Skip to main content

Advertisement

Fig. 16 | The Journal of Mathematical Neuroscience (JMN)

Fig. 16

From: A Mechanistic Neural Field Theory of How Anesthesia Suppresses Consciousness: Synaptic Drive Dynamics, Bifurcations, Attractors, and Partial State Equipartitioning

Fig. 16

Solutions to (72) and (73) with initial conditions \(S^{\mathrm{I}}(0)=[0.2, 0.25, 0.05, 0.1]^{\mathrm{T}}\), \(S^{\mathrm{I}}(0)=[ 0.3, 0.45, 0.4, 0.2]^{\mathrm{T}}\), \(\dot{S}^{\mathrm{E}}(0)=[2, 2, 2, 2]^{\mathrm{T}}\), \(\dot{S}^{\mathrm{I}}(0)=[1, 1, 1, 1]^{\mathrm{T}}\) for \(\lambda^{\mathrm{E}}=0.05\ \mathrm{s}\) and \(\lambda^{\mathrm{I}}=0.3\ \mathrm{s}\). The synaptic drive of the excitatory neurons \(\mathrm{E}_{1}\) to \(\mathrm{E}_{4}\) and two of the inhibitory neurons \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\) converges to zero, whereas the synaptic drive of the inhibitory neurons \(\mathrm{I}_{3}\) and \(\mathrm{I}_{4}\) that themselves do not receive inhibitory inputs do not converge to zero

Back to article page