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Abstract
Mathematical models at multiple temporal and spatial scales can unveil the
fundamental mechanisms of critical transitions in brain activities. Neural mass models
(NMMs) consider the average temporal dynamics of interconnected neuronal
subpopulations without explicitly representing the underlying cellular activity. The
mesoscopic level offered by the neural mass formulation has been used to model
electroencephalographic (EEG) recordings and to investigate various cerebral
mechanisms, such as the generation of physiological and pathological brain activities.
In this work, we consider a NMM widely accepted in the context of epilepsy, which
includes four interacting neuronal subpopulations with different synaptic kinetics.
Due to the resulting three-time-scale structure, the model yields complex oscillations
of relaxation and bursting types. By applying the principles of geometric singular
perturbation theory, we unveil the existence of the canard solutions and detail how
they organize the complex oscillations and excitability properties of the model. In
particular, we show that boundaries between pathological epileptic discharges and
physiological background activity are determined by the canard solutions. Finally we
report the existence of canard-mediated small-amplitude frequency-specific
oscillations in simulated local field potentials for decreased inhibition conditions.
Interestingly, such oscillations are actually observed in intracerebral EEG signals
recorded in epileptic patients during pre-ictal periods, close to seizure onsets.

MSC: 34E15; 34E17; 37N25; 92B25

Keywords: Multiple time-scale systems; Canards; Bursting; Excitability; Epilepsy;
Neural mass model

1 Introduction
Brain dynamics emerges from neural entities interacting at different levels, from sin-
gle neurons to large-scale neural networks. At each level, transitions between different
regimes, such as firing/resting states in single neurons and up/down states in neural net-
works, are associated with both physiological functions and pathological activity [1–3].
One of the features of the system that determines how these transitions would occur is
excitability. The concept of neural excitability for single neurons was introduced initially
by Louis Lapique in 1907 [4, 5]. Alan Hodgkin, who then re-introduced the concept [6],
classified the neural excitability with respect the firing rate of neurons in response to in-
jected steps of currents. Excitability properties of neural systems can vary with internal
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dynamics, leading to different physiological and pathological behavior [7–10]. At the cor-
tical scale, for instance, variations in excitability [11] and loss of network resilience [12]
are associated with epileptic seizures. Yet, what may be as important as a transition itself
is the dynamics preceding the transition. In the context of epilepsy, for example, identi-
fication of the dynamic features along the path to a transition is crucial for intervention
and prevention of seizures.

Mathematical models of brain activity range from microscopic level of single cell dy-
namics to macroscopic level of interactions between large scale neural systems. Neural
mass models (NMMs) consider the average temporal dynamics of interconnected neural
subpopulations without explicitly representing the underlying mechanisms at the level
of single cells. The mesoscopic level offered by the neural mass formulation has been
used to model brain signals, from local field potentials (LFPs) to global electroencephalo-
graphic (EEG) recordings, and to investigate various cerebral rhythms [13–15]. NMMs
have also been used extensively to study pathological dynamics such as in epilepsy [16–
19], Alzheimer’s disease [20] and Parkinson’s disease [21, 22].

Interactions between slow and fast components of neural systems, hence, of their math-
ematical models, result in multiple time-scale complex oscillations, such as relaxation,
bursting and mixed-mode oscillations. Geometric singular perturbation theory (GSPT) is
a key tool for understanding the interaction between the geometry of the system and the
emerging multiple time-scale dynamics. In particular, canard solutions, which can exist in
multiple time-scale systems with a folded geometry, appear as building blocks of complex
oscillations in both phenomenological and neurophysiologically plausible models ranging
from single cell [23–26] to neural networks [27, 28]. The canard phenomenon in such sys-
tems has been related to neural excitability [29], excitability thresholds [23, 30–34], and
boundaries between different type of solutions, such as subthreshold oscillations and large
amplitude spiking/bursting oscillations [24, 28, 35–43]. While such canard-organized fine
structures have been shown in a wide range of two-time-scale models, recent studies
started to explore canard-mediated processes in systems with three or more time-scales
[44–46].

In this study we investigate critical regimes in the NMM initially presented in [16].
This physiologically-grounded model has been extensively used for modeling structural
and functional changes leading to epileptic activity observed in intracranial (stereoelec-
troencephalography, SEEG) signals. The model includes four interacting neuronal sub-
populations: two interconnected subpopulations of glutamatergic pyramidal neurons and
GABAergic inhibitory interneurons (somatostatin positive (SOM+), and parparvalbunim
positive (PV+), also called dendrite-projecting slow and soma-projecting fast interneu-
rons, respectively). Although the model was introduced for the CA1 region of the hip-
pocampus, implementation of these four subpopulations mediating glutamatergic and
GABAergic signaling makes it generic enough to be considered for many other cortical
regions [47]. Activity of each subpopulation is given by the corresponding average post-
synaptic potential (PSP) that is determined by two functions: 1) a “pulse to wave” function,
S(v) = 5/(1 + exp(0.56(6 – v))), transforming the incoming synaptic potentials into a firing
rate; and 2) a “wave to pulse” converting the input average firing rate into a mean PSP at
the input of each subpopulation, that is, h(t) = Wt/τw exp(–t/τw), where W represents the
average synaptic gain and τw is the average synaptic time constant mimicking the rise and
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decay of actual PSPs. The system schematized in Fig. 1a reads

ẏ0 = y5, (1a)

ẏ5 =
A
τa

S[y1 – y2 – y3] –
2
τa

y5 –
1
τ 2

a
y0, (1b)

ẏ1 = y6 (1c)

ẏ6 =
A
τa

{
p(t) + C2S[C1y1]

}
–

2
τa

y6 –
1
τ 2

a
y1, (1d)

ẏ2 = y7, (1e)

ẏ7 =
B
τb

C4S[C3y0] –
2
τb

y7 –
1
τ 2

b
y2, (1f)

ẏ3 = y8, (1g)

ẏ8 =
G
τg

C7S
[

C5y0 –
C6

C4
y4

]
–

2
τg

y8 –
1
τ 2

a
y3. (1h)

The variables y0,1 stand for the excitatory PSPs mediated by two pyramidal neuron sub-
populations, y2 and y3 are inhibitory PSPs mediated by the SOM+ and PV+ interneuron
subpopulations, respectively. Variables yj (j ∈ {5, 6, 7, 8}) are the auxiliary variables that are
introduced to convert the second-order differential equations describing the wave to pulse
functions to first-order differential equations [13]. The parameters A, B, G are the synaptic
gains, the Ci are the connectivity constants representing the average number of synaptic
contacts, p(t) is the external (noisy) cortical input (p(t) = p + ξ , where p is the mean of
external input ξ is a random variable following a normal distribution with N (0,σ 2)). The
synaptic time constants are given by τa, τb, τg . The major contribution to LFPs (as recorded
by intracranial electrodes in patients candidate to surgery) corresponds to the PSPs sum-
mated at the level of pyramidal neurons, which are geometrically aligned “in palisades”,
i.e. one relative to the other and perpendicular to the plane of the cortical layers. In the
model, the LFP is given by the sum of excitatory PSP (EPSP) and inhibitory PSPs (IPSPs)
received by the glutamatergic pyramidal cells, hence LFP = y1 – y2 – y3.

