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Abstract
In the auditory streaming paradigm, alternating sequences of pure tones can be
perceived as a single galloping rhythm (integration) or as two sequences with
separated low and high tones (segregation). Although studied for decades, the neural
mechanisms underlining this perceptual grouping of sound remains a mystery. With
the aim of identifying a plausible minimal neural circuit that captures this
phenomenon, we propose a firing rate model with two periodically forced neural
populations coupled by fast direct excitation and slow delayed inhibition. By
analyzing the model in a non-smooth, slow-fast regime we analytically prove the
existence of a rich repertoire of dynamical states and of their parameter dependent
transitions. We impose plausible parameter restrictions and link all states with
perceptual interpretations. Regions of stimulus parameters occupied by states linked
with each percept match those found in behavioural experiments. Our model
suggests that slow inhibition masks the perception of subsequent tones during
segregation (forward masking), whereas fast excitation enables integration for large
pitch differences between the two tones.
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1 Introduction
Understanding how our perceptual system encodes multiple objects simultaneously is an
open challenge in sensory neuroscience. In a busy room, we can separate out a voice of
interest from other voices and ambient sound (cocktail party problem) [1, 2]. Theories of
feature discrimination developed with mathematical models are based on evidence that
different neurons respond to different stimulus features (e.g. visual orientation [3–6]). Pri-
mary auditory cortex (ACx) has a topographic map of sound frequency (tonotopy): a gradi-
ent of locations preferentially responding to frequencies from low to high [7, 8]. However,
feature separation alone cannot account for the auditory system segregating objects over-
lapping or interleaved in time (e.g. melodies, voices). Understanding the role of temporal
neural mechanisms in perceptual segregation presents an interesting modelling challenge
where the same neural populations represent different percepts through temporal encod-
ing.
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Figure 1 The auditory streaming paradigm. (A) Auditory stimuli consist of sequences of interleaved higher
pitch A and lower pitch B pure tones with duration TD, pitch difference df and time difference between tone
onsets TR (the repetition time; PR = 1/TR is the repetition rate). (B) The stimulus may be perceived as either an
integrated ABAB stream or as two separate streams A-A- and -B-B. (C) Sketch of the perceptual regions when
varying PR and df (van Noorden diagram), redrawn after [9]. Bistability corresponds to the perception of
temporal switches between integration and segregation. The curves in the (PR,df ) space separating
integration from bistability and bistability from segregation are called fission and coherence boundaries

1.1 Auditory streaming and auditory cortex
In the auditory system, sequences of sounds (streams) that are close in feature space
(e.g. frequency) and interleaved in time lead to multiple perceptual interpretations. The
so-called auditory streaming paradigm [2, 9] consists of interleaved sequences of tones
A and B, separated by a difference in tone frequency (called df ) and repeating in an
ABABAB. . . pattern (Fig. 1A). This can be perceived as one integrated stream with an alter-
nating rhythm (Integrated in Fig. 1B) or as two segregated streams (Segregated in Fig. 1B).
When df is small, we hear integrated, and when df is large, we hear segregated, but at an in-
termediate range, which also depends on presentation rate PR, both percepts are possible
(Fig. 1C). In this region of (df, PR), parameter space bistability occurs, where perception
switches between integrated and segregated every 2–15 s [10]. The coherence and fission
boundaries (Fig. 1C) are plotted for the same range of PRs typically considered in experi-
ments (5–20 Hz, [9]). Below 5 Hz tones become isolated events not tracked as a rhythm,
and above 20 Hz isochronal rhythms are perceived as pure tones in the first octave of
human hearing (see Sect. 9).

Figure 2A shows our proposal for the encoding of auditory streaming. We follow the
hypothesis proposed by [11], where primary and secondary ACx encode respectively per-
ception of the pitch and the rhythm. In our proposed framework the processing of auditory
stimuli occurs firstly in primary ACx, which encodes stimulus feature content across tono-
topy along with onset/offset timing and projects to secondary ACx. We propose that the
various rhythms perceived in the auditory streaming paradigm arise via recurrent connec-
tions in secondary ACx [12] and via threshold-crossing detection in the resulting activity.
The specific rhythm perceived is determined downstream, that is, selected from those rep-
resented in secondary ACx, and the process underlying bistability is likely also resolved
downstream [13]. These downstream computations are not addressed in the present study,
but may involve top-down modulation of primary and secondary auditory cortices.

1.2 Existing models of auditory streaming
Inspired by evidence of feature separation shown in neural recordings in primary auditory
cortex (A1) [14], many existing models have sidestepped the issue of the temporal en-
coding of the perceptual interpretations by focusing on a feature representation (reviews:
[13, 15, 16]). Neurons responding primarily to the A or to the B tones are in adjacent loca-
tions, spatially separated along A1’s tonotopic axis. The so-called neuromechanistic model
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Figure 2 (A) Proposed modelling framework of the auditory streaming paradigm. Two-tone streams are
processed in primary ACx. Seconday ACs receives inputs from primary areas and has recurrent excitatory and
inhibitory connections. Primary and secondary areas encode respectively pitch and rhythm [11], whereas
high-order cortical areas encode the perceptual switches via competition (bistability). (B) ACx circuit model.
Primary ACx tonotopic responses consist of square-wave A and B tone inputs iA and iB with duration TD and
with the time between tone onsets TR (called repetition time – the inverse of the presentation rate (PR)).
Parameters c and d respectively represent the connection strength from iA (iB) to the A (B) and B (A) units.
Bottom: sketch of the model circuit consisting of two mutually excitatory and inhibitory populations with
strengths a and b, respectively, receiving inputs iA and iB . Inhibition is delayed of the amount D

[17] proposed the encoding of percepts based on discrete, tonotopically organised units
interacting through plausible neural mechanisms. Models proposed in a neural oscilla-
tor framework feature significant redundancy in their structure or work only at specific
presentation rate (PR) values [18, 19]. Temporal forward masking results in weaker re-
sponses to similar sounds that are close in time (at high PR), but this ubiquitous feature of
the auditory system [20] has been overlooked in previous models.

1.3 Theoretical framework
The cortical encoding of sensory information involves large neural populations suitably
represented by coarse-grained variables like the mean firing rate. The Wilson–Cowan
equations [21] considered here describe neural populations with excitatory and delayed
inhibitory coupling. Variants of these equations include networks with excitatory and
inhibitory coupling, synaptic dynamics that include neural adaptation, nonlinear gain
functions [22–24] and symmetries [25, 26]. This framework (and related voltage- or
conductance-based formulations) are widely used to study, for example, decision making
[27], perceptual competition in the visual [25, 28, 29] and in the auditory system [17].

A range of neural and synaptic activation times often leads to timescale separation [30–
32] as considered here. Singular perturbation theory has been instrumental in revealing
the dynamic mechanisms behind neural behaviours involving a slow-fast decomposition,
for example, the generation of spiking and bursting [31, 33], neural competition [24, 34]
and rhythmic behaviours [35, 36]. In this work, we use these techniques to determine the
existence conditions of various dynamical states.

We consider the role of delayed inhibition in generating oscillatory activity compatible
with auditory percepts. Delayed inhibition produces similar patterns of in- and anti-phase
oscillations in spiking neural models [37, 38]. Delays in small neural circuits [39] lead to
many interesting phenomena including inhibition-induced oscillations, oscillator death
and switching between oscillatory solutions [40, 41]. Two novel features of our study are
that the units are not intrinsically oscillating and that periodic forcing drives oscillations.
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Periodically forced, timescale separated models of perceptual competition [19, 29, 42] typ-
ically do not feature delays.

1.4 Outline
With the aim of clarifying a plausible model for the processing of ambiguous sounds we
present a biologically inspired neural circuit in ACx with mixed feature and temporal en-
coding that captures the auditory streaming phenomena. The model consists of two cou-
pled neural populations with fast direct excitation and slow delayed inhibition (Sect. 2).
Section 3 describes simulations of model states linked to percepts in the auditory stream-
ing paradigm. Later sections are devoted to derive analytically conditions for the exis-
tence of all possible states in a non-smooth, slow-fast regime under plausible parameter
constraint. The complete proofs are given in the Supplementary Material 1 for the inter-
ested reader. In Sect. 4, we dissect the model into slow and fast subsystems and analyze
quasi-equilibria of the fast subsystem. We use this analysis in Sects. 5 and 6 and classify
dynamical states using a binary matrix representations (matrix form). This tool enables
us to determine all periodic states, their existence conditions and rule out which states are
impossible. Sections 7 and 8 classify periodic states for long and short inhibitory delays,
respectively. Lastly, in Sect. 9, we show numerically how these results extend to a smooth
setting with reduced timescale separation. When applied to study the auditory streaming
paradigm, these methods suggest how competing perceptual interpretations emerge as a
result of mutual excitation and slow delayed inhibition in tonotopically localized units in
a non-primary part of auditory cortex.

2 The mathematical model
We present a model for the encoding of different perceptual interpretations of the auditory
streaming paradigm. Following our proposal of rhythm and pitch perception (Fig. 2A),
we consider a periodically driven competition network of two localised Wilson–Cowan
units (Fig. 2B) with lumped excitation and inhibition generalised to include dynamics via
inhibitory synaptic variables. The units A and B are driven by a stereotyped input signals
iA and iB representative of neural responses in primary auditory cortex [14] at tonotopic
locations that preferentially respond to A and to B tones, respectively (Fig. 2B). The model
is described by the following system of DDEs:

τ u̇A(t) = –uA(t) + H
(
auB(t) – bsB(t – D) + iA(t)

)
,

τ u̇B(t) = –uB(t) + H
(
auA(t) – bsA(t – D) + iB(t)

)
,

ṡA(t) = H
(
uA(t)

)(
1 – sA(t)

)
/τ – sA(t)/τi,

ṡB(t) = H
(
uB(t)

)(
1 – sB(t)

)
/τ – sB(t)/τi,

(1)

where units uA and uB represent the average firing rate of two neural populations encod-
ing sequences of tone (sound) inputs with timescale τ . The Heaviside gain function with
activity threshold θ ∈ (0, 1): {H(x) = 1 if x ≥ θ and 0 otherwise} is widely used in firing rate
and neuronal field models [24, 43] (we later relax this assumption to consider a smooth
gain function). Mutual coupling through direct fast excitation has strength a ≥ 0. The de-
layed, slowly decaying inhibition has timescale τi, strength b ≥ 0 and delay D (Fig. 2A).
The synaptic variables sA and sB describe the time-evolution of the inhibitory dynamics.
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Typically we will assume τi to be large and τ to be small. This slow-fast regime and the
choice of a Heaviside gain function allows for the derivation of analytical conditions for
the existence of biologically relevant network states.

