Skip to main content


Fig. 13 | The Journal of Mathematical Neuroscience (JMN)

Fig. 13

From: A Mechanistic Neural Field Theory of How Anesthesia Suppresses Consciousness: Synaptic Drive Dynamics, Bifurcations, Attractors, and Partial State Equipartitioning

Fig. 13

Solutions to (25) and (26) with initial conditions \(S^{\mathrm{E}}(0)=[0.2, 0.25, 0.4, 0.1, 0.3, 0.45]^{\mathrm{T}}\), \(S^{\mathrm{I}}(0)=[0.4, 0.2, 0.3, 0.3, 0.4, 0.2]^{\mathrm{T}}\) for \(\lambda^{\mathrm{E}}=0.05\ \mathrm{s}\) and \(\lambda^{\mathrm{I}}=0.35\ \mathrm{s}\). The synaptic drive of the excitatory neurons \(\mathrm{E}_{1}\) to \(\mathrm{E}_{6}\) and three of the inhibitory neurons \(\mathrm{I}_{1}\), \(\mathrm{I}_{2}\), and \(\mathrm{I}_{3}\) converges to zero, whereas the synaptic drive of the inhibitory neurons \(\mathrm{I}_{4}\), \(\mathrm{I}_{5}\), and \(\mathrm{I}_{6}\) that themselves do not receive inhibitory inputs do not converge to zero

Back to article page