As introduced in [48], under the following variable conversion:

(
t
τg

,
y0

τa
,

y1

τa
,

y2

τb
,

y3

τg
, y5, y6, y7, y8

)
�⇒ (t̃, v0, v1, v2, v3, y5, y6, y7, y8),

with δ = τg/τa and ε = τa/τb, system (1a)–(1h) can be written in the following deterministic
(σ = 0) slow–fast form:

dv3

dt̃
= y8 := F3(y8), (2a)

dy8

dt̃
= GS[C5τav0 – C6τbv2] – v3 – 2y8 := F8(v0, v2, v3, y8), (2b)

dv0

dt̃
= δy5 := δF0(y5), (2c)
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dy5

dt̃
= δ

(
AS[Aτap + C2τav1 – C4τbv2 – C7τgv3] – v0 – 2y5

)

:= δF5(v0, v1, v2, v3, y5),

(2d)

dv1

dt̃
= δy6 := δF1(y6), (2e)

dy6

dt̃
= δ

(
AS[C1τav0] – v1 – 2y6

)
:= δF6(v0, v1, y6), (2f)

dv2

dt̃
= δεy7 := δεF2(y7), (2g)

dy7

dt̃
= δε

(
BS[C3τav0] – v2 – 2y7

)
:= δεF7(v0, v2, y7). (2h)

In this manuscript, we will consider system (2a)–(2h) for the slow–fast analysis and
(1a)–(1h) for simulations under the stochastic input. We will be using the parameter set
given in Table 1, unless otherwise stated, for which δ = 0.3 and ε = 0.2. Numerical bi-
furcation analysis is performed in AUTO-07p software [49]. The stochastic differential
equations were integrated using the Euler–Murayama method with a step size dt = 10e–4
second in XPPAUT software [50].

As noticed in [48], system (2a)–(2h) is a three-time-scale system written in fast form
with (v3, y8) being fast, (v0, y5, v1, y6) slow and (v2, y7) super-slow variables. Köksal Ersöz et
al. [48] have focused on electrophysiological pre-ictal bursting patterns recorded in hu-
man patients just before the onset of seizure. Pre-ictal bursting patterns are characterized
by fast oscillatory discharges (which will be referred as spikes) followed by a slower oscil-
lation (a simulated pattern with the parameter set in Table 1 is exemplified in Fig. 1b). The
authors have reproduced pre-ictal bursting and unveiled the mechanism yielding these so-
lutions by decorticating the three-time-scale structure of the model. They have discussed
appropriate stimulation strategies for aborting of the pre-ictal bursting, hence, for pre-
venting a subsequent epileptic seizure. However, they did not focus on possible slow–fast
transitions. Here we extend the slow–fast analysis initiated in [48] by investigating the
role of slow-manifolds in transitions to relaxation and bursting type of solutions. We will
focus on how canard trajectories shape the different routes from physiological to patho-
logical brain activity. In what follows, we will go briefly through the multiple-time-scale
analysis presented in [48], and then show different canard structures present in the model
and how they take a part in critical transitions. Finally, we will see the system’s response
to stochastic inputs near critical regimes, and make a remark on the slow oscillations ob-
served along the path to seizure in SEEG signals recorded during pre-surgical evaluation
of two patients with drug-resistant epilepsy.

Table 1 Parameter values for the bursting-type discharges

A (mV) B (mV) G (mV) p (Hz) C1 C2 C3 C4 C5 C6 C7 τa (s) τb (s) τg (s)

5 5 35 90 135 108 80 25 450 121 121 0.01 0.05 0.003
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Figure 1 Model diagram and time series of a bursting solution. (a) Model diagram showing excitatory (red
connections) and inhibitory (blue connections) interactions between subpopulations of pyramidal neurons
(PYR and PYR’) and inhibitory interneurons (PV+ and SOM+). The post-synaptic potential of a subpopulation,
which is the output of h(t), is multiplied by a synaptic coefficient Ci before being received by another
subpopulation. (b) Time series of a bursting solution for the parameter set in Table 1. The panels from the top
to the bottom show the time courses of post-synaptic potentials of PV+ (v3), PYR (v0), SOM+ (v2) and the local
field potential (LFP), i.e. Aτap + C2τav1 – C4τbv2 – C7τgv3

2 Preliminaries
System (2a)–(2h) expressed in the fast time t̃ is called a fast system. The slow system is
obtained by defining t̃s = δt̃,

δ
dv3

dt̃s
= F3(y8), (3a)

δ
dy8

dt̃s
= F8(v0, v2, v3, y8), (3b)

dv0

dt̃s
= F0(y5), (3c)

dy5

dt̃s
= F5(v0, v1, v2, v3, y5), (3d)

dv1

dt̃s
= F1(y6), (3e)

dy6

dt̃s
= F6(v0, v1, y6), (3f)

dv2

dt̃s
= εF2(y7), (3g)

dy7

dt̃s
= εF7(v0, v2, y7), (3h)

where the functions Fi(·) are as defined in (2a)–(2h). The super-slow system is obtained by
defining t̃ss = εt̃s = εδt̃:

δε
dv3

dt̃ss
= F3(y8), (4a)

δε
dy8

dt̃ss
= F8(v0, v2, v3, y8), (4b)
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ε
dv0

dt̃ss
= F0(y5), (4c)

ε
dy5

dt̃ss
= F5(v0, v1, v2, v3, y5), (4d)

ε
dv1

dt̃ss
= F1(y6), (4e)

ε
dy6

dt̃ss
= F6(v0, v1, y6), (4f)

dv2

dt̃ss
= F2(y7), (4g)

dy7

dt̃ss
= F7(v0, v2, y7). (4h)

Systems (2a)–(2h), (3a)–(3h) and (4a)–(4h) describe different dynamics in the singular
limits ε → 0 and/or δ → 0, although they are equivalent for ε �= 0 and δ �= 0. Letting δ → 0
in (2a)–(2h) yields the fast layer problem (2a)–(2b) which describes the dynamics of the
fast variables (v3, y8) for fixed values of the slow (v0) and super-slow (v2) variables. The
critical manifold is defined by the equilibrium points of the fast layer problem, that is,

S0 =
{

(v3, y8, v0, y5, v1, y6v2, y7) ∈ R
8 | GS[C5τav0 – C6τbv2] – v3 = 0

}
, (5)

which is eventually in the (y8 = 0)-space. Since the eigenvalues of the Jacobian matrix of
the fast layer problem defined by (2a)–(2b) with respect to (v3, y8) are λ1,2 = –1, the 6-
dimensional critical manifold S0 is normally hyperbolic and stable, thus, it is perturbed
to local slow manifolds for sufficiently small δ > 0. Therefore, the fast dynamics can be
approximated by slow dynamics as suggested by the Fenichel theorem [51].

Setting δ → 0 in (3a)–(3h) gives an algebraic-differential slow reduced problem,

0 = F3(y8), (6a)

0 = F8(v0, v2, v3, y8), (6b)

dv0

dt̃s
= F0(y5), (6c)

dy5

dt̃s
= F5(v0, v1, v2, v3, y5), (6d)

dv1

dt̃s
= F1(y6), (6e)

dy6

dt̃s
= F6(v0, v1, y6), (6f)

dv2

dt̃s
= εF2(y7), (6g)

dy7

dt̃s
= εF7(v0, v2, y7), (6h)

which describes the slow dynamics restricted to S0. System (6a)–(6h) is a two-time-scale
system of 4 slow/2 super-slow variables with ε being the time-scaling parameter. The equi-
libria of the slow layer problem in the ε → 0 limit defines the super-slow manifold L0, which
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is reduced to

L0 =
{

(v3, y8, v0, y5, v1, y6v2, y7) ∈ S0 | (7)

AS
[
Aτap + C2τaAS[C1τav0] – C4τbv2 – C7τgv3

]
– v0 = 0

}
,

and restricted to S0 by the algebraic condition v3 = GS[C5τav0 –C6τbv2] = K(v0, v2) in (6a)–
(6b). The super-slow dynamics restricted to the 2-dimensional manifold L0, hence to S0,
are given by the super-slow reduced system in the ε → 0 limit of (4a)–(4h).