2.1 Model inputs
Psychoacoustic experiments typically consider pure tone frequencies above 0.5 kHz
(where primary ACx responses reflect onsets and offsets of tones without following the
sinusoidal tone modulation). Each frequency (tone) in the ACx is encoded by the neural
activity at a specific best frequency spatial location. This spatial organization is ordered so
that pairs of tones with similar frequencies are encoded by the neural activity of neigh-
bouring sites (so-called “tonotopy”). Auditory streams consisting of interleaved A and
B tones evoke periodic onset-platau primary ACx responses at A and B best frequency
locations [14, 44, 45]. These responses broadly look like the periodic square wave input
functions iA(t) and iB(t) considered in our study, which represent the averaged excitatory
synaptic currents from primary ACx at A and B locations (Fig. 2B, top). We note that these
functions characterize responses to tones in primary ACx (from experiments [14]) rather
than the sound waveform of the tone sequences (motivated in Sect. 3) and are defined by

iA(t) = c
∞∑

k=0

χIk
A

(t) + d
∞∑

k=0

χIk
B
(t),

iB(t) = d
∞∑

k=0

χIk
A

(t) + c
∞∑

k=0

χIk
B
(t),

(2)

where c ≥ 0 and d ≥ 0 represent the input strengths from A (B) tonotopic location respec-
tively to the A (B) unit and to the B (A) unit; χI is the standard indicator function over the
set I , defined as χI(t) = 1 for t ∈ I and 0 otherwise. We impose the condition c ≥ d, which
guarantees stronger A (B) tones responses at A (B) unit and weaker responses to the B (A)
unit, following the tonotopy hypothesis. The intervals when A and B tones are on (active
tone intervals) are respectively Ik

A = [αA
k ,βA

k ] and Ik
B = [αB

k ,βB
k ] (see Fig. 2B, top) and given

by

αk
A = 2kTR, βk

A = 2kTR + TD, αk
B = (2k + 1)TR, βk

B = (2k + 1)TR + TD,

where the parameter TD represents the duration of each tone’s presentation (see Discus-
sion for another interpretation of TD), and TR is the time between tone onsets (called
repetition time; PR = 1/TR is the presentation rate). We selected a value of TD so that the
square wave ON time captures the width of the onset response from [14]. Let us denote
the set of active tone intervals R and its union I by

� =
{

R ⊂R : R = IA
k or R = IB

k ,∀k ∈N
}

and I =
⋃

R∈�

R.

As shown in Fig. 1, the parameters TD and PR play an important influence on audi-
tory streaming [14]. We consider PR ∈ [1, 40] Hz, TR ≥ TD and TR ≥ D, where D is the
inhibitory delay. These restrictions are typical conditions tested in psychoacoustic ex-
periments. In particular, TR ≥ TD guarantees no overlaps between tone inputs, that is,
Ii

A ∩ Ij
B = ∅ for i, j ∈N.
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Remark 2.1 (Constraining model parameters) Throughout this work, we assume the fol-
lowing conditions:

(U1) a – b < θ ,
(U2) c ≥ θ .

Condition (U1) guarantees that the point P = (0, 0, 0, 0) is the only equilibrium of system (1)
with no inputs (iA = iB = 0), thus avoiding trivial saturating dynamics. Indeed, assuming τ

sufficiently small and a Heaviside gain function H , this system has two equilibrium points,
a quiescent state P = (0, 0, 0, 0) and an active state Q = (1, 1, 1, 1). If the difference between
excitatory and inhibitory strengths a – b ≥ θ , then P and Q coexist, and any trajectory of
the non-autonomous system is trivially determined by the input strength c:

• If c < θ , then any trajectory starting from the basin of attraction of P (or Q) quickly
converges to P (Q) and remains at this equilibrium.

• If c ≥ θ , then any trajectory converges to Q and remains at this equilibrium. Indeed, if
an orbit is in the basin of P, then the synaptic variables monotonically decrease until
one unit turns ON. This turns ON the other unit (since a – b ≥ θ ), and both units
remain ON.

Condition (U2) guarantees non-trivial dynamics during the active tone intervals. Indeed,
as we will show in Lemma 3, both units are OFF at the start time t each active tone interval.
The total input to unit A is c – bsB(t – D) ≤ c, and the one to unit B is c – bsB(t – D) ≤ d ≤ c.
Therefore, if c < θ , then no unit can turn ON at this or any other time in any active tone
interval.

3 A motivating example
We now present examples of the type of responses studied throughout this work using
a smooth version of model (1) and by proposing a link between these responses and the
different percepts in the auditory streaming experiments. We use a sigmoid gain function
S(x) = [1 + exp(–λx)]–1 with fixed slope λ = 30. Inputs in equation (2) are made continuous
using function S by redefining them as

IA(t) = c · p(t)p(TD – t) + d · q(t)q(TD – t),

IB(t) = d · p(t)p(TD – t) + c · q(t)q(TD – t),
(3)

where p(t) = S(sin(πPR · t)) and q(t) = S(– sin(πPR · t)), so that the component p(t)p(TD–t)
(q(t)q(TD – t)) represents the responses to A (B) tone inputs with duration TD. These
inputs are similar to the discontinuous input shown in Fig. 2B but with smooth ramps at
the discontinuous jump up and jump down points.

Psychoacoustic experiments analysed the changes in perceptual outcomes when vary-
ing input parameters PR and df (Fig. 1C). The parameter PR is encoded in the model
inputs’ repetition rates. To model the parameter df , we take into account the experimen-
tal recordings of the average spiking activity from the primary ACx of various animals
(macaque [14, 44], guinea pigs [46]). These show that the activity at A tonotopic locations
decreases nonlinearly with df during B tone presentations. We thus assume that the input
strength d can be scaled by df according to d = c · (1 – df 1/m), where m is a positive integer,
and df is a unitless parameter in [0, 1], which may be converted to semitone units using
the formula 12 log(1 + df ).
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Figure 3 (A) Time histories of the 2TR-periodic states in system (1). Active tone A and B intervals are shown
by blue and red bars, respectively. Units’ threshold crossings are shown by green dots. (B) The total number of
threshold crossings for both units is shown in greyscale for simulated trajectories at varying PR and df
(black = 2, lightest gray = 4 crossings). Parameters PR and df in panel (A) are shown by white dots in panel (B).
Yellow and purple crosses are the experimentally detected coherence and fission boundaries, respectively
(data replotted from Fig. 2 in [47], digitalized using the software WebPlotDigitizer [48]). The remaining
parameters are a = 2, b = 2.8, c = 5.5, D = 0.015, θ = 0.5, TD = 0.022, τi = 0.25, τ = 0.025, θ = 0.5 andm = 6.
Simulations are performed using dde23 in Matlab with absolute and relative tolerances set to 10–7. Initial
conditions on the interval [–D, 0] are specified as a constant vector function equal to [1, 0, 1, 0]

Figure 3A shows simulated time histories of all the 2TR-periodic states for different val-
ues of parameters (PR, df ), where all the other parameters are fixed. Blue and red bars indi-
cate the A and B active tone intervals [0, TD] and [TR, TR+TD], respectively, to show when
the inputs are on. The system exhibits one of three possible behaviours/states: (1) both
units cross threshold (total of 4 crossings), (2) the A unit crosses threshold twice and
the B unit once (total of 3 crossings), and (3) both units cross threshold once (total of
2 crossings). We then summarize the effect of parameters (PR, df ) on the convergence to
the different attractors by running massive simulations at varying parameters (PR, df ) and
counting the number of threshold crossings (Fig. 3B). States (1)–(3) belong to one of the
grey regions in Fig. 3B. We note that state (2) coexists with its complex conjugate state,
for which the B unit crosses threshold twice and the A unit once (not shown).

We propose a link between these states and the different percepts emerging in audi-
tory streaming (integration, segregation and bistability), where rhythms are tracked by
responding (threshold crossing) in the A and B units’ activities of 2TR-periodic states.
More precisely:

• Integration corresponds to state (1): both units respond to both tones.
• Bistability corresponds to state (2): one unit responds to both tones, and the other

unit responds to only one tone.
• Segregation corresponds to state (3): no unit responds to both tones.
Following this proposal, the states (1)–(3) match the regions of existence of their equiv-

alent percepts. The transition boundaries between these states fit with the fission and
coherence boundaries found experimentally (Fig. 3B). In the next sections, we take an an-
alytical approach to study the model’s states and their existence conditions. This approach
allows us to derive expressions for the fission and coherence boundaries (equations (20) in
Sect. 8.3) in a mathematically tractable version of the model (2). Quantitative comparisons
between the analytical and computational approaches are discussed in Sect. 9.

4 Fast dynamics
In this and the next sections (until Sect. 9), we present analytical results of the fast subsys-
tem (4) with Heaviside gain. System (1) can be decoupled into slow and fast subsystems.
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The fast subsystem is given by

uA(r)′ = –uA(r) + H
(
auB(r) – bsB(r – D) + iA(r)

)
,

uB(r)′ = –uB(r) + H
(
auA(r) – bsA(r – D) + iB(r)

)
,

sA(r)′ = H
(
uA(r)

)(
1 – sA(r)

)
,

sB(r)′ = H
(
uB(r)

)(
1 – sB(r)

)
,

(4)

where ′ = d/dr is the derivative with respect to the fast scale r = t/τ . Activities uA and uB

take a value of 0 or 1, or move rapidly (on the fast time scale) between these two values.
We call A(B) ON if uA ∼ 1 and OFF if uA ∼ 0. The activity of the A (B) unit is determined
by the sign of quantities auB(t) – bsB(t – D) + iA(t) (auA(t) – bsA(t – D) + iB(t)). Positive sign
changes make uA (uB) jump up from 0 to 1 (turn ON), whereas negative sign changes make
uA (uB) jump down from 1 to 0 (turn OFF). The synaptic variables can act on either the
fast or the slow time scales. If A (B) is ON, then the variable sA (sB) jumps to 1 on the fast
time scale. If A (B) is OFF, then the dynamics of s = sA (or s = sB) slowly decay according to

ṡ = –s/τi. (5)

Remark 4.1 The previous considerations demonstrate that sA(t) (sB(t)) is a monotonically
decreasing in time, except for when the A (B) unit makes an OFF to ON transition.

