitation are always ON
together or OFF together, so act together more like a single unit. We find that with weak
cross-couplings, the total number of stable fixed points can remain high, while the inter-
actions between units enables a simple, uniform stimulus (identical to all units) to cause a
network response that traces a high-dimensional trajectory through the space of units’ ac-
tivities. The high-dimensionality of the response leads to history dependence and richness
in the types of stable states achievable by a stimulus that excites all units equally. This be-
havior allows networks of many units to retain separate information about the amplitude,
duration, and the number of identical, repeated stimuli [24, 36].

Our work follows that of others demonstrating the richness of states in networks with
coupled units. Prior work showed that in the macroscopic limit, with weak self-coupling
and strong, balanced cross-coupling, a chaotic regime exists [39], whereas when the self-
coupling is strong enough that each unit is bistable, multiple stable states exist and can be
reached by transient chaos [38]. Here, we focused on smaller circuits and included the im-
pact of synaptic depression, a common feature of cortical synapses. Synaptic depression
can reduce the total number of fixed points by reducing the stability of the ON state (active
synapses are effectively weakened by depression). However, the same effect can enhance
the number of states reachable by a uniform stimulus, as a weakening of the connections
within previously active units allows new units to become ON when the duration of the
stimulus is extended. Similarly, such relative destabilization of previously active states en-
hances the history dependence of stimulus responses and causes the network’s activity to
explore a wider range of the state space. We expect that incorporation of firing-rate adap-
tation in the neural responses would have a similar effect in destabilizing active states.

Our results show that the network responses are richer when the successive stimuli tar-
get only a subset of the units, instead of all of them. In this study we considered stimuli that
target a randomly selected half of the units, with successive stimuli stimulating the same
set of units in an identical manner. One may imagine that such selective targeting could
reduce the overall repertoire of responses, constraining the ability of individual units to
transition from an OFF state to an ON state to those units receiving the stimulus. How-
ever, the results of our single-unit studies (Figs. 1 and 2) demonstrate that excitatory input
to a unit can switch it from ON to OFF as well as from OFF to ON, and the reciprocal con-
nections within the network allow non-excited units to change their states.

The dependence of network activity on the duration of stimuli or interval between stim-
uli is particularly noticeable when intervals on the order of a few hundred milliseconds are
present in auditory tasks. Synaptic depression operates on a suitable time scale to produce
the ongoing network dynamics that could account for such interval or duration depen-
dence [40].

While our work here focuses on the dynamics of network behavior in the presence of a
stimulus which is constant in time, the dependence on initial conditions of the network’s
response to a given stimulus imbues the network with history dependence. Therefore, the
network can respond differently, according to the number and/or types of and/or order
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of preceding stimuli [24, 36, 40]. In this manner, such networks could account for the
observed transitions of neural activity through a set of distinct attractor states during a
counting task [36, 41] and could even provide a basis for context-dependent integration
of stimulus properties [42].

Appendix
Bifurcation analysis for a single unit
At a fixed point (r, s, d) of a single unit, f ′ = f (1 – f ) = r(1 – r). The stability is captured by
the Jacobian (Eq. (9)), whose eigenvalues λ are roots of a cubic characteristic polynomial
P(λ) = λ3 + A2λ

2 + A1λ + A0 with coefficients

A0 = αβ

[
1 + (a + b)r –

bwr(1 – r)
1 + (a + b)r

]
, (11)

A1 = β(1 + ar) + α

[
1 + (a + b)r

1 + ar
–

bwr(1 – r)
1 + (a + b)r

]

+ αβ
(
1 + (a + b)r

)
, (12)

A2 = 1 + β(1 + ar) + α
1 + (a + b)r

1 + ar
. (13)

Using the Routh–Hurwitz criterion [43], the fixed point is stable (Reλ < 0) if A0, A2 > 0
and A1A2 – A0 ≡ H2 > 0. When an eigenvalue becomes zero (A0 = 0) or purely imaginary
(H2 = 0 and A0, A2 > 0), the fixed point undergoes a saddle-node (SN) or a Hopf bifurcation
(HB).

The condition for a saddle-node bifurcation (A0 = 0) is equivalent to

w =
(1 + (a + b)r)2

br(1 – r)
. (14)

Since ṙ = 0, r = f (ws – θ + I). This implies that θ must satisfy

θ =
1 + (a + b)r

1 – r
– ln

r
1 – r

+ I. (15)

Graphing w and θ as two parametric equations in r gives the boundary of a bistable region
in the w-θ plane [black solid lines in Fig. 5(a)]. Similar wedge boundaries were found in
[44] for rate models without synaptic depression.