In order to investigate the super-slow flow on L0, we consider the two-time-scale system
(6a)–(6h) with the fast variable v3 on S0, i.e. v3 = K(v0, v2), and rewrite the slow reduced
system (6a)–(6h) as

dv0

dt̃s
= F0(y5), (8a)

dy5

dt̃s
= F5

(
v0, v1, v2,K(v0, v2), y5

)
, (8b)

dv1

dt̃s
= F1(y6), (8c)

dy6

dt̃s
= F6(v0, v1, y6), (8d)

dv2

dt̃s
= εF2(y7), (8e)

dy7

dt̃s
= εF7(v0, v2, y7). (8f)

Applying the time-scaling τ̃s = εt̃s and taking the singular limit ε → 0 give the algebraic-
differential system

0 = F0(y5), (9a)

0 = F5
(
v0, v1, v2,K(v0, v2), y5

)
, (9b)

0 = F1(y6), (9c)

0 = F6(v0, v1, y6), (9d)

dv2

dτ̃s
= F2(y7), (9e)

dy7

dτ̃s
= F7(v0, v2, y7). (9f)

The algebraic conditions (9a)–(9d) define the ‘critical manifold’ of (8a)–(8f) which is
equivalent to L0 given by (7). Notice that L0 is restricted in the zero plane of the (y5, y6)-
space. Assuming that v2 is some function of v0 on L0, i.e. v2 = M(v0), the fold points on L0

are defined by

F =
{

(v0, v1, v2, v3, y5, y6, y7, y8) ∈ L0
∣∣∣ v2 = M(v0),

∂M(v0)
∂v0

= 0
}

. (10)
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Figure 2 Critical manifold, slow manifold and folded singular points. (a) Critical manifold S0 (green surface),
super-slow manifold L0 (red curve) and a bursting orbit in the (v0, v2, v3)-space. The curve L0 is divided into
three branches at F1 and F2 (red dots) where it changes stability. The middle branch of the L0 (L0m) curve
betweenF1 and F2 is unstable (dashed). The stable left-hand side branch (L0l ), F1, L0m and F2 are entirely on
the almost horizontal part of S0 (approximately on the (v3 ≈ 0)-plane). The stable right-hand side branch of L0

(L0r ) on expands both on the horizontal and vertical parts of S0. Arrows indicate the corresponding time-scale
(single-headed for super-slow, double-headed for slow dynamics). (b) Super-slow manifold L0 (red surface),
fold curves F1,2 (black lines) and folded singular points p1,2 (red dots) in the (y7, v2, v0)-space. Arrows indicate
the corresponding time-scale

Figure 2a shows S0 and L0 in the (v0, v2, v3)-space, and Fig. 2b L0 in the (y7, v2, v0)-space.
The super-slow manifold L0 expands between the lower horizontal and vertical planes of
S0. The part of curve L0 on the lower horizontal plane of S0 is folded with respect to v2

at along the fold curves F1 and F2 defined by (10), i.e. F = F1 ∪ F2. In this projection,
the 1-D fold curves divide L0 into two stable (left-hand side L0

l and right-hand side L0
r )

and one unstable (middle L0
m) branches on the (v0, v2, v3)-space. We also verify that four

eigenvalues of L0 (two real and two complex conjugate) have negative real parts along the
stable parts of L0. One of the real eigenvalues changes sign along F1,2, hence the unstable
middle branch is of saddle type. Along the stable and unstable branches L0 is normally
hyperbolic, so L0 is perturbed to local super-slow manifolds for small values of ε > 0 within
(6a)–(6h); see the extension of Fenichel theory for systems with more than two time-scales
[52]. On the other hand, the dynamics near the non-hyperbolic fold curves F1,2 should be
investigated by using the elements of GSPT.

As being the usual strategy, we consider the desingularized version of the super-slow
dynamics on L0 is given by the desingularized slow reduced system (DSRS), reading

dv0

dτ̂s
= –y7, (11a)

dy7

dτ̂s
= –

∂M(v0)
∂v0

F7
(
v0,M(v0), y7

)
, (11b)

where τ̃s = ∂M(v0)
∂v0

τ̂s. The equilibria of (11a)–(11b) on the fold set F are located at
(vp1

0 , yp1
7 ) = (1.2343, 0) and (vp2

0 , yp2
7 ) = (9.9976, 0) for the parameter set given in Table 1.

These equilibrium points, which are not generally the true equilibria of (8a)–(8f), are re-
lated to the folded singularities of (8a)–(8f), hence of (2a)–(2h). On the other hand, equi-
librium points (vF7

0 , yF7
7 ), i.e. F7(vF7

0 , yF7
7 ) = 0, are ordinary singularities since they are also

equilibria of (8a)–(8f), hence of (2a)–(2h). Figure 2b shows L0, fold curves F1,2 and folded
singular points p1,2 in the (y7, v2, v0)-space.
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Stability of the equilibrium points of the desingularized (slow) reduced system on the
fold set determines the type of the folded singularities of the original system. Classifica-
tion of these equilibrium points is based on the linear stability analysis. When the desin-
gularized (slow) reduced system is planar, this analysis can be done using the trace and
the determinant of the Jacobian matrix at the fold equilibrium. If both are different from
zero, the fold equilibrium can be a folded saddle, a folded node or a folded focus. If the
determinant equals zero but not the trace, then the desingularized flow has a degenerate
equilibrium point, which is a folded saddle-node. A folded saddle-node is either related to
a saddle-node bifurcation of the folded equilibria or a transcritical bifurcation of a folded
equilibrium with an ordinary equilibrium. The latter case refers to the folded saddle-node
type II (FSN II) singularity [53, 54], where a folded node becomes a folded saddle and a
regular saddle becomes a regular node. The original system exhibits a singular Hopf bi-
furcation close to a FSN II singularity [55, 56].

The Jacobian matrix of (11a)–(11b) has the following general form:

J =

⎡

⎣
0 –1

– ∂2M(v∗
0)

∂v2
0

F7(v∗
0, y∗

7) – ∂M(v∗
0)

∂v0

∂F7(v∗
0,y∗

7)
∂v0

2 ∂M(v∗
0)

∂v0

⎤

⎦ , (12)

where (v∗
0, y∗

7) stands for the equilibrium point of interest. Since on the folded equilibria

2 ∂M(vp1,p2
0 )

∂v0
= 0, the trace and determinant of (12) on the folded equilibria read

tr
(
Jp1,p2) = 0, det

(
Jp1,p2) = –

∂2M(vp1,p2
0 )

∂v2
0

F7
(
vp1,p2

0 , yp1,p2
7

)
. (13)

The trace and determinant of (12) on the regular equilibria read

tr
(
JF7

)
= 2

∂M(vF7
0 )

∂v0
, det

(
JF7

)
= –

∂M(vF7
0 )

∂v0

∂F7(vF7
0 , yF7

7 )
∂v0

. (14)

Notice that the generic folded singularity condition is violated due to the fact that
∂(Fv2 v̇2+Fy7 ẏ7)

∂v0
= 0 in (12), and tr(Jp1,p2) = 0 in (13). Therefore, the folded singularities de-

termined by (11a)–(11b) are not generic and a folded equilibrium is one of the following
types: a saddle for det(Jp1,p2) < 0, a center for det(Jp1,p2) > 0, a nilpotent for det(Jp1,p2) = 0.
The latter degenerate type corresponds to a point in the parameter space at which a
folded singularity and a regular singularity meet, i.e. tr(JF7 ) = 0 and det(JF7 ) = 0 in (14).
Consequently, the equilibrium points of (11a)–(11b) related to the folded and regu-
lar singularities undergo degenerate transcritical bifurcations where (12) has two zero-
eigenvalues.