We proceed by analyzing system (4) for t ∈ I , that is, in one of the active tone intervals.
From the definition of I we assume that t ∈ IA

k , a generic A tone interval. The analysis
below can easily be extended for B tone intervals IB

k by swapping the parameters c and d.
On the fast time scale the A and B unit satisfy the subsystem

u′
A = –uA + H(auB – bs̃B + c),

u′
B = –uB + H(auA – bs̃A + d),

(6)

where s̃A = sA(t – D) and s̃B = sB(t – D). System (6) has four equilibrium points: (0,0), (1,0),
(0,1) and (1,1), and their existence conditions are reported in Table 1.

The full system (1) may jump between these equilibria due to the slow decay of the
synaptic variables or when sA(t – D) and sB(t – D) jumps up to 1.

4.1 Basins of attraction
From the inequalities given in Table 1 we note that points (1, 0) and (0, 1) cannot coexist
with any other equilibrium and thus have trivial basins of attraction. However, (0, 0) and
(1, 1) may coexist under specific conditions, with a degenerate saddle separatrix dividing
the basin of attraction of these two equilibria (Fig. 4). Similar equilibria, separatrices and
basin of attractions occur with continuous (steep) sigmoidal gains. The study of the basin

Table 1 Equilibria and existence conditions for the fast subsystem (6)

Equilibrium (0, 0) (1, 0) (0, 1) (1, 1)

Conditions
c < bs̃B + θ

d < bs̃A + θ

c ≥ bs̃B + θ

a + d < bs̃A + θ

a + c < bs̃B + θ

d ≥ bs̃A + θ

a + c ≥ bs̃B + θ

a + d ≥ bs̃A + θ
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Figure 4 Phase portrait for system (6). Purple and green
lines show orbits converging to stable equilibria (1, 1) and
(0, 0), respectively (black circles). Black arrows indicate the
direction of convergence. The uA- and uB-nullclines are
shown in blue and red, respectively. Yellow and orange lines
show the separatrices of the degenerate saddle (s1, s2) (red
circle), where s1 = (bs̃A – c + θ )/a and s2 = (bs̃B – c + θ )/a.
More details are in the Supplementary Material 1.1

of attraction, equilibria and separatrices of the fast subsystem (6) is in the Supplementary
Material 1.1.

4.2 Differential convergence to (1, 1)
We now study the differential rate of convergence of the variables uA and uB with param-
eter values where (1, 1) is the only stable equilibrium for an orbit starting from (0, 0). We
will use the results below to classify of states of system (1). For simplicity, we consider the
case t ∈ Ik

A, as in system (6). Similar considerations hold in the case t ∈ Ik
B. Obviously, (0, 0)

cannot be an equilibrium, and thus at least one of the two conditions in Table 1 must not
be met. There are three cases to consider:

1 If c – bs̃B ≥ θ and d – bs̃A ≥ θ , then both units turn ON simultaneously, each
following the same dynamics u′ = 1 – u. An orbit starting from (0, 0) must therefore
reach (1, 1) under the same exponential rate of convergence.

2 If c – bs̃B ≥ θ , d – bs̃B < θ and a + d – bs̃A ≥ θ , then unit B turns ON after A by some
small delay δ (∼ τ ). Indeed, from d – bs̃B < θ and a + d – bs̃A ≥ θ it follows that there is
u∗ ∈ (0, 1] such that au∗ + d – bs̃A = θ . Since c – bs̃B ≥ θ , the fast subsystem reduces to

u′
A = 1 – uA,

u′
B = –uB + H(auA – bs̃A + d) def= –uB + η(uA).

Thus the dynamics of uA is independent of uB. Consider an orbit starting from (0, 0)
at r = 0. From the first equation uA(r) tends to 1 exponentially as r → ∞, reaching a
point u∗ at time r∗ = log[(1 – u∗)–1]. For r < r∗, we have uA(r) < u∗, which yields
η(uA(r)) = 0. Since the orbit starts from uB = 0, it must remain constant and equal to
zero for all r < r∗. For r ≥ r∗, η(uA(r)) = 1 and uA(r) → 1 following the same dynamics
as uA at time r = 0. On the time scale t = τ r of system (1), the A unit precedes the B
unit in converging to 1 precisely after an infinitesimal delay

δ = τ log
[(

1 – u∗)–1]. (7)

3 The case d – bs̃A ≥ θ , c – bs̃A < θ and a + c – bs̃B ≥ θ is analogous to the previous after
replacing uA with uB. In this case, A turns ON a delay δ after B.

4.3 Fast dynamics for t ∈R – I
The analysis for times when inputs are OFF (t ∈ R – I) follows analogously by posing c =
d = 0 in system (6) and counts only two possible equilibria, (0, 0) and (1, 1). Point (0, 0)
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is an equilibrium for any values of parameters and delayed synaptic quantities s̃A and s̃B.
Instead, (1, 1) is an equilibrium when

a – bs̃A ≥ θ and a – bs̃B ≥ θ .

5 Dynamics in the intervals with no inputs (R – I)
The study of equilibria for the fast subsystem described so far constraints the dynamics
of the full system in the intervals with no inputs, that is, in R – I . The first constraint is
that the units can either be both ON, both OFF, or both turning OFF at any time in R – I
(Theorem 1).

Theorem 1 (Dynamics in R – I) For any t ∈R – I :
1 If A or B is OFF at time t, then both units are OFF in (t, t∗], where

t∗ = min
s∈I

{s > t}.

2 If A or B is ON at time t, then both units are ON in [t∗, t), where

t∗ = max
s∈I

{s < t}.

This theorem is proved in the Supplementary Material 1.2 and illustrated with an ex-
ample in Fig. 5. Due to this theorem, we can classify network states as follows.

Definition 5.1 (LONG and SHORT states) We define any state of system (1):
• LONG if there is t ∈R – I when both units are ON,
• SHORT if both units are OFF for all t ∈R – I .

The choice of the names LONG and SHORT is derived from the following considera-
tions. Since both units are ON at some time t ∈R– I of a LONG state, Theorem 1 implies
they must be ON at the end of the active tone interval preceding t and prolong their ac-
tivation after the active tone interval up to time t. SHORT states by definition are OFF
between each pair of successive tone intervals.

Theorem 1 guarantees either that unit can turn ON only during an active tone in-
terval. This guarantees that the delayed synaptic variables are monotonically decreasing
in the intervals [αA

k ,αA
k + D] and [αB

k ,αB
k + D] if the condition TD + D < TR is guaran-

Figure 5 Illustration of Theorem 1 showing one unit’s dynamics (blue) during one 2TR period. Active tone
intervals IkA and IkB are shown in purple. Note: the unit turns OFF at some time in [t∗ , t∗] due to the delayed
inhibition from the the other unit, whose activity is omitted
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Figure 6 (A) Example dynamics of the A and B units in each interval L⊂ � and J illustrating Lemmas 2 and 4
during one period 2TR. (B) Dynamics in an active tone interval R = [α,β] ∈ � illustrating the quantities in
(1)–(3) of Lemma 4, where t∗A (t

∗
B ) is the turning ON time for A (B)

teed. The latter theorem is proven in the Supplementary Material 1.3 and is illustrated in
Fig. 6A.

Lemma 2 (Synaptic decay) If TD + D < TR, then the delayed synaptic variables sA(t – D)
and sB(t – D) are monotonically decreasing in [αA

k ,αA
k + D] or [αB

k ,αB
k + D] for all k ∈N.

A second important implication of Theorem 1 under TD+D < TR is that both units must
turn OFF once between successive tone intervals (see the next lemma). This guarantees
that at the start of each active tone interval, any state of the fast subsystem start from point
(0, 0). The following lemma is proven in the Supplementary Material 1.4 and is illustrated
in Fig. 6A.

Lemma 3 (No saturated states) If TD + D < TR, then both units are OFF in the intervals
(αA

k + TD + D,αB
k ] and (αB

k + TD + D,αA
k+1] for all k ∈N.

6 Dynamics during the active tone intervals
We now study the possible dynamics of the full system during the active tone intervals
R ∈ � under the condition TD + D < TR, for which Lemmas 2 and 3 can be applied. We
split this analysis by separating the cases D > TD and D ≤ TD. In this section, we consider
the case D > TD, and the other condition is considered in Sect. 8. The next lemma shows
that the turning ON times of either unit can happen only at most once in R and other
results, which lead to the existence of only a limited number of states.

Lemma 4 (Single OFF to ON transition) Consider an active tone interval R = [α,β] ∈ �,
and let A (B) be ON at a time t̄ ∈ R. Then:

(1) A (B) is ON for all t ≥ t̄, t ∈ R;
(2) There is a unique t∗

A (t∗
B) ∈ R when A (B) turns ON;

(3) sA(t – D) (sB(t – D)) is decreasing for t ∈ [α, t∗
A + D] (t ∈ [α, t∗

B + D]).

The previous lemma is illustrated in the cartoon shown in Fig. 6, right. The proof is
given in the Supplementary Material 1.5 and implies the following lemma.

Lemma 5 Given any active tone interval R ∈ �, we have:
1 A (B) turns ON at time α ⇔ A (B) is ON for all t ∈ (α,β],
2 A (B) is OFF at time β ⇔ A (B) is OFF for all t ∈ R.
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Figure 7 Example dynamics of the uA (red) and uB (blue) variables for MAIN and CONNECT states in an
interval R ∈ �. The left panel shows a MAIN state for which the A unit is OFF in R, whereas the B unit turns ON
at time t∗ =min(R). The right panel shows a CONNECT state for which the A unit turns ON at some time
t∗ >min(R), whereas the B unit turns ON at time min(R)

Due to Lemma 4, each unit may turn ON only once during each interval R ∈ �. Thus
the dynamics of any state is determined precisely at the jump up points t∗

A and t∗
B for the

units in R (if these exist).