The boundary lines terminate at a cusp

(wc, θc) =
(
4(a + b + 1)/b, 2 + ln(a + b + 1) + I

)
, (16)

where a co-dimension-2 bifurcation takes place. The wedge has a width

�θ (w) = 4w–1
c

√
w(w – wc) + ln

2w – wc – 2
√

w(w – wc)
2w – wc + 2

√
w(w – wc)

(17)

which scales linearly with w when w � wc. Thus it is easier to obtain bistability with
stronger self-excitation.
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Since A2 is always positive, the condition for a Hopf bifurcation (A1A2 = A0 > 0) leads to
w = P(r)/Q(r) ≡ wHB(r) with

P(r) =
(
1 + (a + b)r

)(
1 + β(1 + ar)

)[
1 + α + r

(
a + α(a + b)

)]

× (
α + α(a + b)r + β(1 + ar)2), (18)

Q(r) = αbr(1 – r)(1 + ar)
[
1 + α + r

(
a2βr + a(1 + β) + α(a + b)

)]
. (19)

Fixing θ and treating Iapp as a parameter, we get an equation for Iapp at the Hopf bifurcation:

Iapp(r) = ln
r

1 – r
– wHB(r)s(r) + θ . (20)

Figure 9(a) illustrates bifurcations of the synaptic current s as a function of the applied
stimulus Iapp (with w and θ fixed): For large inhibitory input, the OFF state is the only
attractor. An unstable ON state and a saddle point emerge from a saddle-node (SN) bifur-
cation when ISN1 ≈ –0.46. The ON state tunes stable when a subcritical Hopf bifurcation
(HB) takes place at IHB ≈ –0.07, which gives rise to an unstable limit cycle around the
ON state. When ISHO ≈ –0.02, this limit cycle merges with the saddle point via a saddle-
homoclinic orbit (SHO). The system is bistable at zero input and remains so until another
SN bifurcation at a larger excitation (ISN2 = 0.3). Note that oscillatory solutions stem from
the slow feedback of the depression.

Figure 9 Bifurcation diagrams for a single population. (a) Bifurcations of the synaptic current (s) as a function
of the stimulus (Iapp). Two saddle-node (SN) bifurcations take place at ISN1 = –0.4627 and ISN2 = 0.3002. An
unstable limit cycle arises from a subcritical Hopf bifurcation (HB) at IHB = {–0.07069, –0.01817} for the 3d (red)
and 2d (blue) model (see text). The limit cycle merges with the saddle in a saddle-homoclinic orbit (SHO) at
ISHO = {–0.02013, 0.04802} for the 3d and 2d models. The system is bistable between HB and SN2.
(b) Two-parameter bifurcations of Iapp versus self-coupling weight w. The bistable region is between the top
limit point (LP) line and the HB line. (c) Two-parameter bifurcations of time constants τs versus τd (both
measured in τr ). The bistable region is between the left LP line and the HB line. A cusp point is at
(τs ,τd)≈ (8.0, 68.1). (d) Bifurcation sequence in the s-d plane between SN1 and SN2. The OFF state remains
stable (filled circle with small s and large d). Red (black) lines are stable (unstable) invariant manifolds of the
saddle (triangle). The ON state is initially unstable (open circle) and becomes stable at the Hopf bifurcation.
The central plot depicts how the unstable limit cycle terminates at the saddle when Iapp = ISHO
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We separate the fast and the slow variables by assuming r reaches a steady value given
a synaptic current s, r ≈ r̄(s) = f (ws – θ + I). The reduced model (s vs d) captures the full
model’s dynamics except for slightly shifted Hopf and SHO bifurcations (IHB ≈ –0.02 and
ISHO ≈ 0.05). Thus to determine the system’s state under constant input, it is sufficient to
study the s-d model.

In Fig. 9(b), we plot wHB and Iapp as parametric functions in r. The bistable region is
above the HB curve (red line) and below the upper boundary of the LP curve (black line).
The wedge region ends at a cusp point (wc, Ic) = (4b–1(a + b + 1), θ – ln(a + b + 1) – 2).

Figure 9(c) shows the fixed point’s bifurcation with varying time constants τs and τd ,
which has similar wedge-shaped structure as in Fig. 9(a). The region between the left
boundary of the limit point (LP) curve and the HB curve supports bistable solutions.
Hence the bistability is robust for slow depression and a wide range of synaptic time con-
stants.

Figure 9(d) graphs the stable states and manifolds of fixed points in the s-d plane. As
the input increases, the basin of attraction of the ON state grows quickly. A strong ex-
citatory stimulus may kick the system near the ON state. When the input shuts off, the
vector fields and basins of attraction all resume to the case with Iapp = 0. Then the system’s
instantaneous location in the s-d plane may be in the small basin of the ON state or the
large basin of the OFF state, leading to distinct final states. Similar rebound behavior exists
in conductance-based models with slow calcium channels [43] and is a generic feature in
fast-slow systems [45]. The deformed basins of attraction due to slow depression result in
history-dependent responses under stimulations.
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