Figure 3 shows the bifurcation diagram of (11a)–(11b) with respect to B in the region of
interest. Two straight lines of the equilibria (vp1

0 , yp1
7 ) and (vp2

0 , yp2
7 ) intersect with the regu-

lar equilibria curve F7(v0, y7) at two bifurcation points, BP1 at BBP1 ≈ 16.7817 and BP2 at
BBP2 ≈ 5.4817, which are degenerate transcritical bifurcations. For B < BBP1, the equilib-
rium (vp1

0 , yp1
7 ) is a center with two complex conjugate eigenvalues. After the bifurcation at

BP1, (vp1
0 , yp1

7 ) becomes a saddle. Consequently, the system (8a)–(8f) (and (2a)–(2h)) has a
folded-saddle singularity near p1 for B > BBP1. The equilibrium (vp2

0 , yp2
7 ) is of a saddle type

for B < BBP2 and becomes a center with two complex conjugate eigenvalues at B = BBP2.
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Figure 3 Bifurcation diagram of (11a)–(11b) with respect to B.
Equilibrium points (vp10 , yp17 ) lie on the lower red horizontal line (vp10 ,

y7), and (vp20 , yp27 ) on the upper red horizontal line (vp20 , yp27 ). Dashed
parts of the red lines represent saddle type, solid parts represent
center type solutions. The true equilibrium points line on the black
curve, F7. Dashed part of the black curve represents saddle type, solid
parts stable focus type solutions. The saddle type equilibrium points
along (vp10 , yp17 ) and (vp20 , yp27 ) change to center at the intersections
with F7 at BP1 and BP2, respectively

Hence, the system (8a)–(8f) (and (2a)–(2h)) has a folded-saddle singularity near p2 for
B < BBP2. Finally, in a neighborhood of BP1, the equilibrium points along the F7(v0, y7)
curve are of saddle type for B < BBP1 and stable focus for B > BBP1. Similarly, in a neigh-
borhood of BP2, the equilibrium points along the F7(v0, y7) curve are of stable focus type
for B < BBP2 and of saddle type for B > BBP2.

As mentioned above, a generic transcritical bifurcation of regular and folded singular-
ities is related to a FSN II singularity. In our case, a folded saddle becomes a folded cen-
ter and a stable focus becomes a saddle at the degenerate transcritical bifurcation points
BP1 and BP2. Furthermore, system (2a)–(2h) can undergo the (singular) Hopf bifurcations
close to BP2 and BP1 in the parameter space (see Fig. 4d), as it will be detailed in the follow-
ing sections. Hence, the interaction of regular and non-generic folded singularities can be
referred as a degenerate FSN II singularity. A degenerate FSN II singularity in (2a)–(2h)
stems from the structure of the NMM, which is defined as a second-order system that
violates the generic folded singularity condition tr(J) �= 0.

Folded singularities can lead to canard solutions in the original system. In a planar slow–
fast system, a singular Hopf bifurcation can occur near a folded singularity, which is then
called a canard point. In such case, the amplitude of the periodic orbits bifurcated at
the singular Hopf point increases stiffly in a narrow interval of the parameter (scaled by
the time-scale separation parameter) that controls the transition from small amplitude
to relaxation oscillations [57]. This phenomenon is known as canard explosion [26, 58].
A canard-explosive branch hosts small canards following the unstable branch of the criti-
cal manifold and one stable branch (so-called canard-without-head solutions), large ca-
nards following the unstable branch of the critical manifold and two stable branches
(so-called canard-with-head solutions), and a maximal canard solution that follows the
longest the repelling branch. In planar multiple time-scale systems, canard solutions are
tightly connected to excitability and firing thresholds [30, 31]. In higher dimensional
multiple time-scale systems with at least two slow variables, the folded-singularities are
generic, hence they are robust to small parameter perturbations, and canard solutions as-
sociated with folded singularities connect stable and unstable branches of a folded critical
manifold [36, 53, 59–61]. Canards of folded node and FSN II singularities support mixed
mode oscillations [27, 36, 44]. FSN II singularities have been identified in neuronal models
where the exchange from an excitable to a relaxation oscillatory state is accompanied by
subthreshold oscillations [24, 28, 42, 62]. Folded-saddle canards have been shown to be
sculpting firing threshold manifolds, as well [33, 34, 63–65].

In our problem, the critical manifold S0 (5) is hyperbolic, whereas the super-slow man-
ifold L0 (8a)–(8f) has a folded structure. Thus, the critical transitions occur mainly in the
6-dimensional reduced system given by (8a)–(8f). As the analysis above have shown, (8a)–
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Figure 4 Bifurcation diagrams of (2a)–(2h) with as a function of (B,C3). (a) Bifurcation diagram of (2a)–(2h) on
the (B,C3) plane. Curves are named, respectively, after the limit point (LP, black curves), Hopf (H, red curves)
and homoclinic (HOM, blue curves) bifurcations in panels (b–f). Only the LP bifurcations interacting with
canard solutions are plotted. Black squares indicate cusp (CP), red circles indicate Bogdanov–Takens (BT) and
red squares indicate generalized Hopf (GF) bifurcations. The regions marked by black, green and purple boxes
are zoomed in black, green and purple framed insets. The region where the homoclinic curve tips to the LP1 is
zoomed inside the green inset. (b–f) Bifurcation diagrams of (2a)–(2h) as a function of B for different values of
C3. The limit point bifurcations of interest are marked by black squares, Hopf bifurcations by red circles, and
homoclinic connections by blue stars. Stable and unstable solutions are represented by continuous and
dashed curves, respectively. Along the curves of equilibrium points, (2a)–(2h) undergoes four Hopf
bifurcations (H1,2,3,4) for C3 = {50, 80, 145} (c, d, e) and three Hopf bifurcations (H1,2,3) for C3 = 15 (b) and
(H1,2,4) for C3 = 200 (f)

(8f) has degenerate folded singularities along the fold curve at p1 and p2. Notice that, since
the system has neither a folded node nor a FSN II, small amplitude oscillations do not exist
near p1 or p2. But the folded saddle, degenerate FSN II and singular Hopf bifurcations can
lead to canard solutions governing the critical transitions in (8a)–(8f) (hence in (2a)–(2h)).
On the other hand, the bursting behavior cannot be captured by (8a)–(8f) because (8a)–
(8f) is restricted in the critical manifold S0, whereas the fast oscillations of the bursting
orbits leave off S0. So the bursting solutions exist in the full system (2a)–(2h) (see [48] for
a detailed analysis of the bursting solutions). As a result, our problem yields both three
and two time-scaled behaviors. In the next section, we investigate canard dynamics near
p1 and p2.

3 Multiple time-scale oscillations and canard transitions
Transitions near the folded singularities of (2a)–(2h) which lead to canard solutions de-
pend on the system parameters. The reader may refer to Table 1 for the parameter values,
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unless otherwise stated. The connectivity strength from the pyramidal cell population on
the subpopulation of the SOM+ interneurons, C3, and their synaptic gain, B, appear as
two crucial parameters controlling the transitions by affecting the curve F7 in (11a)–(11b)
(see Fig. 3). Figure 4a shows a 2-parameter bifurcation diagram in the plane (B, C3). De-
pending on C3, system (2a)–(2h) undergoes several Hopf bifurcations as a function of B.
The first two Hopf bifurcations, H1 and H2, yield harmonic oscillations, whereas the pe-
riodic branches appearing at H3 and/or H4 connect to multiple time-scale oscillations.
Under the variations in (B, C3), H1 and H2 persist; and the emerging periodic orbits do
not change qualitatively. On the other hand, H3 and H4 undergo Bogdanov–Takens (BT)
bifurcations BT1,2 and the corresponding periodic branches vary qualitatively. The peri-
odic orbits emerging at H3 and H4 can end on homoclinic connections, namely HOM1,2,3,4.