Definition 6.1 (MAIN and CONNECT states) A state (solution) of system (1) is:
• MAIN if ∀R ∈ �, if ∃t∗ ∈ R turning ON time for A or B, then t∗ = min(R);
• CONNECT if ∃R ∈ � and ∃t∗ ∈ R, t∗ > min(R) turning ON time for A or B.
Example time histories of a MAIN state and a CONNECT state during a generic active

tone interval R is shown in Fig. 7.

Remark 6.1 MAIN states are either ON or OFF during any interval R ∈ �, except (pos-
sibly) for a negligible interval of length ∼ 0. Indeed due to differential convergence
(Sect. 4.2), one unit may turn ON at time α following an infinitesimally small delay δ ∼ τ ,
where δ is given by equation (7).

6.1 Classification of MAIN and CONNECT states – matrix form
The results reported in the previous section the possible dynamics during each active tone
interval R ∈ �. In this section, we use these results to propose a classification of MAIN and
CONNECT states based on their dynamics during these intervals and define the existence
conditions for these states.

Due to Lemmas 3, 4 and 5, the units of any state must be OFF at the start R (orbits
(uA, uB) always start from (0, 0) at time α), a unit may turn ON at most once in R, and if
this occurs, then it must remain ON until the end of R. Thus we have three possibilities:
(1) both units are OFF in R, (2) only one unit turns ON once in R, or (3) both units turn
ON once in R. These possibilities guarantee that any state in the network can be classified
as MAIN or CONNECT. We note that condition (U2) guarantees that (1) cannot occur
for any R ∈ �. Indeed, if a state’s unit A (B) is OFF for all A (B) in active tone interval R,
then the delayed synaptic variables slowly converge to 0 starting from their initial value
following (5). The total input c – bsA(t – D) of unit A in R converges to c. This is absurd
since c ≥ θ . Let us define the inputs to the units for the A and B in active tone intervals as
functions of the synaptic quantity s:

f (s) =

⎧
⎨

⎩
c – bs if R = Ik

A,

d – bs if R = Ik
B,

g(s) =

⎧
⎨

⎩
d – bs if R = Ik

A,

c – bs if R = Ik
B.

(8)
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Table 2 Existence conditions for MAIN states in an interval R ∈ �

M1 M2 M3 M4 M5 M6

f (sB) ≥ θ

g(sA)≥ θ

g(sA) < θ

f (sB)≥ θ

a + g(sA)≥ θ

f (sB) < θ

g(sA) ≥ θ

a + f (sB) ≥ θ

f (sB) ≥ θ

a + g(s̄A) < θ

g(sA)≥ θ

a + f (s̄B) < θ

g(s̄A) < θ

f (s̄B) < θ

Figure 8 Example dynamics of a MAIN state satisfying conditions M1–5 in R ∈ �

Classification of MAIN states. From the considerations given above the units’ dynamics
in R = [α,β] of any MAIN state are completely determined on the fast time scale at times
α and β . Each unit can either turn ON at time α or be OFF at time β , depending on the
system parameters and on the following quantities:

sA = sA(α – D), s̄A = sA(β – D), sB = sB(α – D), s̄B = sB(β – D).

Following the fixed point analyses, we consider three conditions (Table 2):
• Both units turn ON at time α. This is equivalent to (1, 1) being the only equilibrium

for the fast subsystem at time α, which may occur under the conditions M1–3. In
summary, for case M1, both units instantaneously turn ON at time α. For case M2

(M3), unit B (A) turns ON after A (B) of an infinitesimal delay δ ∼ τ (see Sect. 4.2).
• One unit turns ON at time α, and the other unit is OFF at time β . This corresponds to

states satisfying one of conditions M4–5. For case M4 (M5), A(B) turns ON at α, and
B(A) is OFF at β . Indeed, (1, 0) ((0, 1)) is the only stable equilibrium of the subsystem
at times α and β , and thus for all t ∈ R due to Lemma 5.

• A and B are OFF at time β . This occurs when (0, 0) is the only stable equilibrium of
the fast subsystem at time β , thus satisfying condition M6.

Figure 8 shows the time histories of the MAIN states satisfying conditions M1–5 in an
interval R ∈ � (M6 has been omitted since both units are inactive). This analysis proves
that for a fixed interval R ∈ �, any MAIN state of system (1) satisfies only one of conditions
M1–6, and that any pair of MAIN states satisfying the same condition follows the same
dynamics in R and leads to the following definition.

Definition 6.2 (MAIN classification) We define the set of MAIN states in R ∈ � as MR =
{s = s(t) solutions of (1) satisfying one of conditions M1–6 in R}

An alternative way to visualize the dynamics of each MAIN state is to construct a bi-
nary matrix representation (see the next theorem). This tool will enable us to define the
existence conditions for 2TR-periodic states and to rule out impossible ones.
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Theorem 6 Let R ∈ �. There is an injective map

ρR : MR → B(2, 2), s �→ V =

[
xA yA

xB yB

]

with entries defined by

xA = H
(
f (sB)

)
, xB = H

(
g(sA)

)
,

yA =

⎧
⎨

⎩
1 if axB + f (sB) ≥ θ ,

0 if axB + f (s̄B) < θ ,
yB =

⎧
⎨

⎩
1 if axA + g(sA) ≥ θ ,

0 if axA + g(s̄A) < θ .

(9)

Moreover,

Im
(
ρR)

= �
def=

{
V = ρR(s) : xA ≤ yA, xB ≤ yB, xA = xB = 0 ⇒ yA = yB = 0

}
. (10)

Proof A necessary condition for ρR to be well defined is that yA and yB cannot be simul-
taneously equal to 0 and 1 (i.e. that both inequalities in their definition are not simulta-
neously satisfied). Due to the decay of the delayed synaptic variables in R (Lemma 4), we
have sB ≥ s̄B. Moreover, since f and g are monotonically increasing, we have

f (sB) ≤ f (s̄B) and g(sB) ≤ g(s̄B), (11)

which proves that yA is exclusively equal to 0 or 1 (analogously for yB).
Next, we notice that any matrix V = ρR(s) satisfies the following:

xA ≤ yA, xB ≤ yB, xA = xB = 0 ⇒ yA = yB = 0. (12)

We prove the first inequality xA ≤ yA (xB ≤ yB is analogous). Without loss of generality, we
assume that xA = 1, and therefore f (sB) ≥ θ . Since a ≥ 0 and xB ≥ 0, we have axB + f (sB) ≥
f (sB) ≥ θ , thus implying yA = 1. The final part holds because, given xA = xB = 0, we have
axB + f (s̄B) ≤ f (sB) < θ and axA + g(s̄A) ≤ g(sA) < θ .

From conditions (11) and (12) it is easily checked that each element s ∈ MR satisfying
condition Mi has one of the following images ρR(s):

(M1)

[
1 1
1 1

]

, (M2)

[
1 1
0 1

]

, (M3)

[
0 1
1 1

]

,

(M4)

[
1 1
0 0

]

, (M5)

[
0 0
1 1

]

, (M6)

[
0 0
0 0

]

.

Since any MAIN state has a distinct image, ρR is well defined, injective, and |Im(ρR)| = 6.
Given that the total number of matrices V ∈ B(2, 2) satisfying conditions (12) are precisely
6 (no other matrix is possible), we have Im(ρR) = �. �

Classification of CONNECT states. Our classification and matrix form of CONNECT
states follows analogously from that of MAIN states described previously. We recall that
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Table 3 Existence conditions for CONNECT states in an interval R ∈ �

C1 C2 C3 C4 C15 C25

f (sB) ≥ θ

a + g(sA) < θ

a + g(s̄A)≥ θ

g(sA) ≥ θ

a + f (sB) < θ

a + f (s̄B) ≥ θ

g(sA) < θ

g(s̄A)≥ θ

a + f (s̄B) < θ

f (sB) < θ

f (s̄B) ≥ θ

a + g(s̄A) < θ

t∗ ≤ s∗
f (sB) < θ

f (s̄B)≥ θ

a + g(s̄B)≥ θ

t∗ > s∗
g(sA) < θ

g(s̄A) ≥ θ

a + f (s̄A)≥ θ

in such states, at least one unit turns ON at some time in an active tone interval R = [α,β].
There are three cases to consider:

1 There is t∗ ∈ (α,β] such that unit A (B) turns ON at time α, and B (A) turns ON at
time t∗.

2 There is t∗ ∈ (α,β] such that unit A (B) is OFF at time β , and B (A) turns ON at time
t∗.

3 There are times t∗, s∗ ∈ (α,β] when the A and B units turn ON.
These lead to the conditions in Table 3, which are explained in Supplementary Material
1.6. Case 1 leads to conditions C1–2, case 2 leads to conditions C3–4, whereas case 3 leads
to two possibilities depending on if A turns ON before or after B. For simplicity, we do not
distinguish between these possibilities and define (C5) as referring to either condition.
This leads to the following definition.

Definition 6.3 (CONNECT classification) We define the set of CONNECT states in R ∈
� as CR = {s = s(t) solutions of (1) satisfying one of conditions C1–5 in R}.

Similar to MAIN states, the existence conditions for each CONNECT state in R can
equivalently be expressed using a binary matrix W ∈ B(2, 3). Indeed, in Supplementary
Material 1.7, we prove a version of Theorem 6 valid for 2TR-periodic CONNECT states. In
particular, we prove that for any interval R ∈ �, there exists a well-defined map ϕR : CR →
B(2, 3) such that each state satisfying one of conditions C1–5 has the corresponding image
ϕR(s) shown below.

(C1)

[
1 1 1
0 0 1

]

, (C2)

[
0 0 1
1 1 1

]

, (C3)

[
0 0 0
0 0 1

]

,

(C4)

[
0 0 1
0 0 0

]

, (C5)

[
0 0 1
0 0 1

]

.

This analysis naturally leads to the definition of the matrix form of the MAIN and CON-
NECT states in each interval R ∈ �.

Definition 6.4 (Matrix form) Let R ∈ � be an active tone interval.
• The matrix form of a MAIN state s ∈ MR is V = ρR(s) defined by (9).
• The matrix form of a CONNECT state s ∈ CR is W = ϕR(s) defined in Supplementary

Material 1.7.

