Lehéricy S, Ducros M, van de Moortele PF, Francois C, Thivard L, Poupon C, Swindale N, Ugurbil K, Kim DS: Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 2004, 55(4):522–529. 10.1002/ana.20030
Article
Google Scholar
Parent A, Hazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brains Res Rev 1995, 20: 91–127. 10.1016/0165-0173(94)00007-C
Article
Google Scholar
Parent A, Hazrati LN: Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brains Res Rev 1995, 20: 128–154. 10.1016/0165-0173(94)00008-D
Article
Google Scholar
Bolam JP, Hanley JJ, Booth PAC, Bevan MD: Synaptic organisation of the basal ganglia. J Anat 2000, 196(4):527–542. 10.1046/j.1469-7580.2000.19640527.x
Article
Google Scholar
Parent M, Lévesque M, Parent A: Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 2001, 439(2):162–175. 10.1002/cne.1340
Article
Google Scholar
Dauer W, Przedborski S: Parkinson’s disease: mechanisms and models. Neuron 2003, 39(6):889–909. 10.1016/S0896-6273(03)00568-3
Article
Google Scholar
Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, di Lazzaro V: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 2001, 21(3):1033–1038.
Google Scholar
Kühn AA, Kupsch A, Schneider GH, Brown P: Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 2006, 23(7):1956–1960. 10.1111/j.1460-9568.2006.04717.x
Article
Google Scholar
Boraud T, Brown P, Goldberg J, Graybiel A, Magill P: Oscillations in the basal ganglia: the good, the bad, and the unexpected. In The Basal Ganglia VIII. Edited by: Bolam J, Ingham C, Magill P. Springer, Berlin; 2005:3–24.
Google Scholar
Kühn AA, Trottenberg T, Kivi A, Kupsch A, Schneider GH, Brown P: The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp Neurol 2005, 194: 212–220. 10.1016/j.expneurol.2005.02.010
Article
Google Scholar
Magill PJ, Sharott A, Bevan MD, Brown P, Bolam JP: Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation. J Neurophysiol 2004, 92(2):700–714. 10.1152/jn.00134.2004
Article
Google Scholar
Goldberg JA, Rokni U, Boraud T, Vaadia E, Bergman H: Spike synchronization in the cortex-basal ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. J Neurosci 2004, 24(26):6003–6010. 10.1523/JNEUROSCI.4848-03.2004
Article
Google Scholar
Eusebio A, Brown P: Synchronisation in the beta frequency-band—the bad boy of Parkinsonism or an innocent bystander? Exp Neurol 2009, 217: 1–3. 10.1016/j.expneurol.2009.02.003
Article
Google Scholar
Chen CC, Litvak V, Gilbertson T, Kühn A, Lu CS, Lee ST, Tsai CH, Tisch S, Limousin P, Hariz M, Brown P: Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Exp Neurol 2007, 205: 214–221. 10.1016/j.expneurol.2007.01.027
Article
Google Scholar
Chen CC, Lin WY, Chan HL, Hsu YT, Tu PH, Lee ST, Chiou SM, Tsai CH, Lu CS, Brown P: Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Exp Neurol 2011, 231: 91–96. 10.1016/j.expneurol.2011.05.018
Article
Google Scholar
Hammond C, Bergman H, Brown P: Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 2007, 30(7):357–364. 10.1016/j.tins.2007.05.004
Article
Google Scholar
Engel AK, Fries P: Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 2010, 20(2):156–165. 10.1016/j.conb.2010.02.015
Article
Google Scholar
Baker SN, Olivier E, Lemon RN: Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 1997, 501: 225–241. 10.1111/j.1469-7793.1997.225bo.x
Article
Google Scholar
Gilbertson T, Lalo E, Doyle L, Lazzaro VD, Cioni B, Brown P: Existing motor state is favored at the expense of new movement during 13–35 hz oscillatory synchrony in the human corticospinal system. J Neurosci 2005, 25(34):7771–7779. 10.1523/JNEUROSCI.1762-05.2005
Article
Google Scholar
Jenkinson N, Brown P: New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci 2011, 34(12):611–618. 10.1016/j.tins.2011.09.003
Article
Google Scholar
Marsden JF, Limousin-Dowsey P, Ashby P, Pollak P, Brown P: Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain 2001, 124(2):378–388. 10.1093/brain/124.2.378
Article
Google Scholar
Courtemanche R, Fujii N, Graybiel A: Synchronous, focally modulated β -band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci 2003, 23(37):11741–11752.