Figures 4b–f exemplify qualitative variations in (2a)–(2h) as a function of B for different
values of C3. For C3 < C3,BT1 ≈ 18.9, the system undergoes three Hopf bifurcations, for in-
stance in Fig. 4b for C3 = 15. The branch of periodic solutions starting at H3 terminates at
a homoclinic connection, HOM1. As C3 increases, HOM1 and LP1 get closer while the am-
plitude and the number of spikes of the periodic orbits increase. The spike adding occurs
as the HOM1 curve folds back and forth in the (B, C3)-space (see the black framed inset
in Fig. 4a for an example folding). At C3 = C3,BT1 another Hopf bifurcation, H4, appears
yielding a new branch of periodic orbits making a second homoclinic connection, HOM2

(green framed inset in Fig. 4a). Consequently, HOM1 and HOM2 points coexist in a nar-
row range of (B, C3). The HOM1 curve touches the LP1 curve at (B, C3) ≈ (23.98, 22.43),
folds back and continues in the parameter space, which then we name as HOM3 curve
(dashed zone in the green framed inset in Fig. 4a). The curves HOM1 and HOM3 stay
very close to each other in (23.98 < B < 24.46, 21.94 < C3 < 22.43), before HOM3 bends
in the C3 direction at (B, C3) ≈ (24.46, 22.43). As it happens, the branch of periodic orbits
curls below LP1 in the B-space and eventually connects to HOM3. With increasing C3, this
branch of periodic orbits advances further towards the stable equilibrium points while in-
troducing a region of multi-attractors of nodes, saddles, unstable small oscillations and
stable large amplitude bursting oscillations (see Fig. 4c for C3 = 50, dynamics will be de-
tailed in Sect. 3.2). Concurrently, H4 moves away from LP1 and HOM2,3 approach LP2.
In (20.09 < B < 20.26, 54.08 < C3 < 54.43), HOM2 and HOM3 curves are connected by a
section that is parallel to the LP2 curve (purple framed inset in Fig. 4a). For C3 > 54.43,
the branch of periodic orbits initiated at H4 connects to the branch of large amplitude
multiple time-scale oscillations (Fig. 4d).

System (2a)–(2h) does not have any LPs between H3 and H4 for C3,CP1 ≤ C3 ≤ C3,CP2. At
C3 = C3,CP2 ≈ 141.4, as the lower branch of equilibrium points curls below H3, the con-
nection between the large amplitude orbits and H3 is broken up on a saddle-saddle homo-
clinic bifurcation (the equilibrium points in a neighborhood of LP3 for B ≥ BLP3 are saddles
[66, 67]). As a consequence, the branch of periodic orbits starting from H3 terminates on
a homoclinic connection, HOM4 (for C3 = 145 in Fig. 4e). This homoclinic connection
remains until H3 disappears at C3 = C3,BT2 ≈ 157. Beyond C3 > C3,BT2, the large amplitude
bursting orbits introduced by H4 terminate on a saddle-node homoclinic connection (for
instance at C3 = 200 in Fig. 4f ).

The Hopf bifurcations H3 and H4 occur close to the folded singularities p2 and p1, re-
spectively. System (2a)–(2h) can yield canard solutions close to these points in the param-
eter space of B, such as B ≈ BH3 and B ≈ BH4. In the following section, we will show the
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canard-mediated transition from sinusoidal oscillations initiated by H3 to large amplitude
bursting/relaxation type solutions. Subsequently, Sect. 3.2 will detail the canard dynamics
and related excitability near H4, in particular, the type-I excitability for C3 = 50 and type-II
excitability for C3 = 80.

3.1 Canard-mediated transitions between sinusoidal and multiple time-scale
oscillations

Köksal Ersöz et al. [48] have realized that the number of spikes of a bursting solution of
(2a)–(2h) depends on the amount of the PSP received by the PV+ interneuron subpop-
ulation, hence on the EPSP coming from the pyramidal cell subpopulation and the IPSP
from the SOM+ interneurons. For instance, increasing the IPSP on the PV+ interneurons
by increasing B decreases the number of spikes while driving the oscillations one peak
to the next one in the parameter space (see Fig. 4c–f and 5). The connectivity constant
from the pyramidal cell subpopulation to the PV+ interneuron subpopulation, C5, directly
scales the EPSP on this subpopulation, therefore determines the maximum number of fast
spikes of the bursting oscillations, or more generally, the type of the multiple time-scale
oscillations.

Figure 5 exemplifies how C5 modulates the large amplitude oscillations between H3 and
H4 on the bifurcation diagram of (2a)–(2h) for C3 = 80. Increasing C5 decreases the ampli-
tude of the oscillations, moves H1 and H2 slightly to the right, but does not affect consider-
ably the locations H3 and H4 with respect to B (Fig. 5a). The supercritical Hopf bifurcation
at H3 yields a branch of sinusoidal periodic oscillations (Fig. 5b) that folds back and forth
as B varies and enters in a regime of multiple time-scale periodic oscillations. These os-
cillations are of relaxation type for small values of C5, and of bursting type for large values
of C5. Furthermore, the stable sinusoidal and multiple time-scale periodic oscillations can
coexist depending on the values of C5 (see Fig. 5b at B ≈ 4.8).

The form of the branch of periodic solutions between H3 and H4 in Fig. 5a indicates
the type of the multiple time-scale oscillations for a certain parameter combination. For
C5 = 80 (black diagram in Fig. 5) the smoothly decreasing amplitude of v0 with B in-
dicates that the corresponding orbits are of relaxation type (exemplified in Fig. 6). The

Figure 5 Variation of large amplitude solutions with respect to (B,C5). (a) Bifurcation diagrams of (2a)–(2h)
with respect to B for C3 = 80 and different values of C5. Curves and Hopf bifurcations (H1,2,3,4 , dots) are colored
with respect to the color codes of C5 values. Stable and unstable solutions are represented by continuous and
dashed curves, respectively. For the sake of simplicity, the periodic solutions between H1 and H2 are not
shown. (b) Zoom into the region of transitions between sinusoidal and large amplitude multiple-time-scale
solutions in B ∈ [4.7, 4.9]
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Figure 6 Example canard orbits along the transition from sinusoidal oscillations to relaxation oscillations.
Zoom near the bifurcation diagram for C3 = 80, C5 = 80 and B ∈ [4.7, 4.9] (see Fig. 5a for the whole diagram).
Continuous and dash curves represent stable and unstable solutions, respectively. Hopf (H3, red dot) is
marked on the diagram. Numbered orbits from 1-7 are given in panels (b–d). The orange curve traces the
frequency of the oscillations emerging at H3 The orange curve traces the frequency of the oscillations
emerging at H3. (b) Periodic orbits marked in panel (a), L0 (red curve), fold curves F1,2 (red points) and the
critical surface S0 (green surface) are projected on the (v0, v2, v3)-space. Arrows indicate the corresponding
time-scale (single-headed for super-slow, double-headed for slow dynamics). (c) Periodic orbits marked in
panel (a), L0 (red surface), fold curves F1,2 (black curves) and folded singular points p1,2 (red dots) are
projected on the (y7, v2, v0)-space. Arrows indicate the corresponding time-scale. (d) Time series of the
periodic orbits on panels (b, c) with respective color codes. Period is normalized to 1 (t̃/T̃ = 1, where T̃
represents period of a cycle)

horizontal zigzags along the upper part of the periodic branches obtained for greater
values of C5 indicate the presence of bursting solutions along these periodic branches
and the number of their fast spikes. For instance, the 5 peaks that we count between H3

and H4 for C5 = 350 (blue diagram in Fig. 5) signify that the maximum number of fast
spikes for C5 = 350 is 4. Such a bursting orbit is obtained for sufficiently small values
of B (B = 5, for instance). Then as B increases, the bursting orbits lose their fast spikes
one by one through the peaks of the horizontal branch. They become relaxation cycles
(B = 16, for instance), before shrinking and disappearing via a subcritical Hopf bifurcation
at H4.
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The periodic solutions connected to H1 and H2 do not interact with the singular fold
points of L0, p1 and p2, but the ones near H3 and H4 do because H3 and H4 take place
close to the degenerate FSN II singularities on the fold curve F . As a consequence, the
multiple time-scale orbits emanating at singular Hopf bifurcations H3 and H4 can un-
dergo canard explosion along which canard trajectories sculpt the periodic oscillations.
Figure 6 shows example orbits along the periodic branch that follow H3 for C3 = 80 and
C5 = 80. As the periodic branch folds with respect to B and becomes unstable (Fig. 6a),
the sinusoidal orbits of 4.5–6 Hz start to interact with p2. In particular, they move along
the unstable branch of L0, L0

m, before jumping back to the stable branch L0
r . Hence, the

periodic orbits become canard orbits (the 1st orbit). As B varies along the periodic branch
in the parameter space, the canard orbits grow in amplitude along L0

m (the second, third
and fourth orbits) until they stretch out between F1 and F2 (the fifth orbit). The canard
orbits that oscillate between L0

m and L0
r can be interpreted as canard-without-head orbits,

and the fifth orbit as the maximal canard since it has the largest period of the canard fam-
ily of the periodic branch under consideration. Soon after the fifth orbit, the trajectories
jump to the attracting branch L0

l , get a shape of canard-with-head solutions, and become
stable (the sixth orbit). As B increases, the relaxation cycles appear with parts exclusively
following the attracting branches of L0 and jumping close to the fold points.