Remark 6.2 (Visualisation via the matrix form) The first (second) row of the matrix form
of each MAIN state allows us to visualise its A (B) units’ dynamics in R. Indeed, given δ as
defined in Sect. 4.2, we may subdivide R into R = [α,α + δ] ∪ [α + δ,β]. The dynamics of
unit A at time α is given by xA. If xA = 1, then unit A turns ON at time α and remains ON in



Ferrario and Rankin Journal of Mathematical Neuroscience            (2021) 11:8 Page 16 of 32

(α,β]. If xA = 0 and yA = 1, then unit A is OFF at time α, turns ON at time α +δ and remains
ON in (α +δ,β]. If yA = 0 (which implies xA = 0), then unit A is OFF for all t ∈ R. Analogous
considerations hold for unit B. A similar approach for visualising the units’ dynamics from
the matrix form can be used also for CONNECT states (see Supplementary Material 1.8).

So far we studied the dynamics during an active tone interval R. The lemma in Sup-
plementary Material 1.9 proves that a state is LONG if and only if it satisfies two condi-
tions outside this interval. This enables us to provide existence conditions for SHORT and
LONG states described in the next section.

7 2TR-periodic states
In this section, we extend the analysis of the previous sections to study 2TR-periodic states
under the conditions D > TD and TD + D < TR. We analytically derive parameter condi-
tions leading to the existence of all 2TR-periodic states in the system and use the matrix
form to rule out which states cannot exist.

Definition 7.1 A state ψ = ψ(t) = (uA(t), uB(t), sA(t), sB(t)) is 2TR-periodic if ψ(t + 2TR) =
ψ(t) for all t ∈R. We call SM and LM (SC and LC) the sets of 2TR-periodic MAIN (CON-
NECT) states of the SHORT and LONG types, respectively.

Before analysing these states, it is important to first assess the model’s symmetry.

Remark 7.1 (Z2 symmetry) System (1) is symmetric under the transformation swapping
the A and B indexes and by applying the time shift TR to the functions iA and iB. Indeed,
let us rewrite system (1) as a general non-autonomous dynamical system

v̇(t) = z
(
v(t), iA(t), iB(t)

)
, v = (uA, uB, sA, sB)

Now consider the map κ whose action swaps the A and B indices of all variables,

κ : v = (uA, uB, sA, sB, iA, iB) �→ (uB, uA, sB, sA, iB, iA).

Since iA(t + TR) = iB(t) and iB(t + TR) = iA(t) for all t ∈R, we have

κ
(
z
(
v(t), iA(t), iB(t)

))
= z

(
κ
(
v(t + TR), iB(t + TR), iA(t + TR)

))
,

which proves that the model is symmetric under the transformation κ time shifted by
TR. Since no symmetric transformation other than κ and the identity exist, the system is
Z2-equivariant. Thus, given a periodic solution v(t) with period T , its κ-conjugate cycle
κ(v(t + TR)) must also be a solution with equal period (asymmetric cycle), except in the
case that v(t) = κ(v(t)) for all t ∈ [0, T] (symmetric cycle). Asymmetric cycles always exist
in pairs, the cycle and its conjugate. We note that in-phase and anti-phase limit cycles with
period 2TR are both symmetric cycles.

To study TR-periodic states, we can replace the set of active tone intervals I with

I = I1 ∪ I2 = [0, TD] ∪ [TR, TR + TD].
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As shown in the previous section, for any state ψ ∈ SM, the activities of both units during
each interval Ii, i = 1, 2, can be represented by a matrix Vi. This matrix uniquely depends
on the values of the delayed synaptic variables at times αi = (i – 1)TR and βi = (i – 1)TR +
TD. More precisely, in equations (9), we must substitute sA with si–

A , s̄A with si+
A , sB with si–

B

and s̄B with si+
B , where

si–
A = sA(αi – D), si–

B = sB(αi – D), si+
A = sA(βi – D), si+

B = sB(βi – D). (13)

7.1 SHORT MAIN states
It turns out (see Theorem 7) that for SHORT MAIN and CONNECT states, these values
depend on the following quantities:

N– = e–(TR–TD–D)/τi , N+ = e–(TR–D)/τi ,

M– = e–(2TR–TD–D)/τi , M+ = e–(2TR–D)/τi .
(14)

Note that N– ≥ N+ ≥ M– ≥ M+. The dependence of the synaptic variables on these quan-
tities is crucial, because it guarantees that the existence conditions shown in Table 2 de-
pend uniquely on the model parameters.

Theorem 7 There is an injective map

ρ : SM → B(2, 4), ψ �→ V =
[
V1 V2

]
=

[
x1

A y1
A x2

A y2
A

x1
B y1

B x2
B y2

B

]

,

where V1 (V2) is the matrix form of ψ in I1 (I2) defined by equations (9), and

si±
B = N±yj

B + M±(
1 – yj

B
)
yi

B, si±
A = N±yj

A + M±(
1 – yj

A
)
yi

A, ∀j = 1, 2, j �= i. (15)

In addition,

Im(ρ) = �
def=

{
V =

[
V1 V2

]
: V1 ∈ Im

(
ρI1

)
, V2 ∈ Im

(
ρI1

)
satisfying 1–4 below

}
,

1 y1
A = y2

B = 1 ⇒ x1
A = x2

B and y2
A = y1

B = 1 ⇒ x2
A = x1

B;
2 y1

B = y2
B ⇒ x1

A ≥ x2
A and y1

A = y2
A ⇒ x2

B ≥ x1
B;

3 y2
A = 1 ⇒ x1

B ≤ r and y1
B = 1 ⇒ x2

A ≤ r for any entry r in V ;
4 y2

A = y2
B, y1

A = y1
B ⇒ x1

A ≥ x1
B and x2

B ≥ x2
A.

Proof The proofs of equations (15) and conditions 1–4 are given in Supplementary Ma-
terial 1.10. These conditions imply Im(ρ) ⊆ �. In the next paragraph, we will prove that
Im(ρ) = �. Assume for now this to be true. The definition of the entries of V and identities
(15) give multiple necessary and sufficient conditions for determining the dynamics of the
corresponding MAIN state ψ = ρ–1(V ) in the intervals I1 and I2, respectively. Due to the
model symmetry (Remark 7.1), V is the image of either a symmetrical or an asymmetrical
state ψ . In the latter case, there exists a matrix V ′ ∈ � for a state conjugate to ψ . We can
easily show that V ′ is simply defined given V by swapping the first (second) row of V1

with the second (first) row of V2. Notably, both ψ and ψ ′, and thus also V and V ′, exist
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Table 4 Matrix form and existence conditions of all 2TR-periodic SHORT MAIN states. Names (first
row) were chosen following our proposed link between states and percepts in auditory streaming
(see Sect. 3). Names starting with S correspond to segregation (no unit responds to both tones), I to
integration (one unit responds to both tones, the other is inactive or responding to both tones, too)
and AS to bistability (one unit responds to both tones, the other unit to every other tone). The letter
D corresponds to states for which one unit turns ON with a small delay after the other unit in at least
one active tone interval. The letter B corresponds to states for which both units follow the same
dynamics

- S SB SD AP AS ASD I ID IB

Matrix
1100
0000

1100
1100

1100
0100

1100
0011

1111
0011

1101
0011

1111
0000

1101
0111

1111
1111

Conditions
C1 < θ

C+2 < θ

C+3 < θ

C+3 < θ

C–8 ≥ θ

C–4 ≥ θ

C–2 ≥ θ

C+3 < θ

C–8 < θ

C+2 < θ

C–3 ≥ θ

C–3 ≥ θ

C+5 < θ

C–8 ≥ θ

C–2 ≥ θ

C–3 ≥ θ

C+5 < θ

C–8 < θ

C1 ≥ θ

C+6 < θ

C–3 ≥ θ

C–5 ≥ θ

C–7 < θ

C–7 ≥ θ

Short – C9 < θ C9 < θ – C10 < θ C10 < θ – C10 < θ C10 < θ

under the same parameter conditions. The second row of Table 4 shows that all matrices
V ∈ � are images of either a symmetrical state or one of two conjugate states and their
names (1st row). Given that I , AP and ID are the only symmetrical cycles (in-phase and
anti-phase), by Remark 7.1 all other states have other conjugate cycles that exist under the
same conditions.

In the next part, we define the conditions for the existence of each of the states reported
in the third row of Table 4, which are equivalent to the well-definedness conditions of the
corresponding matrix form V ∈ �. These conditions depend on:

C1 = d, C±
2 = a – bM± + d, C±

3 = c – bN±, C±
4 = c – bM±,

C±
5 = a – bN± + d, C±

6 = a – bN± + c, C±
7 = d – bN±,

C±
8 = d – bM±, C9 = a – bM+, C10 = a – bN+.

(16)

We determine conditions for the well-definiteness of each matrix V ∈ � from the def-
initions of the entries of V1 and V2 given in (12) and using formulas (15). Notably, all
the existence conditions uniquely depend on the system parameters. When determining
these conditions, we notice that many of them are redundant and can be simplified using
the following properties: N– ≥ N+ ≥ M– ≥ M+, d ≤ c and a ≥ 0. In the next paragraph,
we give one example (AS) and leave the remaining for the reader to prove. The names and
the sets of inequalities defining each state is reported in the middle row of Table 4. Note
that such inequalities are well posed, meaning that there is a region of parameters where
they are all satisfied. This effectively proves that for each matrix V ∈ �, there exists a state
ψ = ρ–1(V ) ∈ SM whose dynamics during intervals I1 and I2 are defined by the entries
of V .

We now prove that the existence conditions of AS are well-defined, that is,

VAS =

[
1 1 1 1
0 0 1 1

]

⇔ C–
3 ≥ θ , C+

5 < θ , C–
8 ≥ θ . (17)
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From the theorem condition (1) we have that

x1
A = 1 ⇒ y1

A = 1, x2
A = 1 ⇒ y2

A = 1,

x2
B = 1 ⇒ y2

B = 1, y1
B = 0 ⇒ x1

B = 0.

This obviously leads to the following equivalence:

VAS =

[
1 1 1 1
0 0 1 1

]

⇔ x1
A = 1, x2

B = 1, x2
A = 1, y1

B = 0.

Using the definition of the entries defined in (12) and the identities for the synaptic quan-
tities given in equations (15), we observe the following:

1 y1
A = 1(y2

B = 1) ⇒ s2–
A = N–(s1–

B = N–), which implies x2
B = x1

A = H(c – bN–).
2 y1

B = 0 and y2
B = 1 ⇒ s2–

B = M–. From this we have x2
A = H(d – bM–).