Google Scholar
McCarthy MM, Moore-Kochlacs C, Gu X, Boyden E, Han X, Kopell N: Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc Natl Acad Sci USA 2011, 108(28):11620–11625. 10.1073/pnas.1107748108
Article
Google Scholar
Shink E, Bevan MD, Bolam JP, Smith Y: The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 1996, 73(2):335–357. 10.1016/0306-4522(96)00022-X
Article
Google Scholar
Bevan MD, Wilson CJ, Bolam JP, Magill PJ: Equilibrium potential of GABAA current and implications for rebound burst firing in rat subthalamic neurons in vitro. J Neurophysiol 2000, 83(5):3169–3172.
Google Scholar
Plenz D, Kital ST: A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 1999, 400: 677–682. 10.1038/23281
Article
Google Scholar
Tachibana Y, Iwamuro H, Kita H, Takada M, Nambu A: Subthalamo-pallidal interactions underlying Parkinsonian neuronal oscillations in the primate basal ganglia. Eur J Neurosci 2011, 34(9):1470–1484. 10.1111/j.1460-9568.2011.07865.x
Article
Google Scholar
Terman D, Rubin JE, Yew AC, Wilson CJ: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 2002, 22(7):2963–2976.
Google Scholar
Gillies A, Willshaw D, Li Z: Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proc R Soc Lond B, Biol Sci 2002, 269(1491):545–551. 10.1098/rspb.2001.1817
Article
Google Scholar
Sato F, Parent M, Levesque M, Parent A: Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 2000, 424: 142–152. 10.1002/1096-9861(20000814)424:1<142::AID-CNE10>3.0.CO;2-8
Article
Google Scholar
Chang HT, Kita H, Kitai ST: The fine structure of the rat subthalamic nucleus: an electron microscopic study. J Comp Neurol 1983, 221: 113–123. 10.1002/cne.902210110
Article
Google Scholar
Holgado AJN, Terry JR, Bogacz R: Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. J Neurosci 2010, 30(37):12340–12352. 10.1523/JNEUROSCI.0817-10.2010
Article
Google Scholar
DeLong MR, Crutcher MD, Georgopoulos AP: Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 1985, 53(2):530–543.
Google Scholar
Alexander G, Crutcher M: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990, 13(7):266–271. 10.1016/0166-2236(90)90107-L
Article
Google Scholar
Kimura M, Kato M, Shimazaki H: Physiological properties of projection neurons in the monkey striatum to the globus pallidus. Exp Brain Res 1990, 82: 672–676.
Article
Google Scholar
Nambu A, Tokuno H, Takada M: Functional significance of the cortico-subthalamo-pallidal hyperdirect pathway. Neurosci Res 2002, 43(2):111–117. 10.1016/S0168-0102(02)00027-5
Article
Google Scholar
Wilson H, Cowan J: Exictatory and inhibitory interactions in localized populations of model neurons. Biophys J 1972, 12: 1–24.
Article
Google Scholar
Cooper AJ, Stanford IM: Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J Physiol 2000, 527(2):291–304. 10.1111/j.1469-7793.2000.t01-1-00291.x
Article
Google Scholar
Shen KZ, Johnson SW: Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J Physiol 2000, 525(2):331–341. 10.1111/j.1469-7793.2000.00331.x
Article
Google Scholar
Hoover BR, Marshall JF: Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA-containing neurons. Synapse 2004, 52(2):100–113. 10.1002/syn.20007
Article
Google Scholar
Kita H: Globus pallidus external segment. Prog Brain Res 2007, 160: 111–133.
Article
Google Scholar
Cragg SJ, Baufreton J, Xue Y, Bolam JP, Bevan MD: Synaptic release of dopamine in the subthalamic nucleus. Eur J Neurosci 2004, 20(7):1788–1802. 10.1111/j.1460-9568.2004.03629.x
Article
Google Scholar
Shen K, Johnson S: Dopamine depletion alters responses to glutamate and GABA in the rat subthalamic nucleus. NeuroReport 2005, 16(2):171–174. 10.1097/00001756-200502080-00021
Article
Google Scholar
Johnson PI, Napier TC: GABA- and glutamate-evoked responses in the rat ventral pallidum are modulated by dopamine. Eur J Neurosci 1997, 9(7):1397–1406. 10.1111/j.1460-9568.1997.tb01494.x
Article
Google Scholar
Ermentrout B: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Society for Industrial and Applied Mathematics, Philadelphia; 2002.