As mentioned in the introduction, canard solutions play a fundamental role in sepa-
rating different dynamical regimes. The unstable canard orbits in Fig. 6 (from the first to
the fifth) appear as an other example of this phenomenon by accompanying the transi-
tion from sinusoidal oscillations to relaxation oscillations. For instance, sinusoidal oscil-
lations and large amplitude canard-with-head cycles coexist for B ∈ (4.75, 4.81) and the
canard-without-head cycles form the boundary between them, as seen clearly in Fig. 6a.
While increasing C5 introduces bursting type of solutions, it can preserve the bistability
between the bursting and sinusoidal oscillations, for example for C5 = {250, 350, 425} in
Fig. 5. Notice that with increasing C5, the initially smooth branch of periodic orbits be-
comes steeper, gains vertical zigzags that move to the right along the B-axis, and the region
of bistability decreases.

Figure 7 zooms into the region of canard orbits following the sinusoidal solutions of
4.8–6 Hz started at H3 for C5 = 450. As the stable sinusoidal oscillations grow in amplitude
with increasing B, they start to interact with p2 and to follow the bits of L0

m (the first orbit).
Soon after, the orbits undergo a LP bifurcation (where the branch of the periodic orbits
folds back at B ≈ 4.821) and become unstable. As B varies in the parameter space along
the periodic branch, the orbits moving along L0

m in the super-slow time-scale grow in
amplitude and they start to interact with the vertical panel of S0 as they jump to L0

r in
the slow time-scale. So, the orbits become canard orbits.

As the part of the trajectory along L0
m grows in amplitude, the trajectory gets attracted

by L0
r along the vertical panel of S0 and it spirals around L0

r before landing on the horizon-
tal plane of S0. This interaction with the vertical panel of S0 occurs in the fast time-scale,
and eventually yields fast spikes, i.e., bursting-type canard oscillations. For instance, the
second orbit in Fig. 7c and 7d has one fast spike. The number of spikes increases as the
trajectory stays longer and longer along L0

m while B varies. More precisely, the number of
spikes changes by one as we pass from one fold to another on the same side of along the
snaking periodic branch with respect to B (Fig. 7b). For instance, solution-2 has 1 spike,
solution-3, which is two fold below, has 3 spikes and so on. The spike adding continues
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Figure 7 Example canard orbits along the transition from sinusoidal oscillations to bursting oscillations (a)
Bifurcation diagram for C3 = 80, C5 = 450 and B ∈ [4.7, 4.9] (see Fig. 5a for the whole diagram). Stable and
unstable solutions are represented by continuous and dashed curves, respectively. Hopf (H3, red dot) is
marked on the diagram. The rectangular region is zoomed in panel (b). Numbered orbits from 1-7 are given in
panels (c–d). The orange curve traces the frequency of the oscillations emerging at H3. (c) Periodic orbits
marked in panels (a, b), L0 (red curve), fold curves F1,2 (red points) and the critical surface S0 (green surface)
are projected on the (v0, v2, v3)-space. Arrows indicate the flow direction and its time-scale (single-head for
super-slow, double-head for slow, triple-head for fast). (d) Periodic orbits marked in panel (a), L0 (red surface),
fold curves F1,2 (black curves) and folded singular points p1,2 (red dots) are projected on the (y7, v2, v0)-space.
Arrows indicate the corresponding time-scale. (e) Time series of the periodic orbits on panels are (b, c) shown
with respective color codes. Period is normalized to 1 (t̃/T̃ = 1, where T̃ represents period of a cycle)

until the canard orbits (analogous to canard-without-head orbits) expands between two
folded singularities, hence till the occurrence of the maximal canard of the family (ap-
proximated by the sixth orbit). After the maximal canard, the canard cycles start to follow
L0

l in the super-slow time-scale (analogous to canard-with-head orbits) and they become
stable (the seventh orbit). The part of the trajectory along L0

m decreases as B increases
further.
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For C3 = 80, the system undergoes a complete canard explosion along the periodic
branch following H3 since it visits the whole canard family from small to large (Figs. 6
and 7). However, what we may observe for small values of C3 is an incomplete canard ex-
plosion terminating at a homoclinic connection. For instance, for C3 = 15 (see Fig. 4b),
the sinusoidal oscillations along the periodic branch initiated at H3 change qualitatively
by interacting with L0

m as B varies and we observe homoclinic canard-without-head orbits
at HOM1. The orbits terminating on HOM3 are homoclinic canard-with-head orbits sur-
rounded by stable large amplitude oscillations. Increasing C3 completes the canard explo-
sion and the system enters into an excitable regime which will be detailed in the following
section.

3.2 Canard-mediated transitions and excitability
According to Hodgkin’s [6] classification of neural excitability, type-I excitable neurons
have continuous frequency-injected current curves, whereas type-II excitable neurons
have discontinuous frequency-injected current curves. Rinzel and Ermentrout [68, 69]
linked the type-I excitability to a SNIC bifurcation and the type-II excitability to a Hopf
bifurcation. De Maesschalck and Wechselberger [29] explained the transition between
the two excitability types via an intermediate regime of type-I excitability associated with
a codimension-2 Bogdanov–Takens (BT) bifurcation in a planar system. They showed the
existence of incomplete canard transitions in this transitory regime. Later on, transitions
between the neuronal excitability types was shown to be induced by the inhibitory and
excitatory autapse in the Morris-Lecar model [70]. Folded singularities and correspond-
ing canard solutions in higher dimensional systems also have been shown to be shaping
systems’ excitability properties [24, 28, 33, 34, 63–65].

System (2a)–(2h) can yield large amplitude oscillations in response to certain forms of
stimulation (due to stochastic inputs, for instance) after being initiated from an equilib-
rium point for a B value close to H4, LP1 and LP2 in Figs. 4c–4f. Hence, system (2a)–
(2h) is excitable in these regions and the excitability properties of (2a)–(2h) determined
by the parameter C3 (see Fig. 4). Indeed, the local pictures in these regions are similar
to the ones investigated in [29, 70]. In particular, system (2a)–(2h) is type-I excitable for
C3 ∈ (22.43, 54.43), basically between the homoclinic/saddle-saddle interactions near LP1

and LP2. In this parameter region, the large amplitude oscillations terminate on a homo-
clinic orbit for which the firing frequency is zero. System (2a)–(2h) is type-II excitable for
C3 > 54.43 for which the termination is issued via a Hopf bifurcation. In both cases, canard
solutions shape the resulting dynamics.