3 y2
A = 1 ⇒ s1+

A = N+. This and y1
B = 0 give y1

B = H(a + d – bN+).
Overall, from cases (1)–(3) we obtain

x1
A = 1, x2

B = 1 ⇔ C–
3 ≥ θ ,

x2
A = 1 ⇔ C–

8 ≥ θ ,

y1
B = 0 ⇔ C+

5 < θ .

This completes the proof for both claim (17) and the theorem. �

Remark 7.2 (Conditions C9 and C10) The middle row of Table 4 shows the states’ existence
conditions in the intervals I1 and I2. However, they do not guarantee that units A and B
are OFF outside these intervals (i.e. being SHORT). Some MAIN SHORT states in Table 4
need additional existence conditions to guarantee them being SHORT. These conditions
involve quantities C9 and C10 and are shown in the bottom row of Table 4. Their proof is
in Supplementary Material 1.11.

Remark 7.3 (Table 4) The conditions in the middle and bottom rows of Table 4 complete
the existing conditions for all 2TR-periodic SHORT MAIN states. Indeed these conditions
cover all possible matrix forms and corresponding states. The middle row shows condi-
tions determining the dynamics within in the intervals I1 and I2. The bottom row shows
conditions that guarantee units to be OFF in [0, 2TR] – I .

Figure 9A shows the time histories for each 2TR-periodic SHORT MAIN state in Ta-
ble 4. Note that the conditions given in this table allow us to determine the regions where
each of these states exists in the parameter space. To visualize two-dimensional existence
regions when varying pairs of parameters, we defined a new parameter DF ∈ [0, 1] and set
d = cDF (DF is a scaling factor for the inputs from tonotopic locations). Figure 9B shows
the two-dimensional region of existence of each of these states at varying DF and input
strength c. Note that we can visualise the existence regions by varying any parameters in
the system.

The multistability theorem in Supplementary Material 1.12 uses the conditions in Ta-
ble 4 to prove that only the pair of 2TR-periodic SHORT MAIN states (I, SB) and (I, SD)
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Figure 9 (A) Time histories of 2TR-periodic SHORT MAIN states. (B) Existence regions of states in A when
varying DF and c. (C) Existence regions for states I, SB and SD when varying c and DF. Parameters in (B) and (C)
are τi = 0.4, θ = 0.5. The remaining parameters in (B) are TD = 0.03, D = 0.03 PR = 17, a = 0.6, b = 2, while
parameters in (C) are TD = 0.005, D = 0.015, PR = 5, a = 0.4, b = 3

may coexist in the parameter space. Figure 9C shows a parameter regime in which state I
coexists with SB and SD.

7.2 Remaining states
As shown in the Sect. 6.1, 2TR-periodic states can be SHORT MAIN (SM), SHORT CON-
NECT (SC), LONG MAIN (LM) or LONG CONNECT (LC) during each interval I1 and I2.
We denote by X|Y the set of states satisfying condition X during I1 and Y during I2, where
X, Y ∈ {SM, SC, LM, LC}. In Sect. 7.1, we analysed the existence conditions of SM|SM
states. We extended a similar analysis for all remaining combinations of states. We de-
fine a matrix form to rule out impossible states and to find the existence conditions for
existing states. The study of SHORT CONNECT (SC|SM, SM|SC and SC|SC) and LONG
MAIN (LM|LM, SM|LM and LM|SM) states are in Supplementary Material 1.13 and 1.14,
respectively. All remaining combinations of sets X|Y are analysed in Supplementary Ma-
terial 1.15, and they conclude the existence conditions for all 2TR-periodic states. Overall
we find 41 different MAIN and CONNECT states (excluding conjugate states). Their ex-
istence conditions can be visualized as a 2D parameter projection, similar to Fig. 9B for
SHORT MAIN states. Supplementary Material 1.16 shows an example for SHORT CON-
NECT and LONG MAIN states.

8 Biologically relevant case: 2TR-periodic states for D ≤ TD
In this section, we study model states and their link to auditory streaming under D ≤ TD
and TD + D < TR. These inequalities are relevant to studying auditory streaming. The
first inequality is valid for short delays, which are likely generated by delayed synaptic
inhibition. The second inequality is guaranteed for the values of TD and TR typically tested
in these experiments (further motivated in Discussion).

Using a similar approach of the previous section, we analytically derive the conditions
for the existence of all possible 2TR-periodic states. Overall, we find 10 possible states.
We link these states with the possible perceptual outcomes in the auditory streaming
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Figure 10 (A) Time histories of all 2TR-periodic states for D < TD and TD + D < TR. (B) Schematic diagram of
the experimentally measured perceptual regions when varying PR and df . (C) Existence regions of the states
in (A) at varying PR and df . States corresponding to integration, segregation or bistability are grouped by
background colours (see Remark 8.2). Model parameters in (C) are τi = 0.2, θ = 0.5, TD = 0.03, D = 0.01, c = 5,
a = 1, b = 2 andm = 6

paradigm and find a qualitative agreement between the model and experiments when
varying input parameters df and PR (Figs. 10B and C). We derive the coherence and fission
boundaries as functions of PR using the states’ existence conditions (equations (20)).

We now proceed to analyze 2TR-periodic states by considering active tone intervals
I = I1 ∪ I2, where I1 = [0, TD] and I2 = [TR, TR + TD]. We assume that tonotopic inputs to
the units are stronger than their mutual inhibition, that is,

c – b ≥ θ , (18)

a condition that allows unit A (B) to turn and remain ON at each A (B) active tone in-
terval I1 (I2). Indeed, from the model equations (1)–(2), the total input to the A unit is
auB – bsB(t – D) + c ≥ c – b for all t ∈ I1. Thus on the fast time scale, the A unit turns ON
instantaneously at the start of I1 and remains ON for all t ∈ I1. For analogous reasons, the
B unit is ON throughout I2. This has two important consequences:

1 The synaptic variables sA(t – D) and sB(t – D) are constant and equal to 1 in
[D, TD + D] and [TR + D, TR + TD + D], respectively. This implies that the total inputs
to the B and A units in these intervals are equal to a – b + d.

2 Both units are OFF for all t ∈R– I (i.e. no LONG states can exist). Indeed, from point
1 above sA(t – D) (sB(t – D)) is equal to 1 at time TD (TR + TD), and thus the total
input to the B (A) unit at this time is a – b, which is less than θ due to hypothesis (U1).
Thus the B (A) unit turns OFF instantaneously at time TD (TR + TD), and it is
followed by A (B) due to Sect. 4.1. Since (0, 0) is an equilibrium for the fast subsystem
with no input (see Sect. 4.3), we conclude that both units are OFF until the next active
tone input.

From point 1 the input to the B (A) unit in [D, TD + D] ([TR + D, TR + TD + D]) is equal
to P = a – b + d. This and point 2 imply that B and A can turn ON only in the intervals
L1 = [0, D] and L2 = [TR, TR + D], respectively. We consider two cases.
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Table 5 MAIN states existence conditions for D < TD and TD + D < TR and P ≥ θ

I ID

C–7 ≥ θ

P ≥ θ

C–7 < θ

P ≥ θ

8.1 Case P ≥ θ

This case leads to the two states shown in Table 5. Indeed, since unit B is ON in I2, unit A
is ON in this interval, because its total input is a – bsA(t – D) + d ≥ P ≥ θ . This is true also
for unit B in I1. Moreover, both units turn OFF instantaneously at times TD and TR + TD
(see point 2 above). Thus units evolve equally on each active tone interval (on the fast time
scale). The only difference is that B (A) may turn ON with small delay δ ∼ τ after A (B) in
I1 (IB). When evaluated at time 0 (TR), the delayed variable sA (sB) is equal to N–. Due to
the model symmetry, there are only two possible states, I and ID. For I , both units turn
ON at the same time 0 and TR for d – bN– ≥ θ (C–

7 ≥ θ ). If d – bN– < θ , then we have the
state ID for which B (A) turns ON with small delay δ after A (B) in I1 (I2).

8.2 Case P < θ

Under this condition, unit B (A) is OFF in [D, TD] ([TR + D, TD]) and outside the active
tone intervals. The dynamics of units B and A in intervals L1 and L2, respectively, is yet
to be determined. Lemma 2 proves that the delayed synaptic variables are monotonically
decaying in these intervals. We can use the classification of MAIN and LONG states pre-
sented in Sects. 6.1 by replacing interval I with L, where L = L1 or L = L2. We fix L = L1

(L = L2). Since unit A (B) is ON in L due to condition (18), MAIN states in L can satisfy
only conditions M1, M2 and M4 (M1, M3 and M5). Similarly, CONNECT states in L can
satisfy only condition C1 (C2). The matrix form of MAIN states can be extended to a 2 × 3
binary matrix (see Supplementary Material 1.13). Moreover, since A (B) is ON in L1 (L2)
due to condition (18), the matrix form of any 2TR-periodic MAIN and CONNECT state
is

[
1 1 1 x2

A y2
A z2

A
x1

B y1
B z1

B 1 1 1

]

.

The synaptic quantities defining the entries of the matrix form in L1 and L2 are

s2±
A = s1±

B = N±,

s1±
A =

⎧
⎨

⎩
R± if z2

A = 1,

M± otherwise,
and s2±

B =

⎧
⎨

⎩
R± if z1

B = 1,

M± otherwise,

(19)

where R– = e–(TR–2D)/τi and R+ = e–(TR–D)/τi . The quantities M± and N± are defined in equa-
tions (13). The proof of these identities is in Supplementary Material 1.17. By applying
identities (19) to the definition of the entries of the matrix form of MAIN or CONNECT
states we obtain that z2

A = z1
B ⇒ x2

A = x1
B and y2

A = y1
B.

This condition reduces the total number of combinations of binary matrices (and rela-
tive MAIN and CONNECT states) to those shown in Table 6. The first five states in this
table are MAIN, and the last two are CONNECT and complete the set of all possible states.