Book
MATH
Google Scholar
Khibnik AI, Kuznetsov YA, Levitin VV, Nikolaev EN: LOCBIF: interactive local bifurcation analyzer v2.3. Institute of Mathematical Problems in Biology, Russian Academy of Sciences, Pushchino, Russia; 1993. Khibnik AI, Kuznetsov YA, Levitin VV, Nikolaev EN: LOCBIF: interactive local bifurcation analyzer v2.3. Institute of Mathematical Problems in Biology, Russian Academy of Sciences, Pushchino, Russia; 1993.
Nowacki J: XPPy v0.7 [https://github.com/jsnowacki/xppy]..
Kuznetsov YA, Levitin VV: CONTENT: a multiplatform environment for continuation and bifurcation analysis of dynamical systems [http://www.enm.bris.ac.uk/staff/hinke/dss/continuation/content.html]..
Jones E, Oliphant T, Peterson P et al: SciPy: open source scientific tools for Python v0.11.0rc1 [http://www.scipy.org/]..
Izhikevich E: Dynamical Systems in Neuroscience. MIT Press, Cambridge; 2007.
Google Scholar
Magill PJ, Sharott A, Bolam JP, Brown P: Delayed synchronization of activity in cortex and subthalamic nucleus following cortical stimulation in the rat. J Physiol 2006, 574(3):929–946. 10.1113/jphysiol.2006.110379
Article
Google Scholar
Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, Magill PJ: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 2008, 28(18):4795–4806. 10.1523/JNEUROSCI.0123-08.2008
Article
Google Scholar
Günay C, Edgerton JR, Jaeger D: Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 2008, 28(30):7476–7491. 10.1523/JNEUROSCI.4198-07.2008
Article
Google Scholar
Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Lazzaro VD, Brown P: Movement related changes in synchronization in the human basal ganglia. Brain 2002, 125(6):1235–1246. 10.1093/brain/awf135
Article
Google Scholar
Flaherty AW, Graybiel AM: Input–output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 1994, 14(2):599–610.
Google Scholar
Berns G, Sejnowski T: How the basal ganglia make decisions. In Neurobiology of Decision-Making. Edited by: Damasio A, Damasio H, Christen H. Springer, Berlin; 1996.
Google Scholar
Gurney K, Prescott TJ, Redgrave P: A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 2001, 84: 401–410. 10.1007/PL00007984
Article
MATH
Google Scholar
Gurney K, Prescott TJ, Redgrave P: A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 2001, 84: 411–423. 10.1007/PL00007985
Article
MATH
Google Scholar
Humphries MD, Stewart RD, Gurney KN: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 2006, 26(50):12921–12942. 10.1523/JNEUROSCI.3486-06.2006
Article
Google Scholar
Ogura M, Kita H: Dynorphin exerts both postsynaptic and presynaptic effects in the globus pallidus of the rat. J Neurophysiol 2000, 83(6):3366–3376.
Google Scholar
Stanford IM, Cooper AJ: Presynaptic μ and δ opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. J Neurosci 1999, 19(12):4796–4803.
Google Scholar
Bain P, Aziz T, Liu X, Nandi D (Eds): Deep Brain Stimulation. Oxford University Press, Oxford; 2009.
Google Scholar
Leblois A, Meissner W, Bioulac B, Gross CE, Hansel D, Boraud T: Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism. Eur J Neurosci 2007, 26(6):1701–1713. 10.1111/j.1460-9568.2007.05777.x
Article
Google Scholar
Degos B, Deniau JM, Chavez M, Maurice N: Chronic but not acute dopaminergic transmission interruption promotes a progressive increase in cortical beta frequency synchronization: relationships to vigilance state and akinesia. Cereb Cortex 2009, 19(7):1616–1630. 10.1093/cercor/bhn199
Article
Google Scholar
Tass PA: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 2003, 89: 81–88. 10.1007/s00422-003-0425-7
Article
MATH
Google Scholar
Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber S, Israel Z, Vaadia E, Bergman H: Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism. Neuron 2011, 72(2):370–384. 10.1016/j.neuron.2011.08.023
Article
Google Scholar