Figure 8 zooms in near the excitable region for C3 = 50 (see Fig. 4c for the whole dia-
gram). For a particular value of B for B < BLP1, the only attractor is the large amplitude
bursting oscillation (the 1st orbit). In BLP1 < B < BH4 the unstable attractors of the equi-
librium points appear. The subcritical Hopf bifurcation at B = BH4 initiates a branch of
periodic orbits that terminates on the homoclinic point HOM2, which bounds the canard
explosion near H4. For BHOM2, a homoclinic canard-without-head orbit (the second or-
bit) coexists with a large stable bursting orbit of canard type (the third orbit). At BHOM3 a
homoclinic canard-with-head orbit (the fifth orbit) appears together with an outer large
amplitude canard cycle (the fourth orbit). The large amplitude canard cycle grows in am-
plitude and disappears on a saddle-node of periodic orbits (SNPO) at B = BSNPO (the sixth
orbit). We also notice that, as HOM3 gets closer to LP2 for C3 ≈ 54.4 and B ≈ BLP2, the
canard orbits on the HOM3 become of without-head type.
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Figure 8 Example canard orbits near the type-I excitable regime. (a) Bifurcation diagram for C3 = 50, C5 = 450
and B ∈ [18, 22.5] (see Fig. 4c for the whole diagram). Stable and unstable solutions are represented by
continuous and dashed curves, respectively. Limit point (LP1,2 , black squares), Hopf (H4, red dot), homoclinic
(HOM2,3, blue stars) bifurcations and saddle-node bifurcation of periodic orbits (SNOP, orange purple square)
are marked on the diagram. Numbered solutions are presented in panels (b–d). The orange curves trace the
frequency of the oscillations. (b) Periodic orbits marked in panel (a), L0 (red curve), fold curvesF1,2 (red points)
and the critical surface S0 (green surface) are projected on the (v0, v2, v3)-space. Arrows indicate the flow
direction and its time-scale (single-headed for super-slow, double-headed for slow dynamics. The homoclinic
points HOM2 and HOM3 are marked by cyan and dark blue stars. (c) Periodic orbits marked in panel (a), L0 (red
surface), fold curves F1,2 (black curves) and folded singular points p1,2 (red dots) are projected on the
(y7, v2, v0)-space. Arrows indicate the corresponding time-scale. (d) Time series of the periodic orbits on panels
(b, c) with respective color codes. Period is normalized to 1 (t̃/T̃ = 1, where T̃ represents period of a cycle)

For a parameter set ensuring the type-II excitability (C3 = 80, for instance), the fast spikes
of the bursting oscillations disappear and the final oscillation turns out to be a relaxation
type running in slow and super-slow timescales. These relaxation oscillations terminate
via a complete canard-explosion near the singular Hopf bifurcation point H4. This hap-
pens in a similar manner for all C5 values under consideration. Figure 9 provides an ex-
ample for C5 = 450. As the large amplitude periodic solutions decrease in amplitude, they
start to follow L0

m and take the shape of canard-with-head solutions (the second and third
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Figure 9 Example canard orbits near the type-II excitable regime. (a) Bifurcation diagram for C3 = 80,
C5 = 450 and B ∈ [16, 18] (see Fig. 5a for the whole diagram). Stable and unstable solutions are represented by
continuous and dashed curves, respectively. Hopf bifurcation (H4, red dot) is marked on the diagram.
Numbered orbits on the lower branch of periodic solutions are presented in panels (c–d). The orange curve
traces the frequency of the oscillations emerging at H4. (b) Periodic orbits marked in panel (a), L0 (red curve),
fold curves F1,2 (red points) and the critical surface S0 (green surface) are projected on the (v0, v2, v3)-space.
Arrows indicate the flow direction and its time-scale (single-headed for super-slow, double-headed for slow
dynamics). (c) Periodic orbits marked in panel (a), L0 (red surface), fold curves F1,2 (black curves) and folded
singular points p1,2 (red dots) are projected on the (y7, v2, v0)-space. Arrows indicate the corresponding
time-scale. (d) Time series of the periodic orbits on panels (b, c) are shown with respective color codes. Period
is normalized to 1 (t̃/T̃ = 1, where T̃ represents period of a cycle)

orbits). The maximal canard of this canard family is the fourth orbit that stays along to
the super-slow manifolds as long as possible. After the fourth orbit, we observe canard-
without-head orbits (the 5th and the 6th orbits) that shrink to p1. The frequency of the
oscillations along the canard explosion ranges in 1.8–3.5 Hz. We also notice a region of
bistability between large amplitude bursting oscillations and equilibrium points. Once
again the canard solutions construct the boundary between them. For a parameter set
giving relaxation oscillations in this region (e.g. C5 = {80, 250, 350} in Fig. 5), the relax-
ation oscillations shrink H4 via a ‘classical’ canard explosion, similar to the one in the 2D
van der Pol system, without having any fast component in v3.
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4 Local field potential in critical regimes
In the previous section we have shown two different regions in parameter space where
canard solutions determine boundaries and organize transitions between different dy-
namical regimes. The narrow-band sinusoidal activity of 4.5–6 Hz emerging near H3

and of 1.8–3.5 Hz emerging near H4 are connected to large amplitude periodic multiple-
timescale solutions through canard orbits. System (1a)–(1h) emits aperiodic large ampli-
tude epileptic discharges under stochastic input (p(t) = p + ξ , with ξ = N (0, 22)) when it is
initialized near the critical regions of H3 and H4 (Fig. 10–11). A parameter setting ensur-
ing the type-I excitability without any canard solutions near H4 gives a board band activity
between the large amplitude spikes (Fig. 10a1–a3). On the other hand, taking the system to
type-II excitability near H4 introduces transient small amplitude oscillations of ≈ 3.5 Hz
due to the presence of the canard cycles in this region (Fig. 10b1–b3). We observe transi-
tions between large amplitude discharges and harmonic oscillations of ≈ 6 Hz when the
system is initialized close to the Hopf bifurcation H3 (Fig. 10c1–c3). Simulated PSPs at the
level of the pyramidal cell subpopulation are given in Fig. 11.

Figures 12 and 13 show LFPs recorded by the SEEG electrodes in two different patients
with drug-resistant focal epilepsy during presurgical evaluation (see Table 2 for the de-
tails). Multiple-contact depth electrodes were implanted according to the SEEG technique
as a standard clinical procedure in the care of patients who consented the possible use of
data for research purpose. The positioning of the electrodes is determined in each patient
from hypotheses about the localization of the epileptogenic areas. Implantation accuracy

Figure 10 LFP traces of system (1a)–(1h) near critical transitions under stochastic input. (a1) Transitions
between multiple time-scale oscillations and background regime for a type-I setting at B = 23, C3 = 35,
C5 = 200. Panel (a2) zooms between two large amplitude discharges (blue) and panel (a3) shows the
normalized power spectral density of the signal. (b1) Transitions between multiple time-scale oscillations and
background regime with slow oscillations of ≈ 3.5 Hz for a type-II B = 17.8, C3 = 80, C5 = 200. Panel (b2)
zooms between two large amplitude discharges (red) and panel (b3) shows the normalized power spectral
density of the signal. (c1) Transitions between multiple time-scale oscillations and sinusoidal oscillations for
B = 4.7, C3 = 80, C5 = 200. Panel (c2) zooms between two large amplitude discharges (cyan) and panel (c3)
shows the normalized power spectral density of the signal
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Figure 11 Corresponding PSPs of the LFPs given in Fig. 10. (a1)–(a3) The EPSP, slow IPSP (IPSPs) and fast IPSP
(IPSPf) for the type-I setting given in Fig. 10a. (b1)–(b3) The EPSP, slow IPSP (IPSPs) and fast IPSP (IPSPf) for the
type-II setting given in Fig. 10b. (c1)–(c3) The EPSP, slow IPSP (IPSPs) and fast IPSP (IPSPf) for the setting given
in Fig. 10c

Figure 12 SEEG signals recorded in a patient with epilepsy during the inter-ictal and ictal transition. (a)
Transition from inter-ictal to ictal period in the first patient. Background activity (BKG) observed further away
from seizure (panel b1) has a broad-band frequency distribution (normalized power density spectrum in panel
b2). A sporadic spike is preceded by narrow band low amplitude resembling canard-mediated oscillations
(CMO, marked in red, zoomed in panel (c1)) at ≈ 3.5 Hz (normalized power density spectrum in panel (c2))

peri-operatively is verified by an X-ray CT scan. A post-operative CT scan without con-
trast product is then used to verify the precise 3D location of each electrode contact. After
SEEG exploration, intracerebral electrodes are removed. An MRI is performed on which