Ferrario and Rankin Journal of Mathematical Neuroscience            (2021) 11:8 Page 23 of 32

Table 6 Matrix forms of MAIN/CONNECT states for D < TD, TD + D < TR and P ≥ θ . Asymmetrical
states in *. The names of CONNECT states contain the letter c and the name of the two MAIN states
separated by the CONNECT state in the parameter space (see Fig. 10)

IS IDS AS∗ ASD∗ AP APcAS∗ AScI

111|111
111|111

111|011
011|111

111|000
111|111

111|000
011|111

111|000
000|111

111|000
001|111

111|001
001|111

R–7 ≥ θ

P < θ

R–7 < θ

R–6 ≥ θ

P < θ

C+5 < θ

C–8 ≥ θ

C+5 < θ

C–8 < θ

C–2 ≥ θ

C+2 < θ
C–2 < θ

C+2 ≥ θ

R–6 < θ

C+5 ≥ θ

Using identities (19) on the definition of the entries in each state’s matrix form and apply-
ing simplifications imply the existence conditions shown in the bottom row of Table 6,
where R–

6 = a – bR– + d and R–
7 = d – bR–.

Figure 10A shows the time histories for the states presented in Tables 5 and 6. Since
unit A(B) must be ON during the A(B) tone interval for property (18), there are no possi-
ble other network states. A proof similar to the multistability theorem in Supplementary
Material 1.12 shows that any pair of these states cannot coexist.

Remark 8.1 (Extension to the case TD + D ≥ TR) The condition TD + D < TR enabled
us to obtain a complete classification of network states via the application of Lemma 2.
However, these states can exist also if TD+D ≥ TR with few adjustments in their existence
conditions (see Supplementary Material 1.18). We note that under this condition, other
2TR-periodic states exist, such as states where both units turn ON and OFF multiple times
during each active tone interval (not shown). Since the condition TD + D ≥ TR is met for
high values of PR for which TR ∼ TD, we explored this condition using computational
tools (see Sect. 9).

8.3 Model states and link with auditory streaming
We now show how states described in the previous section can explain the emergence of
different percepts during auditory streaming. In the following framework, each possible
percept is linked (↔) with the units’ activities in the corresponding state:

• Integration ↔ both units respond to all tones (I , ID, IS, IDS and AScI).
• Segregation ↔ no unit respond to both tones (AP).
• Bistability ↔ one unit responds to both tones, and the other to only one tone (AS,

ASD and APcAS). This interpretation is motivated further in Remark 8.2.
Thus all model states presented in the previous section belong to one perceptual class.
The cartoon in Fig. 10B shows the experimentally detected regions of parameters df and
PR where participants are more likely to perceive integration, segregation or bistability
(van Noorden diagram; see Introduction). We now validate our proposed framework of
rhythm tracking by comparing model states consistent with different perceptual interpre-
tations (percepts) in the (df , PR)-plane. In these tests the model parameter d is scaled by
df as in Sect. 3. Figure 10C shows regions of the existence of model states when fixing
all other parameters (as reported in the caption). States classified as integration, segrega-
tion and bistability are grouped by blue, red and purple background colours to facilitate
the comparison with Fig. 10B. The existence regions of states corresponding to integra-
tion and segregation qualitatively match the perceptual organization in the van Noorden
diagram.
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Computation of the fission and coherence boundaries. Our analytical approach enables
us to formulate the coherence and fission boundaries as functions of PR using the states’
existence conditions. More precisely, the coherence boundary is the curve dfcoh(PR) sepa-
rating states APcAS and AP, whereas the fission boundary is the curve dffiss(PR) separating
states AScI and IDS:

dfcoh(PR) =
[(

a – bN+ + c – θ
)
/c

]m,

dffiss(PR) =
[(

a – bM+ + c – θ
)
/c

]m,
(20)

where N+ = e–(TR–D)/τi and M+ = e–(2TR–TD)/τi . The existence boundaries in Fig. 10C (in-
cluding these curves) naturally emerge from the model properties and are robust to pa-
rameter perturbations. For example, the parameters a and b can respectively shift and
stretch the two curves dfcoh(PR) and dffiss(PR). For all parameter combinations, these
curves have an exponential decay in TR that generates regions of existence similar to the
van Noorden diagram.

Remark 8.2 The model predicts the emergence of integration, segregation and bistabil-
ity in plausible regions of the parameter space. Yet, it currently cannot explain (1) how
perception can switch between these two interpretations for fixed df and PR values (i.e.
perceptual bistability) and (2) which of the two tone streams is followed during segre-
gation (i.e. A-A- or -B-B). This could be resolved in a competition network model, such
as that proposed by [17]. The selection of which rhythm is being followed by listeners at
a specific moment in time would be resolved by a mutually exclusive selection of either
unit: the perception is either integration if a unit responding to both tones is selected or
segregation if a unit responding to every other tone is selected (see Discussion).

Remark 8.3 (A note on the word bistability) Bistability (as used in Fig. 10C) corresponds
to states that encode both integrated and segregated rhythms simultaneously, where one
unit responds to both tones, and the other to one tone (say, unit A responds ABAB. . . , and
unit B responds -B-B. . . ). This should not be confounded with the fact that this bistable
state coexists with another, by our definition, bistable state (unit A responds A-A-. . . , and
unit B responds ABAB. . . ).

9 Computational analysis with smooth gain and inputs
In this section, we extend the analytical results using numerical simulations with a con-
tinuous rather than the Heaviside gain function and inputs and reducing the timescale
separation ratio τi/τ by an order of magnitude. We restrict our study to D < TD (the bio-
logically realistic case), but without imposing the condition TD + D < TR. This allows us
to make predictions at high PR s, which go beyond the analytic predictions of the previ-
ous section (see Remark 8.1). In summary, we find that this smooth, non-slow-fast regime
generates similar states occupying slightly perturbed regions of stability. We consider the
sigmoidal gain function S(x) = [1 + exp(–λx)]–1 with fixed slope λ = 30, and we consider
continuous inputs from equations (3).

Integration (INT), segregation (SEG) and bistability (BIS) are classified based on the
number of threshold crossings during one periodic interval [0, 2TR]. Let nA (nB) denote
the number of threshold crossings of unit A (B), and let n = nA + nB. Based on the corre-
spondence between states and perception described in the previous section, the states for
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Figure 11 (A)–(C) show the numbers of threshold crossings for both units n in greyscale for simulated
trajectories at varying PR and df (uniformly sampled in 96 points) for different values of τ shown in top-right
corner of each panel. Black corresponds to n = 0, and the lightest gray to n = 4. In (A) the blue and red curves
are the analytically predicted coherence and fission boundaries defined in equations (20). In (C), yellow and
purple crosses represent respectively the experimentally detected coherence and fission boundaries,
replotted from Fig. 2 in [47]. We plotted regions outside the experimental range PR in 5–20 Hz for predictions.
(D) Time histories for the model states in each of the five regions of panel (B), with values of PR and df shown
by white dots in panel (B). All parameters are as in Fig. 3

which n = 4 (n = 2) correspond to integration (segregation), and the states for which n = 3
correspond to bistability. We run large parallel simulations to systematically study the con-
vergence to the 2TR-periodic states under changes in df and PR and detect the boundaries
of transitions between different perceptual interpretations. We consider a grid of l × l uni-
formly spaced parameters PR ∈ [1, 40] Hz and df ∈ [0, 1] (l = 98). For each node, we run
long simulations from the same initial conditions and compute the number of threshold
crossings after the convergence to a stable 2TR-periodic state for different values of τ

(Figs. 11A, B and C). There are five possible regions corresponding to one of four differ-
ent values of n ∈ {0, 2, 3, 4}. Three of these regions (as in panel A) correspond to the three
coloured regions found analytically in Fig. 10C. Figure 11D shows example time histories
of all the states in these five regions when τ = 0.01 (the values of PR and df are shown in
white dots in panel B).

For low values of τ (panel A), the system is in the slow-fast regime. The blue and red
curves show the analytically predicted coherence and fission boundaries for the Heaviside
case under slow-fast regime defined in equations (20). These curves closely match the nu-
merically predicted boundaries in the smooth system. For panels B and C, the parameter
τ is increased. All the existing states found in panel A persist and occupy the largest re-
gion of the parameter space, but the fission and coherence boundaries perturb. Note that
the selected values of D and TD in these figures lead to the condition TD + D ≥ TR for
PRs greater than approximately 27 Hz, where the following two new 2TR-periodic states
appear:
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APH (n = 2). Both units oscillate at activity levels higher than the threshold ∼ θ . Since
n = 2, this state may correspond to segregation, but its perceptual relevance is difficult to
assess, because it occurs in a small region of the parameter space and at high PRs, which
is outside the range tested in psychoacoustic experiments.

SAT (n = 0). Both units’ activities are higher than the threshold θ (saturation). This state
exists at (a) low dfs and (b) high PRs, greater than 30 Hz. Property (a) guarantees that in-
puts are strong enough to turn ON both units, whereas property (b) guarantees that that
successive active tone intervals occur rapidly compared to the decay τ of the units’ activi-
ties. High values τ preclude the units from turning OFF and the crossing of the threshold θ .
This state does not correspond to any auditory streaming percept (integration or segrega-
tion). However, PR typically ranges between 5 and 20 Hz in these experiments. This state
may explain why perceivable isochronal rhythms above ∼ 30 Hz are heard as a pure tone
in the first (lowest) octave of human hearing. Indeed, when df = 0, the model inputs rep-
resent the repetition of a single tone (B = A) with frequency PR. Our proposed framework
suggests that SAT cannot track any rhythm simply because no unit crosses threshold.

The coherence and fission boundaries detected from the network simulations in panel
Fig. 11C quantitatively match those from psychoacoustic experiments (yellow and purple
crosses, the available data spans PRs in ∼ [7, 20] Hz). The model parameters chosen in the
this figure (including τ ) have been manually tuned to match the data. Overall, we conclude
that the proposed modelling framework is a good candidate for explaining the perceptual
organisation in the van Noorden diagram and for perceiving repeated tones (isochronal
rhythms) at high frequencies as a single pure tone in the lowest octave of human hearing.

10 Discussion
We proposed a minimal firing rate model encoding ambiguous rhythm perception consist-
ing of two neural populations coupled by fast direct excitation and slow delayed inhibition
and forced by square-wave periodic inputs. By acting on different timescales excitation
and inhibition give rise to rich dynamics studied in this paper.