Köksal Ersöz and Wendling Journal of Mathematical Neuroscience           (2021) 11:11 Page 22 of 27

Figure 13 SEEG signals recorded in a patient with epilepsy during the inter-ictal and ictal transition.
(a) Transition from inter-ictal to ictal period in the second patient. Background activity (BKG) observed further
away from seizure (panel b1) has a broad-band frequency distribution (normalized power density spectrum
in panel b2). A sporadic spike is preceded by narrow band low amplitude resembling canard-mediated
oscillations (CMO, marked in red, zoomed in panel (c1)) at ≈ 7 Hz (normalized power density spectrum in
panel (c2))

Table 2 Summary of patients’ features

Feature Patient 1 (Fig. 12) Patient 2 (Fig. 13)

Age at SEEG 16 y 14 y
Gender Female Female
MRI Right occipito-temporal focal cortical

dysplasia
Left hippocampal sclerosis

Syndrome Temporal lobe epilepsy (temporal
plus)

Mesial temporal lobe epilepsy

Recorded Cerebral
Region

Medial part of the middle temporal
gyrus (electrode contact: B4)

Internal temporal pole (electrode
contact: Pt’1)

Surgical outcome
(Engel Class)

II (cortectomy) IA (anterior temporal lobectomy)

the trajectory of each electrode remains visible. Finally, a CT-scan/MRI data fusion is per-
formed to anatomically locate each contact along each electrode trajectory. The patient
had electrodes implanted in the temporal region. For this study, signals were selected as
they exhibited clear transitions in electrophysiological patterns. In particular, we selected
pre-ictal events followed by a fast discharge typical of the seizure onset, which is one of
the markers of the imbalanced relation of excitation and inhibition [16, 71] that involves
excitability variations.

In Fig. 12, a narrow band activity of theta-band of 3.5 Hz is followed by a large amplitude
epileptic discharge between two sporadic discharges as we advance towards sustained pre-
ictal discharges. Such narrow band activity may be a signature of canard-mediated regions
where slowly varying system’s parameters and/or remote interactions lead to transitions
between small-amplitude-low-frequency oscillations and large amplitude discharges. In
Fig. 13 a narrow band activity of about 7 Hz is followed by a large amplitude epileptogenic
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discharge. We also notice that the form of the epileptic discharges in Fig. 12 and Fig. 13
are different, which may indicate that the systems would have different characteristics.
Interestingly, we have identified parameter regions for the corresponding frequency bands
in the model (see simulated LFPs and PSPs in Fig. 10 and Fig. 11, respectively). Hence,
we think that the properties of transient narrow band oscillations may be related to the
excitability properties and level of synaptic projections (scaled by the coupling coefficients
in the model) of the epileptogenic zone.

5 Conclusion
In this article, we extended the multiple time-scale analyses previously initiated in [48].
Here, we both investigated canard transitions present in a neurophysiologically-relevant
NMM and analyzed their consequences in terms of subsequent signatures in LFPs. In
this three-time-scale model, the canard transitions occur in the 6-dimensional two-time-
scale reduced system of slow and super-slow variables. They are associated with degen-
erate FSN II singularities and singular Hopf bifurcations. They organize initiation of re-
laxation/bursting oscillations from harmonic oscillations of 4.5–6 Hz or from equilibrium
points, and determine the boundaries between them. We showed that the system switches
between type-I and type-II excitability near the transitions between the equilibrium points
and relaxation/bursting oscillations. We further noticed that the canard regimes of type-II
excitability (and partially of type-I) yield low-frequency (near 3.5 Hz) oscillations in the
LFP under stochastic input.

These model predictions motivated a close analysis of SEEG recordings performed in
epileptic patients. In this paper, results illustrative of both signatures are reported only in
two patients. Interestingly, in brain structures clearly involved in the transition from in-
terictal to ictal activity, we observed a narrow band activity between sporadic discharges
before the seizure initiation, which strongly differed from the preceding background ac-
tivity. Although the parameter set used in this paper was not aimed for modeling these
recordings specifically, it is striking to see such a matching between the mathematical
analysis and the actual recordings.

It has been evidenced that impaired excitation–inhibition balance shapes the activity
of neural networks and, therefore, causes the emergence of “pathological” electrophysio-
logical patterns such as pre-ictal spikes and seizures in the context of epilepsy (see for a
review [72]). Indeed, epileptogenic brain regions are typical example of such excitation–
inhibition imbalanced networks [73]. We showed that the level of EPSP on the subpop-
ulation of SOM+ interneurons determines the type of the excitability. In particular, the
system is type-I excitable if the average number of synaptic contacts from the excitatory
pyramidal cells to the GABAergic SOM+ interneurons is low, and type-II excitable if the
average number of synaptic contacts from the excitatory pyramidal cells to the GABAer-
gic SOM+ interneurons is high. It is then the decreasing GABAergic inhibition (modeled
by decreasing inhibitory drive by the subpopulation of the SOM+ interneurons) that is re-
sponsible for transitions from background to epileptiform discharges. Interestingly, such
model parameter variations are plausible and linked to the failure of inhibitory barrages
observed in epileptic tissues [74] and generation of slow waves preceding the fast activity
[75, 76]. Properties of emerging epileptic discharges (e.g. their shape and frequencies), and
possible “silent” phases in between are strongly connected to the type of the excitability.
In the context of epilepsy, transitory regimes between the background activity and epilep-
tic discharges are crucial for understanding the underlying mechanisms [11, 77]. Epileptic
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biomarkers during such regimes, such as high-frequency oscillations [78], shape features
of epileptic spikes [79] or maybe frequency-specific oscillations reported here, are essen-
tial for identification of epileptogenic networks and for further development of therapeutic
procedures. Verification of the presence of such oscillations across different patients and
accurate modeling of the inter-ictal activity are needed, of course, for suggesting them as
biomarkers. This is the topic of future investigations.

As epilepsy can be considered as a dynamic disease [73, 80, 81], mathematical mod-
els of different cellular levels inherit multiple time-scale thinking [82–84]. We note a few
studies on the slow–fast transitions in NMMs. Desroches et al. extended NMMs [85] by
considering the synaptic gain of SOM+ interneurons as a slowly changing variable. They
showed that this configuration introduced regions of torus canards. Jafarian et al. [86] pro-
posed a NMM which incorporates slow variations in ionic currents leading to spontaneous
paroxysmal activity. Hebbink et al. [87] investigated response of the NMM of Wendling
et al. [16] to slowly varying inputs under which the systems yields bursting oscillations.
Weigenand et al. remarked the role of canard solutions in fast transitions in sleep wake
patterns of K-complexes in a NMM of sleep-wake patterns [43]. Our paper shows that
canard-mediated solutions are naturally present in the NMM of Wendling et al. [16]. Im-
portantly, as this model implements two main sub-types of interneurons (dendrite- and
soma-projecting), it is generic and can be considered for studying the dynamics of other
regions than hippocampus, such as neocortical areas, and in different contexts, such as
consciousness [47] and Alzheimer’s disease [20]. Furthermore, canard regimes reported
in this study are governed by the interactions between the pyramidal cell and SOM+ in-
terneuron subpopulations that follow a two-time-scale structure. It would be natural to
observe canard-mediated transitions in another generally used NMM of Jansen and Rit
[13] for modeling the brain activity. Hence, the canard-mediated fine structures we have
demonstrated here could be relevant for a number of situations and lead to markers of sub-
sequent critical transitions. The reported degenerate FSN II singularity leading to canard
trajectories is due to the general structure of NMMs, which are defined via second-order
differential equations. The dynamics associated with the degenerate FSN II singularity
merits further investigations and will be considered as a future work. Finally, organisation
of homoclinic canard orbits, possible codimension-two bifurcations and interactions with
the fold points will be studied in forthcoming works.
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