The model incorporates neural mechanisms commonly found in auditory cortex (ACx).
We hypothesised that pitch and rhythm are respectively encoded in tonotopic primary and
secondary ACx [11]. Model units represent populations in secondary ACx, that is, belt or
parabelt regions of auditory cortex, with inputs that mimic primary ACx responses [49] to
interleaved A and B tone sequences [14]. This division of roles in the ACx is supported by
evidence for specific non-primary belt and parabelt regions encoding temporal features
(i.e. rhythmicity) only present in sound envelope rather stimulus features (i.e. content like
pitch) as in primary ACx [11]. The timescale separation between excitation and inhibition
is consistent with AMPA and GABA synapses, respectively (widely found in cortex).

The inhibition, with delay assumed fixed to D, could be determined by factors includ-
ing slower inhibitory activation times (vs excitatory), indirect connections via interneu-
rons and propagation times between the spatially separated A and B populations. A recent
computational study addressed the role of the two inhibitory populations of parvalbumin-
(PV) and somatostatin-(SST) positive interneurons and an excitatory (EXC) population in
the ACx [50]. In their model the responses of SST interneurons (but not PV interneurons)
to pure tones show a delayed response after PV and EXC and motivates the inhibitory
delays assumed in our model. The modelled units and timescale separation considered in
our work would encode the action of the delayed inhibitory SST and fast EXC populations,
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but not PV. Another experimental result in the same paper shows that SST inactivation de-
creases forward masking at best frequency sites. This is consistent with our results, where
forward masking decreases following a reduction in the inhibitory strengths, which are in
turn modulated by the level of the units’ activity.

We used analytical tools to investigate periodic solutions 1:1 locked to the inputs and
their dependence on key parameters influencing auditory perception: the presentation
rate (PR), the tones’ pitch difference (df ) and the tone duration (TD). For these analytical
results, we assumed the condition TD + D < 1/PR, which enabled us to classify all possible
states and formulate existence conditions and rule out impossible states. This condition
is relevant to auditory streaming. Indeed, the factors that may play a role in generating
delayed inhibition discussed above would most likely lead to short or moderate delays,
for which this condition is guaranteed for the values of PR s and TDs typically consid-
ered in experiments, PR in 5–20 Hz and TD in 10–30 ms (TD’s interpretation discussed
below in Predictions). We used numerical simulations to study the case TD + D ≥ 1/PR
and to extend the confirm the validity of the analytical approach with a smooth gain func-
tion, smooth inputs and different levels of timescale separation. The simulations closely
matched the analytical predictions under the slow-fast regime. Reducing the timescale
separation shifts the regions of existence of the perceptually relevant states and produces
a qualitatively close match with the van Noorden diagram.

We proposed a link between states and the rhythms perceived during auditory streaming
based on threshold crossing of the units’ responses: for ABAB integrated percepts, both
units respond to every tone, and for segregated A-A- or -B-B percepts, each unit responds
to only one tone. Bistability corresponds to one unit responding to every tone and the other
unit responding to every other tone. This interpretation of bistability can explain how
both integrated and segregated rhythms may be perceived simultaneously, as reported
in some behavioural studies [51, 52], but not the dynamic alternation between these two
percepts [17, 53] (see the section “Future work”). This classification enabled us to compare
the states’ existence regions to those of the corresponding percepts when varying df and
PR in experiments (van Noorden diagram). A qualitatively similar organization of these
regions emerged naturally from the model and is robust to parameter perturbations.

10.1 Models of neural competition
Our proposed model addresses the formation of percepts but not switching between them,
the so-called auditory perceptual bistability [17, 53]. Future work will consider the present
description acts as a front-end to a competition network, which could be the locus of at-
tention [54] (we can think of the present study as a reformulation of the pre-competition
stages in [17]). Perceptual bistability (e.g. binocular rivalry) is the focus of many theoretical
studies [22–24] that feature mechanisms and dynamical states similar to those reported
here with two key distinctions. Firstly, our model units are associated with tonotopic loca-
tions of the A and B tones, not with percepts as in many other models. Secondly, previous
firing rate models typically considered a combination of fixed inputs, instantaneous mu-
tual inhibition and a slow processes such as adaptation or synaptic depression that drives
perceptual switches. Periodic inputs associated with slow switches in specific experimen-
tal paradigms have been considered in several models [28, 29, 42, 55, 56]. Mechanisms
of adaptation and synaptic depression have not been considered in the present model be-
cause we aim to explain the formation of perceivable rhythms at the pre-competition stage,
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not the perceptual bistability. Indeed, slow adaptation might feature at higher stage of the
model (see Conclusions).

10.2 Models of auditory streaming
The auditory streaming paradigm has been the focus of a wealth of electrophysiologi-
cal and imaging studies in recent decades. However, it has received far less attention
from modelers when compared with visual paradigms. Many existing models of auditory
streaming have used signal-processing frameworks without a link to neural computations
(recent reviews: [13, 15, 16]). In contrast, our model is based on a plausible network archi-
tecture with biophysically constrained and meaningful parameters. Our model is a depar-
ture from (purely) feature-based models because it incorporates a combination of mech-
anisms acting at timescales close to the interval between tones. By contrast, [47] consid-
ers neural dynamics only on a fast time scale (less than TR). Further, [17] considers slow
adaptation to drive perceptual alternations, assumes instantaneous inhibition and slow
NMDA-excitation, a combination that precludes forward masking as reported in [14]. The
entrainment of intrinsic oscillations to inputs was considered in [18], albeit using a highly
redundant spatio-temporal array of oscillators. Recently, a parsimonious neural oscillator
framework was considered in [19] but without addressing how the same percepts persist
over a wide range of PR (5–20 Hz).

A central hypothesis for our model is that network states associated with different per-
ceptual interpretations are generated before entering into competition that produces per-
ceptual bistability (as put forward in [57] with a purely algorithmic implementation). Here
network states are emergent from a combination of neural mechanisms: mutual fast, direct
excitation and mutual slow acting, delayed inhibition. In contrast with [17], our model is
sensitive to the temporal structure of the stimulus present in our stereotypical description
of inputs to the model from primary auditory cortex and over the full range of stimulus
presentation rates.

A popular conceptual model for explaining the perceptual dependence on df and PR is
the population separation hypothesis (PSH) [45]. According to this hypothesis, A and B
tones evoke spatially organised tonotopic responses spreading to neighbouring sites, with
a peak at the A and B frequency locations (A and B populations) and overlapped activity in
between (so-called X population). The reported primary ACx recordings [45] show that
increasing PR suppresses overall response amplitudes, whereas increasing df reduces the
overlap in the activity evoked by the tones, eventually leading to no overlap at large df .
Therefore, at large df , two tone streams would activate either the A or the B population
every other tone (segregation). At small df , there is a large response in populations A, B
and X, reflecting a response to every tone as a model (integration). At intermediate df
the dominant percept varies in PR. At low PR s the population X responds to both tones
and leads to integration, whereas at large PR s the suppression of the responses leads to
segregation.

Our modelling proposal follows the PSH hypothesis by considering tonotopically local-
ized A and B units with lateral inputs to mimic the influences from overlapping responses,
yet without modelling an intermediate X unit directly. States linked to integration and seg-
regation produce activity at every tone and at every other tone, respectively, like the cor-
responding states in the PSH. States linked to bistability have overlapping A and B units’
activities at every other tone, resembling the activation of an intermediate X population
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in the PSH. Unlike the PSH, our model can explain the emergence of integration at low
PR and high df (see below).

10.3 Predictions
In van Noorden’s original work on auditory streaming, boundaries in the (df , PR)-plane
were identified: the temporal coherence boundary, below which only integrated occurs,
and the fission boundary, above which only segregated occurs. We derived exact expres-
sions for these behavioural boundaries that match the van Noorden diagram. One of chal-
lenges in developing a model that reproduces the van Noorden diagram was explaining
how a neural network can produce an integrated-like state at very large df -values and low
PRs. Primary ACx shows no tonotopic overlap in this parameter range (A-location neu-
rons exclusively respond to A tones) [14]. Our results show that fast excitation can make
this possible. Disrupting AMPA excitation is predicted to preclude the integrated state
at large df -values. Furthermore, our results show that segregation relies on slow acting,
delayed inhibition, which performs forward masking. Whilst the locus for this GABA-
like inhibition cannot yet be specified, we predict that its disruption would promote the
integrated percept.

Some model parameters (i.e. TD, TR, input strengths) can readily be tested in exper-
iments by changing sound inputs. The model can predict the effect of such changes on
perception. However, the role of TD has yet to be investigated in experiments. In our
model, TD better represents the duration of the primary ACx responses to tones, rather
than the sound duration of each tone. This interpretation is supported by recordings of
firing rates at tonotopic locations in Macaque primary ACx [14]. In these data, ∼ 80% of
the response is localized shortly after the tone onset. This time window is approximately
constant ∼ 30 ms across different tone intervals, tone durations, PR and df (unpublished
results).

Numerics for the smooth model predict a region at large PR s for which responses are
saturated (no threshold crossings). These responses are consistent with rapidly repeating
discrete sound events at rates above 30 Hz sounding like a low-frequency tone (20 Hz is
typically quoted as the lowest frequency for human hearing). At presentation rates above
30 Hz, we predict a transition from hearing a modulated low-frequency tone to hearing
two fast segregated streams as df is increased.

10.4 Conclusions
Our study proposed that sequences of tones are perceived as integrated or segregated
through a combination of feature-based and temporal mechanisms. Here the tone fre-
quency is incorporated via input-strengths, and timing mechanisms are introduced via
excitatory and inhibitory interactions at different timescales including delays. We suspect
that the proposed architecture is not unique in being able to produce similar dynamic
states and the van Noorden diagram. The implementation of globally excitatory inputs
(iA(t) and iB(t) driving both units) rather than mutual fast-excitation is expected to pro-
duce similar results.

The resolution of competition between these states is not considered at present. Imag-
ing studies implicate a network of brain areas (e.g. frontal and parietal) extending beyond
auditory cortex for streaming [58–61], some of which are generally implicated in percep-
tual bistability [62–64]. The model could be extended to consider perceptual competition
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and bistability by incorporating further downstream into a competition stage (in the same
spirit as [17]). An extended framework would provide the ideal setting to explore percep-
tual entrainment through the periodic [65] or stochastic [66] modulation of a parameter
like df .
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